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ABSTRACT : In this paper, the stabilization problem of two classes of nonlinear singularly perturbed 
systems via dynamic output feedback is investigated. First, we consider the nonlinear singularly 
perturbed systems in which the nonlinearities are continuously differentiable. The theoretical result 
demonstrates that, using the factorization approach, the dynamic output feedback controller 
designed for the reduced-order model of the linearized system is a stabilizing compensator for the 
original nonlinear singularly perturbed system, provided that e is sufficiently small. Second, the 
nonlinear singularly perturbed systems in which the nonlinearities are not necessarily continuously 
differentiable but satisfy the global Lipschtz condition are examined. Combining the dynamic output 
feedback controller that stabilizes the reduced-order model of the linear part of the nonlinear 
singularly perturbed system with the quasi-stability result of Persidskii, a two-step compensating 
scheme is proposed to stabilize the original nonlinear singularly perturbed system under con- 
siderationfor a sufficiently small e. Copyright © 1996 Published by Elsevier Science Ltd 

L Introduction 

Most physical systems contain some small parameters  such as small time constants, 
masses, capacitances, etc. These small parameters  increase the order of  dynamic systems 
and then complicate the system analysis. Furthermore,  they introduce the multi-time- 
scale property such that these systems simultaneously possess both slow states and fast 
states. Coupling of these states with each other makes the system analysis much more 
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complex, and hence convenient methods to check stability have long been sought. 
Fortunately, singularly perturbed models for these systems give us a powerful tool for 
order reduction and separation of time scales. This singular perturbation approach, 
arising from an attempt to approximate a high-order system with another one of lower 
order, has proven to be a successful analytical tool that exploits directly the separation 
of system time scales, made explicit by the small singular perturbation parameter e. 
When e is small enough, approximations are obtained from the reduced-order models 
in separate time scales (1). 

Singularly perturbed systems have been studied extensively in recent years; see, for 
example, Kokotovic et al. (2) and references therein. This is due not only to theoretical 
interest, but also to the relevance of this topic to control engineering applications. 
Indeed, the singular perturbation approach has been proven to be an effective tool for 
system analysis and control design (3). A fundamental feature of such a control theory 
is decomposition of the feedback design problem into two design subproblems for the 
slow and fast dynamics. The two designs are then combined to give a design for the 
full-order system (4). Moreover, if the fast subsystem is already stable, the only work 
we need to do is to design the stabilizing feedback control in the slow subsystem (i.e. 
reduced-order model). The stabilizing feedback control designed for the reduced-order 
model can stabilize the full-order system, provided that e is sufficiently small. 

The dynamic output feedback control problem of singularly perturbed systems has 
been addressed in many works. However, these contributions focused mainly on linear 
singularly perturbed systems; see, for example (5-8). In this work, the stabilization 
problem is investigated for two classes of nonlinear singularly perturbed systems via 
dynamic output feedback. First, we examine the nonlinear singularly perturbed systems 
in which the nonlinearities are continuously differentiable. Using the factorization 
approach, the dynamic output feedback controller is designed for the reduced-order 
model of the linearized system of the nonlinear singularly perturbed system. The 
theoretical result demonstrates that the above dynamic output feedback controller can 
stabilize the linearized system and then the original nonlinear singularly perturbed 
system as well, provided that e is sufficiently small. Second, the nonlinear singularly 
perturbed systems in which the nonlinearities are not necessarily continuously differ- 
entiable but satisfy the global Lipschtz condition are investigated. Combining the 
dynamic output feedback controller that stabilizes the reduced-order model of the 
linear part of the nonlinear singularly perturbed system with the quasi-stability result 
of Persidskii, a two-step compensating scheme is proposed to stabilize the original 
nonlinear singularly perturbed system under consideration, provided that e is 
sufficiently small. 

This paper is organized as follows. In Section II, the factorization approach for 
designing the dynamic output feedback controllers in linear systems is introduced. In 
Section III, we consider a class of nonlinear singularly perturbed systems in which the 
nonlinearities are continuously differentiable. The factorization approach is used to 
design the dynamic output feedback controller for the reduced-order model of the 
linearized system such that the original nonlinear singularly perturbed systems is asymp- 
totically stable at the origin. The class of nonlinear singularly perturbed systems in 
which the nonlinearities are not necessarily continuously differentiable but satisfy the 
global Lipschtz condition is examined in Section IV. A two-step compensating scheme 
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FIG. 1. One-parameter compensating scheme. 
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is proposed to stabilize the original nonlinear singularly perturbed system under con- 
sideration. Two illustrative examples are given in Section V. Finally, conclusions are 
provided in Section VI. 

II. Factorization Approach 

The factorization approach for designing the dynamic output feedback controllers 
in linear systems is reviewed in this section. 

Consider the feedback system shown in Fig. 1: P represents the plant and C the 
compensator; rp and rc the external inputs; Up and uc the inputs to the plant and 
compensator, respectively; yp and Yc the output of the plant and compensator, respec- 
tively. 

Assume P is proper and has a state-space realization: 

Clearly we have 

Defining 

= Apx + Bpup, 

yp = CpX + EpUp. O) 

P(s) = Cp(sI- Ap)- l Bp + Ep. 

r'lr,,  I rc] 
for the feedback connection of  Fig. 1, we can get 

u =- H(P,  C)r, 

where 

= ~  (I+PC) ' - -P( I+CP)- I ]  

H(P, C) [_C(I+PC) ' ( I+CP)- '  ]" (2) 

If the compensator C is so chosen that de t ( I+  PC) ~ 0 and H(P, C) ~ M(S(s))t, then 
C stabilizes P ( inpu~output  stability). Assume that the pairs (Ap, Bp) and (Ap, Cp) are 

~The set of matrices whose elements are proper stable rational functions in s with real 
coefficients. 
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stabilizable and detectable, respectively; the following theorem gives parametrization 
of  the set of  the stabilizing compensators C for P. 

Theorem I (9) 
Suppose that for the system (1) P e M ( R ( s ) ) ?  and (Np, Dp), (/)p, Np) are any right 

coprime factorization and left coprime factorization of P, respectively. Select matrices 
Up, Vp, 0p, ITp in M(S(s))  such that 

UpNp + VpD~ = I (3) 

NpUp + DpVp = I. (4) 

Denote S(P) the set of  all Cs in M(R(s))  that stabilize P, i.e. the set of  all Cs in M(R(s))  
such that H(P, C) ~ M(S(s)).  Then 

S(p) = { ( Vp - RNp) ~ (Up + R/)p): R e M(S(s)),  det(Vp - RhTp) 4= 0} 

= { (Op+OpS) (12p-NpS) - l :S6M(S( s ) ) , de t ( lYp -NpS)  ~ 0}. (5) 

Note that all the matrices in (3)-(4) can be calculated by the following: 

No 

ap 

Up 

V. 

0. 
g 

in which K and F are 
Hurwitz. 

To discuss the internal stability of  the feedback system in Fig. 1, the compensator C 
is realized in state-space form as 

:to = Acx~ + Bout, 

y< = Ccx~ + E~uc (7) 

with the transfer function 

= Cp(sI -  (Ap --FCp))- ' (Bp --FEp) +Ep, 

= I -  Cp(s I -  (Ap --FCp)) -IF, 

= ( C p - E p K ) ( s I - ( A p - B p K ) ) - ' B p + E p ,  

= I--  K(sI-- (Ap - BpK))-  'Bp, 

= X ( s I -  (Ap - FCp))- ' F, 

= I+  K ( s I -  (Ap - FCp)) -~ (Bp - VEp), 

= K(sI--  (Ap -- SpK)) -  'F, 

= I+  (Cp - E p K ) ( s I -  (Ap - B p K ) ) - ' r ,  (6) 

properly chosen such that both Ap--BpK and Ap--FCp are 

H<(s) ~- Cc(s I -  Ac)-  ' Bc + E<. 

The following theorem states the relationship between internal stability and input-  
output stability for the feedback system of Fig, 1. 

? The set of matrices whose elements are rational functions in s with real coefficients. 
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Theorem H (9) 
Suppose that the two triples (Ap, 

detectable and that 
Bp, Cp) and (Ac, Be, Cc) are both stabilizable and 

det(I+/ /~(oo)P(oo))  = de t ( I+  EcEp) # O. 

Under these conditions, the closed-loop system of Fig. 1 is asymptotically stable if 
H(P, C) ~ M(S(s)) .  • 

In the following sections, the factorization approach is applied to stabilize two 
different classes of  nonlinear singularly perturbed systems. 

Ill. Dynamic Output Feedback Controller 

Consider the following nonlinear singularly perturbed system: 

-*l = f l  (Xl ,x2, u) 

&X'2 = f2 (x,,  x2, u) 

y = g(x~, x2), (8) 

where the nonlinear functions f~, fz and g are continuously differentiable and 
f~(0,0,0) = 0,f2(0, 0, 0) = 0 and g(0,0) = 0. 

In this section, dynamic output feedback controllers are designed such that they can 
asymptotically stabilize the nonlinear singularly perturbed system (8) at the origin. 
Define 

= All X ~  , `412 = 
OXl [Xl=O,x2=O,u=o ~X2 xl 

= `421 ~ , A22 = 
OXl  Ix I = 0 , x 2 = 0 , u = 0  ~ X 2  x I 

OXl  Ix I =0,x2  = 0  

Therefore, the linearized system of  (8) reads 

= 0,x 2 = 0 ,u = 0 

= O,x2 =O,u=O 

B 1 --:0~ -fi 
O U  Ix I =0,X2 =0,~d=0 

B2 = Of 2 
~ U  XI = 0 , X 2 = 0 , [ / = 0 '  

(9) 

Jell = .41 lXll-{-`412X2I+ BlUl, 

&~2: = A21Xll+`422X21-{-B2Ul, 

Yt = ClXlt+ C2X2l. (10) 

The matrix .422 is assumed here to be nonsingular and Hurwitz. Furthermore, the 
reduced-order model of  system (10) can be obtained by setting e = 0 in Eq. (10), i.e. 

"~ll ~---- All-~llq-Al2-~2l"k Blal, 

0 = A21.~ll+A22-~21"~-B2171h 

(11) 

(12) 
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0 -~, u t ..~[ .~u = Ao~ u + Bo~ t Y t  

d~ ~- ~ Y-/____~ C0 Xl___~/q- g 0~..._~/ 

1did 

2 >  

0 
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FIG. 2. Dynamic output feedback scheme for the reduced-order model (15). 

Yl  = C l X l l - ~ - C 2 X 2 l .  

Since A22 is nonsingular, we can get, from (12), that 

YC21 = -- A221AzlYcII-- A221B2(II. 

Substituting (14) into (1 1) and (13) yields 

x l l  = A o ~ l t +  Bo~t, 

f l  = Co2~l+ Eo~l, 

in which 

(13) 

(14) 

(15) 

xta = AaXta + Basra 

Yld = Cd'~ld-~ EdUld" (17) 

It will be shown that the dynamic output feedback controller (17) can also stabilize the 

Ao = A l l  -A12Ay21A21,  Bo = B l - A L 2 A ~ 2 1 B 2 ,  

Co = C1--C2A221A21,  Eo = --CzAz21B2.  (16) 

The system (15) is generally referred to as the reduced-order model of  the linearized 
system (1 0). Suppose that the dynamic output feedback controller, which stabilizes the 
reduced-order model (1 5) under the feedback interconnection as depicted in Fig. 2, can 
be obtained from Theorem I and is realized as 
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+ 
Jcu=Allxu+Al2X2t+B~uj 

ut ~:.I ~X~t=A~iX, t+A22x2i+B:u, Y, ) 
I 

I+ I Yt=qxlt+C2x2t -I 
t ~  ( 

( ) <  

+ 

+ 

>[ I 

+ 

///d 
+ 

0 

FIG. 3. Dynamic output feedback scheme for the linearized system (10). 

linearized system (10) and then the original nonlinear singularly perturbed system (8) 
as well, provided that the singular perturbation parameter ~ is sufficiently small. 

Lemma 1 
Suppose that the two triples (Ao, Bo, Co) of (15) and (Ad, Bd, Cd) of (17) are both 

stabilizable and detectable and assume that (Aa, Ba, Cu, Ed) of (17) is a stabilizing 
compensator for (A0, B0, Co, E0). Let Ed be chosen such that the matrix (I+EdEo) 
exists and B2Ed = 0 or EaC2 = 0. Then, for a sufficiently small e, the linearized system 
(10) is stabilized by the dynamic output feedback controller (17) under the feedback 
scheme shown in Fig. 3. 

Proof'. From Fig. 2 it can be seen that 

o ro,1, 
~,.J L o B.JLat~,J 

ov,,l+[oo olro, l, 
Y,.J L o CdJLX,dJ EdJLa,d 

[a~;]= [71 1l[37' 1 
OJL:ta/ 

After simplifying the above equation, we have 
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][~_1,] 
xlaJ k(-Ba+BaEo(I+EaEo)-lEa)Co Aa-BaEo(I+EaEo)-ICaJkxlaJ" 

(18) 

Since the two triples (Ao, Bo, Co) of (15) and (Aa, Be, Cd) of (17) are both stabilizable 
and detectable, the system (18) is, according to Theorem II, asymptotically stable. 
Hence the matrix 

=r Ao-Bo(I+EaEo)-'EaCo Bo(I+EaEo)-'Ca 1 (19) 

Ho - m(- Ba+ BaEo(I+ EdEo)-' Ea)Co Aa- BaEo(I+ EaEo)-'CaJ 

in (18) is Hurwitz. 
Moreover, the dynamic output feedback controller (17), by changing the notations 

of variables, is rewritten here as: 

2~a = Aaxtd + Bauta, 

Yta = Caxta + Eauta. 

From Fig. 3 it can be seen that 

[ 21t ] [AII-B1EaC1 BICa 
X,a / = ] -BaC1 Aa 

8-~21J LA21 -B2gdCl  B2Ca 

A,2 Bl C21[x,, 1 
A22 --B2EdC2 J [. X2/J 

If  the parameter Ea is chosen such that B2Ea = 0 or EaC2 = 0, then (20) becomes 

[A,,-B, Eacl B,c  
~,a]= / -~ ,c ,  Aa 
~22t J L A 21 -- B2 EaCI B2 Ca 

A , z -  B, EdC2 ][ Xl, ] 

- B ~ q  i x , a [  
A22 [_x21J 

(20) 

(21) 

o r  

I AII-B1EaCI BiCa Alz-BaEaC2 

972t 
8 g 

xll ] 

%j (22) 

Moreover, the system (21) can be rewritten in a more compact form as the following: 

N1 : N2 

..... N3 ! 
L E~  / 

x,, 1 
Xld] , 

X2l 3 

(23) 

where 
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= F A I I - - B ' E d C I  B lCdl ,  VAI2- -BIEdC21 
N, L - B d C ,  Ad  J N2 = l - B . c :  j '  

N3 = [A21 -B2EuC1 BzCa], N4 = A22. 

Applying the following transformation to (21) (2): 

i.e. 

I Xll 

X2l 

2 1  gPd . . . . . . . . . . . . . . . . . . . . .  
I - c L a P  d 

in which L d and Pd satisfy 

I__ePdL d " _ e p  d 

L d I 

~.2 ] , 

xll 1 
Xld ] ' 

X2I .J 

955 

(24) 

(25) 

No = NI - -N2N4 IN3 

= F A l l  - -BIEdCl  

L - B d C I  

=F 
LU~o U~J 

B1Cdl__[-AI2--BIEdC21 l 

N ~  = A , ,  - B I E a C  , - ( A I 2 - - B ,  EdCz)Ay21(A21-- B2EaC,), 

N~ = B, Cd-- (A12 --BIEdC2)A221B2Cd, 

B2 Cd] 

(28) 

with 

where 

N 3 -- N 4 L d + eLaN ~ - 8LdN 2 L d = 0, 

e(N, - NzLd)Pa-  Pd(N4 + eLdN2) + N2 = 0, (26) 

the closed-loop system (21), or equivalently (23), can then be converted into a decoupled 
form as the following: 

2 

(27) 
..... 0 :: N 4 -q- 0(/3) - 
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N 3 = - BaC, + BdC2A22 ~ (A2, -- B2EaC1), 

N 4 = Aa+BaC2A221BzCa. 

Based on (16) and the fact that 

( I+ M N )  - - 1  = I -  M ( I +  N M ) -  1N, 

we have 

( I+ EdEo)- '  = (I-- EaCaA22' B2) 1 = I +  EdC2(I--Azz' BzEdC2) 1A~2' B2 

= I+EdCzA22' B2 ('." B2EaC2 = 0). 

After lengthy manipulations, it can be shown that No is identical to H0 (in (19)) and 
thus Hurwitz. Since No and N4 (i.e. A=) are both Hurwitz, the closed-loop system (27), 
or equivalently (21), is hence asymptotically stable for a sufficiently small e. This 
completes the proof. • 

Remark 1 
If  the matrix Ed can not be properly chosen such that BzE a = 0 or EdC2 = 0, then the 

following conditions (2) can be used to guarantee the result of Lemma 1: 

(i) The pair ( A 2 2  , B2) is weakly controllablet; 
(ii) The pair (C2, A22) is weakly observable% 

The following theorem demonstrates that the dynamic output feedback controller, 
designed for the reduced-order model (15), can stabilize the original nonlinear singu- 
larly perturbed system (8). 

Theorem III  
Suppose that all the assumptions in Lemma 1 are available. Then, the pair 

(Aa, Ba, Ca, Ea) of (17), which is designed for the reduced-order model (15), is a sta- 
bilizing compensator for the original nonlinear singularly perturbed system (8) under 
the feedback configuration of Fig. 4, provided that e is sufficiently small. 

Proof'. The dynamic output feedback controller (17), by changing the notations of 
variables, is rewritten here as 

"~d = AdXd "}- BdUd, 

Yd = CdXd + EdUd. (29) 

From Fig. 4 we have 

-~1 = f I ( X I , X 2 , U ) ,  

xa = AdXd-- Bag(x1, x2), 

t The weak controllability and weak observability of the fast eigenvalues (i.e. the eigenvalues 
of A22) mean that they will not be affected by more than O(e) through output feedback. 
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FIG. 4. Dynamic output feedback scheme for the original system (8). 

We rewrite (30) as 

1 ~ = -A(x,, x2, u). 
8 

Defining 

and 

Xd = Aa 0 Xd + a 

x2 0 OJLx2J L 

I A(x~,x2,u) ] 
0 

9 ( x l ,  x2) + 
1 
-f2 (x l, x2, u) 
8 

[z I i x,1 Z ~- X d Z 2 

Z3 X2 

gz(z) = g(xl, xO, 
f,z(z) =A (x,, x2, u), 
U2z(Z) = f 2 ( X l ,  X 2 ,  U ) ,  

then the system (31) can be rewritten as 

(30) 

(31) 

(32) 

(33) 
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e = Z(z), (34) 

where 

i ,,z,l 1!o! 1o / F  :z,1 (35) 

In order to analyze the stability of  system (34), we calculate the Jacobian matrix of 
Z(z) at z -- 0: 

63Z, 
63z, 

~-zz ~ = o 
63Z2 
63z~ 

63Z3 
63z, 

63Zj OZ, 

&2 &3 
63Z2 OZ2 
63Z 2 63Z 3 

63Z3 63Z3 

&2 &3 z=O 

(36) 

with 

63Z1 z=0 63zl = A,l  - B , E a C , ,  63ZI63z2 z=0 = Bl Cd, 63Z1 z=0 = A 1 2 - B , E a C 2 ,  

63Z2 ~= o 63Z2 63Z2 = - B a C , ,  = A d ,  = - - B a C 2 ,  

632, z=0 63Z2 OZ3 z=0 

63Z36321 z=0 = (A21 --B2EaC,)/3 ' 63Z36322 z=O -- B2Cd/3 ' 63Z36323 z=O - A22/3 

Obviously the matrix in (36) is identical to the system matrix of  (22). It is noted that 
since the closed-loop system (27), or equivalently system (22), is asymptotically stable 
for a sufficiently small/3, the Jacobian matrix of Z(z) at z = 0 is Hurwitz, provided that 
/3 is sufficiently small. Hence, we can see that if/3 is small enough, then the dynamic 
output feedback controller (29) can stabilize the original nonlinear singularly perturbed 
system (8) under the feedback configuration of  Fig. 4. This completes the proof. • 

Remark 2 
The special cases 

~, = f , ( x , , x 2 , u ) ,  

/3~2 =f2(x , , x2 ) ,  

y = g ( x , , x 2 )  , (37) 

or 
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)¢1 = f l  (Xl, X2, U), 

e-t2 =fz(x l ,  x2, u), 

y = g ( x , )  (38) 

will lead to B2 = 0 or C2 = 0, respectively. Hence, the assumption B2Ea = 0 or EaC2 = 0 
in Lemma 1 is always satisfied for any Ea. 

So far, we have considered the nonlinear singularly perturbed system (8) in which 
the nonlinearities are continuously differentiable. The class of  nonlinear singularly 
perturbed systems in which the nonlinearities are not necessarily continuously differ- 
entiable but satisfy the global Lipschtz condition is examined in the next section. 

IV. Two-step Compensating Scheme 

Consider the following nonlinear singularly perturbed systemt: 

Jq = A1 lxl +A 12x2 +fl (xl, x2) + B I  u, 

/;'~2 = A21Xl -t-A22x2 -t-f2(xl,x2)~-B2u, 

y = ClXl + C2x2 +9(Xl, x2) (39) 

where x~e~", x zE~  m, u~t" , ,  y~l"o .  The functions fl: ~n X ~"- -*  ~",  f2: ~"  X ~m--+ 
,~rn, 9: "~nX'-~m---~n°; All, A12, A21, A22, BI, 02, C1 and C2 are the real matrices of  
appropriate  dimensions. The system (39) can be rewritten in a more compact  form as 
the following: 

2 = Ax+f(x)  +Bu 

y = Cx + 9x (x), (40) 

where 

1 
f(x)=[f2(x:__,x2) ], 9x(X)=g(x, ,x2) .  (41) 

The following assumptions are made here: 

(A1) f(0) -- 0 (i.e.fl(0, 0) = 0 andf2(0, 0) = 0) and 9x(0) = 0 (i.e. 9(0, 0) = 0); 
(A2) A22 is nonsingular and Hurwitz; 
(A3) f and gx satisfy the global Lipschtz condition, i.e. there exist constants kj~ kg 

such that 

t For the purpose of simplicity, the notations of the matrices in the linear part of system (39) 
are chosen to be the same as those in the linearized system (10). 
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If(~)-f(q)]l  ~ kjll~-~l[, v ( ~ , o ) e ~ "  x ~  m, (42) 

Ilgx(~)-gx(o)ll ~ kgll~-~ll, X / ( ¢ , ~ ) ~  n x N  m. (43) 

Consider the linear part of  (39): 

Xlt = A l l X l t +  A12x21+ BlUt, 

e,22l = A21x l l+  Az2x2t+ B2ul, 

Yt = CI  X ll ~- C2X2I.  (44) 

The reduced-order model of  system (44) can be obtained from (15) which is repeated 
here for convenience: 

in which 

xlt = Ao~ll+Bot~l, 

Yl = CoXllAv EoUl, (45) 

Ao = A l l  -AI2A221A21,  Bo = Bl -AI2A221B2,  

Co = C1-CeA221A21,  Eo = --CzA221B2. (46) 

The stabilizing controller for the reduced-order model (45), which is described in (17), 
is also repeated here: 

xta = Aa~ta + Bahia, 

Yta = Ca~ta + Ea~la. (47) 

In the preceding section we saw that the stabilizing controller (47), which is the 
realization of  the compensator obtained from Theorem I, also stabilizes the full-order 
system (44) for a sufficiently small e. The theoretical result demonstrates that combining 
the dynamic output feedback controller designed for the reduced-order model (45) with 
the quasi-stability result of Persidskii, a two-step compensating scheme will stabilize the 
original nonlinear singularly perturbed system (39), provided that e is sufficiently small. 

The two-step compensating scheme for stabilizing the system (39) is shown in Fig. 
5, where C and H are controllers. The controller C is designed for stabilizing the 
reduced-order model (45) and is realized in (47); however, the variables )zta, )~la and ata 
are replaced by xa, Ya and ua, respectively. The controller H will be chosen as the 
following form: 

2h = Ahxh + BhUh 

yh = O(l lxhlLk) ,  asllxhll ~ 0, (48)  

where A~ is Hurwitz, Bh is a real matrix and k > 1. Moreover, the notation 

y~ = O(llxhllk), asllxhll ~ 0, 

means that exist positive constants q and fi, 6 ~ 0, such that if Ilxhll ~< 6, then 



Nonlinear Singularly Perturbed Systems 961 

jq =Aux,+A,~x~+f(x,,x~)+Blu 

:> ~ic~ =&,x,+a~2x ~ + f2(  x,, xO+B~u 

y = Clxl+ C2x2 + g (xl, x~) 

0 + + u Y 

Yh [ " ~ < 2  Ut' 

FIG. 5. Two-step compensating scheme for the original nonlinear singularly perturbed system 
(39). 

Ilyhll ~ qllxhll k. 

Prior to examination of the stability of the closed-loop system under the two-step 
compensating scheme, the quasi-stability concept is first introduced. 

Consider the nonlinear system which is partitioned into two subsystems of the forms 

Jc = X(z,  x),  (49) 

= Z ( z ,  x) .  (50) 

Assume that the existence and uniqueness of the solutions of (49) and (50) are guaran- 
teed and that X(0, 0) = Z(0, 0) = 0. Thus, the origin (z, x) = (0, 0) is an equilibrium 
point of the complete system. Let y(t)  be a continuous vector with compatible dimension 
and consider the associate system 

Yc(t) = X(y( t ) ,  x(t)) .  (51) 

Denote Ox, Oz as the origin (z, x) = (0, 0) of (49) and (50), respectively, and O the 
origin (z, x) = (0, 0) of the complete system. We say that the origin Ox is quasi-stable 
for (49) whenever, given any a, there exists a positive b(a) ~< a such that if Ily(0)II < 6 
then any solution x(t)  of (51) with ]l x(0)I[ ~< 6 has the property that in any time interval 
0 ~< t ~< tl, in which Ily(t)rl ~< a, we have Ilx(t)ll < a. Contrapositively, the origin Ox is 
said to be quasi-unstable for (49) whenever, given any 6, a such that for any y(t)  with 
ily(0) It < 6 and y(t)  < a for t ~> 0, then for some solution x(t)  of (51) with I[x(0)II ~< 6, 
we have IIx(t)II ~> a for some t ~> 0. The quasi-stability and quasi-instability for Oz are 
completely defined analogously. 

The relationship between quasi-stability of the subsystems and stability of the com- 
plete system is stated in the following lemma established by Persidskii. 

Lemma 2 (10) 
If both Ox and Oz are quasi-stable for (49) and (50), respectively, 0 is then stable 
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for the complete system. If Ox or Oz is quasi-unstable for the corresponding subsystem, 
O is then unstable for the complete system. 

A type of quasi-stable systems is given in the following lemma. 

L e m m a  3 (10) 
For the system 

2 = A z + X ( z ,  x)  (52) 

under the assumption that the existence and uniqueness of the solution are guaranteed 
and X(0, 0) = 0. If A is Hurwitz and 

X ( z , x )  = O(llzLl+llxll~), k >  1 

as IlzlL + Ilxll --' 0, i.e. there is a positive constant 6 ---, 0 and a positive constant/£ such 
that 

IIX(z,x)ll ~</¢(llzlb+llxllk), k >  1 (53) 

whenever IIz[I + Ilxll <~ 6, the origin (z, x) = (0, 0) of (52) is then quasi-stable. 

Theorem I V  
Suppose that (A1)-(A3) are satisfied and all the assumptions in Lemma 1 hold. 

Then, the original nonlinear singularly perturbed system (39) is stabilized by the 
controllers C and H under the feedback configuration of Fig. 5 for a sufficiently small 
/3. 

Proof'. The dynamic output feedback controller (47), by changing the notations of 
variables, is rewritten here as: 

.5Ca = AdXd + BaUd, 

Yd = CdXd + EdUd. (54) 

Combining (39), (48) and (54) under the configuration of Fig. 5 yields 

-~1 = A I I X l  + A l 2 X 2 - J - f l ( X l , X e ) ~ B 1  u 

= A, tx,  +A ,2x2  +f l  (xl ,  x2) +B~ (Yh +Ya) 

= A l l x 1 + A I z x 2 + f I ( x l , x 2 ) + B , y h + B I C d X d  

- -  BI Ed[CI x l  + C 2 x 2  + g ( x l  , x2)] 

= (A 1~ --BI  E d C I ) X 1  -~- (A12 --BIEaCz)x2 -k-B1CdXa 

+ f l (x, , x2) - -B ,  Edy(X~ , x2) + Blyh, (55) 

• Xa = AaXd  + Baud  

= AdXd+Ba(- -y )  

= - -  B a C 1 X  1 -It- A d X d  - -  B d C 2 X 2  - -  Bd  ff(Xl, X2), (56) 
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~'2 : A21x1 +A22x2 'b f2(x l ,x2)  + B 2 u  

: A21XI q-A22x2 +f2 (Xl, x2) +B2(yh +Yd) 

= A2 lXl "]- Azzx2 "l-f2 (Xl, X2) "bBzyh + B 2 C a x d  

-- B2Ed[CIX 1 -t- C2x  2 +g(Xl ,  x2)] 

: (Azl - - O 2 E a C l ) x l  +A22x2 +OzCdXd 

+ f2 (xl, x2) -- BzEdg(xj, x2) + B2yh, (57) 

Jch = Ahxh + Bhuh 

= Ahxh+Bh[ClXl +C2x2 +g(xl ,x2)] 

= Ahxh -'b OhCl Xl "+" B,~Czx2 q'- Bh g(x~, x2). (58) 

The closed-loop system (55)-(58) can be rewritten in a more compact form as the 
following: 

Define 

and 

such that 

AII--BIEdCI BICd AI2--BIEaC2] 

L 
q- -- g(Xl, X2) "q- Yh, 

*h = A,',Xh + BhCIXI  + BhC2x2 + Bh g(xl, X2). 

(59a) 

(59b) 

[Xl] 
Z :  X d , 

LX2 J 

Ilzll = (llXl II 2 + IIx,~ll 2 + IIx= II 2)1/2, 

I4, = 

AII +BIEaC1 B1Ca A12-BtEaC2- 

-- BaCI Aa - BaC2 

[ ( A 2 , - ~ _ 2 E d C , )  ~ 2 C d  A22 

E /3 /3 

f(x) :Z(z) 

gx(X) = g A z ) ,  
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where 

N(z, Xh) = 

A (x, o, x~) 

f2(x~,x~) 

B1 Ed 

~xi,x2~+ l ~ j  ~h 

oo Oll  x - l t :j 
1 0 [BlEd V oll 

= Lfz(Z)- Ba [ g:(z)+ Yh, 

0 

Consequently, the closed-loop system (59) can be rewritten as 

2 = Hlz + N(z, xh), (60a) 

-¢h = AhXh+[BhC1 0 BhC2]z+Bhgz(Z ). (60b) 

Since/ / l  is identical to the system matrix (22), by the same reason as that in the proof  
of Theorem III, Ht is Hurwitz for a sufficiently small e. 

Denote Oz as (z, xh) = (0, 0) for the subsystem (60a). Then, Oz is an equilibrium point 
of (60a). Analogously, denote Oh as (z, xh) = (0, 0) for the subsystem (60b). Then, Oh 
is an equilibrium point of  (60b). Also O is denoted as (z, xh) = (0, 0) for the complete 
system (60), then O is an equilibrium point for the complete system. The equilibrium 
point O is proven to be stable in the following. 

First, it is shown that the subsystem (60a) is quasi-stable. From the definition of  

LL(z)- 

N(z, xh), we clearly have 

II N(z, x~)II = 

[ B, Ed 

Bd 

"-2 
[ol 
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where 

I B~Ea] 

Let K" = max(K, b2q), then 

i.e. 

BlEd] 

Bd ] gx(X)-q- = LAx)-  ~-~- 

~< Iltll II/(x)ll + b ,  IIgx(x)ll +b211yhll 

<<. kfllLII Ilxll +bxkgllxll +b211Yhll 

= KHxll +b2qllxhlf 

~< KIIzll + b2qIIxhll k, 

[  o'1 Yh 

(61) 

b 2 ol and K = ksl lZl l  +blkg. 

IIN(z, xh)ll ~ /~([Izll + IIx~llk), (62) 

IIN(z, x~)/I : O(llzll + Ilxh Ilk). (63) 

Hence, according to Lemma 3, the subsystem (60a) is quasi-stable for a sufficiently 
small e. Subsequently, the subsystem (60b) is also proven to be quasi-stable in the 
following. From (60b), we have 

;o xh(t) = exp(Aht)Xh(O)+ exp(Ah(t-s))([BhC~ 0 Bh C2]z(s) + Bh gz(z(s) ) ) ds. 

(64) 

Since Ah is Hurwitz,  there exists a positive constant  r, 

r ~< m i n ( - R e ( r / ) )  

where r~ are the eigenvalues of  Ah, and a positive constant  b ~> 1 such that  

Ilexp(Aht) II ~< b e x p ( -  rt). 

Therefore, 

II xh (t) II ~< b e x p ( -  rt) II xh (0) II 

j" +b exp(-r(t-s))(ll[BhC~ 0 

(65) 

0 BhC2]H IIz(s)ll + IIBhll IIg~(z(s))ll)ds 
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~< b exp ( - rt) II x~ (0) II 

j" 
+ b  exp(--r( t - -s))(( l lBhC~ II + IIBhC2tl)lLz(s)ll +kgllBhl[ IIz(s)ll) as 

0 

<~ b e x p ( -  rt)II xh (0)It 

- b(ll nh C, II + II n~ C2 I[ + k~ II nh II) f l  exp(-- r( t -  s))IIz(s)II as. (66) 

Consequently, it is clear that for LIz(t)ll < a, there is a 6(a) > 0 such that if Ilxh(0) I] < 6 
then Ilxh(t)ll < ~r. This proves the quasi-stability of the system (60b). According to 
Lemma 2, the equilibrium point O of the complete system (60) is stable for a sufficiently 
small ~. This completes the proof. • 

Remark  3 
According to the proof of Theorem IV, we have that if the dynamic output feedback 

controller (47) can asymptotically stabilize the linear part of the original nonlinear 
singularly perturbed system (39), i.e. system (44), for a sufficiently small e, then the 
original system (39) can be stabilized by the two-step compensating scheme depicted 
in Fig. 5. Therefore, the merit of the design methodology proposed in this section is 
that the stability bound of a can be deduced from the system (44) and hence is 
independent of the nonlinear part of the original system (39). The stability bound of 
of linear singularly perturbed systems has been extensively discussed in the literature 
( l l-14).  

V. Examples 

Example  1 
Consider the nonlinear singularly perturbed system: 

:csl = O. lx~l + xszx:+ sin(xs2 + u), 

:Cs2 = 2 sin(xsl ) + O. l x~ x f - -  2xf--  5u, 

e~: = 5xs~ + 0.2x22 -- 5 sin(x:) + u, 

y = x~lxs2 +2xsl. 

By comparing (67) with (8) we have 

X l =-  , X 2 = X f ,  

L.X,~21 

xs~ (0) = 0.085, 

x,2(0) = - 0 . I ,  

x2(0) = 0.055, 

f l ( x l  Xz,U) = [ 0'lxs21 + xszx:+sin(xs2 +U) ], 
' 2 sin(x,1 ) + 0.1 x2~ x f -  2 x : -  5uJ 

(67) 

f 2 ( x l , x 2 , u )  = 5x~1 +0.2X2sz--5sin(x:)+u,  g ( x l , x 2 )  = x21xs2+2Xsl. (68) 

It is obvious that f~, f2 and g are continuously differentiable and f~ (0, 0, 0) -- 0, 
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fz(0, 0, 0) = 0 and 9(0, 0) = 0. The matrices defined in (9) can be calculated as follows: 

=[o [o 1 
All 0Xl x,=0.x2=o.u=o 2 ' ~ X :  =O.x2=0,.=0 2 ' 

Az, Of 2 = [5 0], A22 0f2 x,=o.x2=o.u=0 
= OX 1 x~=O,x2=O,u=O = ~ X  2 ~- - - 5 ,  

0U Xl =0,X2~0,U= 0 5 ' 0U IX ' =0,X2=0,U= 0 

09 ~, = 0. (69) 09 = [ 2  0], C2 =~x2  =o.~2=o 
C l  ~- ~ x 1  x~ =O,x2=O 

Therefore, the linearized system of (67) is written as 

e)~21 = [5 O ] X l l - - 5 X z l " ~ U l ,  

Yt = [2 0]xll. (70) 

It is noted that A22 = --5 is nonsingular and Hurwitz. Then, from (15) and (16), the 
reduced-order model of (70) is obtained as 

xlt = Ao~lt+Bot~/, 

Yl = Co~t+ Eoftl, 

in which 

Ao = Al l -A,2Az21A21=[O 0 1 2 ] ,  

Co = Cl -C2Az21A21 = [2 0], Eo = --C2A221B2 = O. 

(71) 

E [O '° ' ]  Ao--BoK= --108 --110 2 

are both Hurwitz, respectively. Replacing Ap, Bp, Cp and E e in (6) with Ao, Bo, Co and 
Eo, respectively, the matrices Vp and Up are then calculated as 

It is obvious that the pairs (Ao, Bo) and (Ao, Co) are stabilizable and detectable, respec- 
tively. Hence, we proceed to design the dynamic output feedback controller for the 
reduced-order model (71) such that it can asymptotically stabilize the system (67). 

Choose K = [ - 2 0  --20] and F =  [5 0] x such that the matrices 
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S 2 -~- 100S+ 1168 
Up = K ( s I - -  (Ao -- FCo))  - ' F = 

s 2 + 12s+ 20 

- 100s-- 200 
Vp = I +  K ( s I -  (Ao -- FCo))  ~ (Bo -- FEo) - (72) 

s 2 + 12s+20 " 

Hence, if we set R = 0 in (5), then the stabilizing compensator  for the reduced-order 
model (71) becomes 

- 100s -  200 
S ( p )  = V p  1 Up - (73) 

s 2 + 12s+ 20 

which can be realized as 

I ~d']= A~[Xdl]+ B~ud 
Xd2A LXa2J 

~x~l ] +  Edua, 
Ya = CaLxa2 

(74) 

where 

[0 ,] 
= Ba = Ca = [ -  200 - 100] and Ect = 0. 

Ad --1168 --100 ' 

Therefore, we can see that ( I - E d E o )  1 = L B2Ea = EaC2 = 0 and the pairs (Aa, B,t), 
(Aa, Ca) are stabilizable and detectable, respectively. Hence, all the assumptions in 
Lemma 1 are satisfied. Consequently, according to Theorem III,  the dynamic output  
feedback controller (74) stabilizes the original nonlinear singularly perturbed system 
(67) for a sufficiently small e. The simulation of the closed-loop system (67) and (74) 
under the feedback interconnection as depicted in Fig. 4 is shown in Fig. 6. It is obvious 
that the closed-loop system is asymptotically stable at the origin. 

E x a m p l e  2 
Consider the nonlinear singularly perturbed system: 

~ = 7 X s + [ 6  - 2 ] F x s l ~ - 6 [ x ~ l - 2 u ,  
LXa J 

- 3JLXlzJ ] - 8  sin(xr,) ] 

y =  5x~+[6 61[x"l+x:. 
LXj~3 

(75) 
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FIG. 6. The dynamics of the closed-loop system (67) and (74) with ~ = 0.02 and initial condition 
[x~(O) x,2(O) xa~(O) xt(O) xj2(O)] T= [0.085 --0.1 0.055 0.0055 0.05] 7. 
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A comparison of system (75) with system (39) reveals 

x , = x ,  x 2 = [  xs~], A , , = 7 ,  
LX~ l 

A,2 = [ 6  --12], 

r l ]  

f , ( x , , x 2 ) = - 6 [ x s l ,  f 2 ( x , , x 2 ) =  [ _ --51Xr1[8 sin(x/, )1 ] 

6], 

2 (76) and g ( x l ,  x2) = x,.  

Obviously A22 is nonsingular and Hurwitz. It is easy to check that the functions f, ,  f2 
and g withf~ (0, 0) = 0,f2(0, 0) = 0 and g(0, 0) = 0 satisfy the global Lipschtz condition. 
Therefore, the assumptions (A1)-(A3) (in Section IV) are satisfied. The two-step 
compensating scheme for the system (75) can next be designed. 

First, the corresponding matrices in (46) can be calculated as 

Ao = A I , - A 1 2 A z z ' A z l  = 1, Bo = B I - A , 2 A 2 2 ' B 2  = 2 ,  

CO = Cl -C2A22' A2, = - 1 ,  Eo = - C 2 A 2 2 '  B2 = 9. (77) 

It can be seen that the pairs (Ao, Bo) and (Ao, Co) are stabilizable and detectable, 
respectively. Therefore, we choose K = 10 and F = - 10 such that 

A o - B o K =  - 1 9  and A o - F C o  = - -9  

are both Hurwitz. Replacing mp, Op, Cp and Ep in (6) with Ao, B0, Co and E0, respectively, 
we have 

Np = Co ( s I -  (A o - FCo))  ' (Bo -- FEo)  + Eo - - -  

15p = I - C o ( s I - ( A o - - F C o ) )  ' F -  
s--1 

s + 9 '  

Np = ( C o - E o K ) ( s I - ( A o -  BoK) )  ' Bo + Eo - 

Dp = I - - K ( s I - - ( A o - - B o K ) )  ~Bo - 
s--1 

s + 1 9 '  

Up = K ( s I - -  (Ao -- FCo))  - 1F - 
- -  1 0 0  

s + 9  ' 

9s-- 11 

s + 9  ' 

9 s - - l l  

s+1 9  ' 

s+929  
m ,  V r = I +  K ( s l - -  (Ao -- FCo))  - ' (Bo -- FEo)  - s + 9 
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- 100 
Up = K(s I - -  (Ao -- BoK) ) -  ~ r = - -  

s + 1 9 '  
s+929 

17p = I + ( C o - - E o K ) ( s I - ( A o - - B o K ) )  ' F  
s+19  " 

Hence, if we set R = 1/(s+ 10) in (5), then the stabilizing compensator for the reduced- 
order model (45) becomes 

: / ' s + 9 2 9  1 9 s - l l ' ] - ' ( - - l O 0  1 s - l )  --99s--1001 

S(p)  \ s + 9  s+ lO  ~+9  J \ s + 9  + s + l ~ s + 9  - s 2 + 9 3 0 s + 9 3 0 1  

which can be realized as 

~2 J kX~ 3 

(78) 

(79) 

where 

[ 0 

Aa = --9301 
B d =  C d = [ - - l O 0 1  --99] and E a = O .  

--930 ' 

It can be shown that all the assumptions in Lemma 1 are satisfied. Furthermore, the 
stable linear compensator H can be chosen, according to (48), as the following: 

Xh = -- 5Xh + Uh, 

yh = x~. (80) 

The dynamics of the closed-loop system (75), (79) and (80) under the interconnection 
shown in Fig. 5 are illustrated in Fig. 7. These figures clearly indicate that the closed- 
loop system is asymptotically stable at the origin. 

VI. Conclusions 

In this paper, the stabilization problem of two classes of nonlinear singularly per- 
turbed systems is discussed. In the first class of systems, the nonlinear functions 
describing the system dynamics need to be continuously differentiable. While this 
condition is not necessarily needed in the second class of systems, instead it is assumed 
that the nonlinear functions describing the system dynamics only satisfy the global 
Lipschtz condition. The set S(p)  of all linear stabilizing compensators given in Theorem 
1 plays an important role in our control synthesis, since it can stabilize the reduced- 
order model of the linearized (or linear) part of the two classes of nonlinear singularly 
perturbed systems under consideration. We have proved that this can guarantee the 
stabilization of the first class of systems for a sufficiently small e. However, this is not 
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FIG. 7. The dynamics  o f  the c losed- loop (75), (79) and (80) with e = 0.02 and initial condit ions  
[Xs(0 ) XII(0) x/2(0) Xdl(0 ) Xd2(0 ) Xh(0)] T=  [0.35 --0.42 0.5 0.005 0.03 0.01] v. 
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the case for the other class of systems. The quasi-stability result by Persidskii is then 
introduced to combine the set S(p)  obtained from the factorization theory to establish 
a two-step compensating scheme for stabilizing this class of nonlinear singularly per- 
turbed systems, provided that e is sufficiently small. The theoretical result demonstrates 
that, under this two-step compensating scheme, the closed-loop system is asymptotically 
stable. 
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