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Abstract;

The major work of this project is to simulate the electrical characteristics of Schottky
barrier MOSFET with gate length in the range of nanometer. Due to high electric field
and hot carrier effects in the nanometer devices, the electron distribution function in the
channel region is calculated directly by using the Boltzmann transport equations and is
not assumed to be the conventional Boltzmann distribution. The tunneling current in the
Schottky-barrier is evaluated by the quantum tunneling model coupled with an Airy
function approach. Direct solving of the Schrodinger equation gives more accurate
results than the conventional WKB approximation. For the simulation of nanometer
devices, Boltzmann transport equation is coupled with Poisson equation and current
continuity equation. This approach provides more accurate results for the distribution of
electric field, carrier concentration and current density in the channel region as well as
the terminal 1-V and C-V Characteristics.

Keyworks: Schottky barrier MOSFET, Boltzmann transport equations, Airy function,
WKB approximation.
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The total tunneling currents density crossing the Schottky barrier is a sum of two
components. Jys Which is the electrons flowing from metal to semiconductor, and Jgy
that from semiconductor to metal. They can be calculated as follows:

gus=- 28 1,000 1.00] |7, () )
Jgy =- A T ¢ L@ 1, |T,(2)az )

where f,(x) and fyx) are the Fermi-Dirac distribution functions in meta and
semiconductor, respectively. A" is the effective Richardson constant, 7'is temperature,
kisthe Boltzmann constant and | 7,(x)| is the transmission probability of electrons for
the barrier.

The key note for calculating the total current density is the transmission probability | 7,(x) |. To
estimate the transmission probability of a potential barrier shown in Figure 1, it is discretized into n

regions and a constant electric field is assumed to be applied to each region. Under this assumption, the



potential energy is alinear function of distance and the Schrodinger equation can be solved directly by
using Airy functions. Consider the 1-D time independent Schrodinger equation:
I
2m fx?

+V(x)Yy = EY &

Here V(x) in the /" region has the following form:

(4)

Vie -V

Vix) = DB T x eV = - Fix+ Y,

where Vigr and Vj; are right-side and |eft-side potential individually in the i region, W/ isthe width of
the /" region and F;is the electrical field of the /" region. Substitute (4) into (3) and solve the
Schrodinger equation, the wavefunction of the /' region is

Y,(ri(9)=C Alr,(%)+ G B(r,(») 5)

where
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and eis electron charge.
For continuity of wavefunction, the value of wave-function and its derivative at region’s boundary
must be satisfied the following conditions:
i Y, (W)=Y,,(0)

1dY,;(x) - dY/+1(X)|

T oox ax

®)

x=W;

To deduce the transmission probability, the wave-function in the metal region and r” region are

assumed to be

YM = d +Re ik”’x, k, = VZ;noE (9)
Y, =T, , _2m(E- ev,) (10)
" h

where m, is free electron massand 7 is the reduced Plank constant.
Using (8), amatrix form is deduced for each region.
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Combing al equations resulting from (8), we can get

M:
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In this way the transmission probability 7,is calculated by T;x T;.

(12)



In addition to transmission probability 7, the distribution function fy(E) is another key
point. The Spherical-Harmonics expansion method is used to solve the Boltzmann
transport equation (BTE). A stationary BTE for electronsis

(k) N, £(r ) - LR - R 17, K) (13)
= 0S(kGK) F(r, k9 dke F(r, k)oS(k, kO dk¢

Where , (e)= 1, (k)

The SH expansion of distribution function yields
f(r,k) = £,(r,k) +% f,(r,k)+%%£k’ £(r K)+ s /,j=l2,3(14)

Using the first-order approximation and to transform the coordinate (1,k) to (r,H),
where H=E(k)-qj (r)istota energy, the resulting BTE reads
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Using the following equations to discretize (15) for 1-D case
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Extending the above results to 2-D case, it can be formulated as following:
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The discritized equation can read
[cati, j,0) +wadi, j,0) + LG, j,O)F
+U2(i, /) F, j + L2(1, j,0)F ., = QQ,
where

QQ/ =- 3g/,j‘/:SAWI ,:/,/Jttg/,/ﬁlDe + ternpa(lv j| /) ,:Hl,/‘/: (20)
+temp(i, () F.,, +tempe(i, () F, ., + tempe(i, j,)F, .,

The scattering mechanisms are impact ionization and the collisions with acoustic
phonons, optical phonons, and ionized impurities. All scattering parameters are from

[7].[8].
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For the parabol ic shape of potential barrier shown in figure 1, the calculated results
of the transmission probability 7, using the methods of Airy function and WKB
approximationare given in figure2 and figured. We find that the transmission prob ability
obtained by the WKB methods is under -estimated for all applied voltage at low electron
energy. However, it is over-estimated at high electron energy near the peak of potential
barrier. We alsonote that the number of discreted regions is not neces sary to be large

to seek for exact solution. Ten regions are good enough to give exact solution.

Figure 4 is the total electron-phonon scattering rate and Figure 5 is the impact
ionization scattering rate for electrons. All of them are calculated by using the
parameters of [7], [8] and are substantial consistent with [7]. Figure 6 gives the
distribution function in a NMOS device near the channel surface by solving (20). This
result verifies that the codes of full-band spherical harmonics expansion for solving
BTE are well done. By summation of density of state and distribution function
multiplication gives the electron concentration. Figure 7 shows that the electron
concentration distribution under various depths. Under the channel, the electron
concentrations reduce more quickly with depth. Upon these conditions, we can estimate

the inversion layer thickness.
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The numerical method developed in this work to solve the Schrodinger equation
in a potential barrier using the Airy function is more accurate and flexible than the
WKB approximation. Using full-band spherical harmonics expansion methods, we
can solve the BTE incorporate with many scattering mechanisms. However, it is a
tedious work to solve the 2-D BTE. The coupling of Poisson equation with current
continuity equation will be left as afeature work.
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Figure 1. Discretization of a potential barrier.
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Figure 2. Tunneling probability vs. applied volt age for a typical potential barrier using

Airy function and WKB approximation.
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Figure 3. Tunneling probability vs. electronenergy for a typical potential barrier using

Airy function and WKB approximation.



1.E+14

9.E+13 T

8E+13

T.E+13 T

6.E+13 T

SE+13 ¢

4E+13 T

3E+13 T

2E+13

Total phonon scattering rate(sec 1)

LE+13 +

0.E+00 t t t t
0 1 2 3 4 5

Energy(eV)

Figure 4. Total electron-phonon scattering rate
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Figure 5. Impact ionization scattering rate for electrons.
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Figure 6. The distribution function along the channel 0.007mm below the surface. The
applied biasisVgs=Vps=3Volts.
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Figure 7. The electron concentration under varies depths.
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