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Abstract

Conventionally, portfolio selection problems are solved with quadratic or linear programming models. However, the
solutions obtained by these methods are in real numbers and difficult to implement because each asset usually has its min-
imum transaction lot. Methods considering minimum transaction lots were developed based on some linear portfolio opti-
mization models. However, no study has ever investigated the minimum transaction lot problem in portfolio optimization
based on Markowitz’ model, which is probably the most well-known and widely used. Based on Markowitz’ model, this
study presents three possible models for portfolio selection problems with minimum transaction lots, and devises corre-
sponding genetic algorithms to obtain the solutions. The results of the empirical study show that the portfolios obtained
using the proposed algorithms are very close to the efficient frontier, indicating that the proposed method can obtain near
optimal and also practically feasible solutions to the portfolio selection problem in an acceptable short time. One model
that is based on a fuzzy multi-objective decision-making approach is highly recommended because of its adaptability and
simplicity.
© 2007 Published by Elsevier B.V.
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1. Introduction

Markowitz’ model [1] uses the mean and variance
of historical returns to measure the expected return
and risk of a portfolio. Conventionally, such portfo-
lio selection problems are solved with quadratic or
linear programming models under the assumption
that the asset weights in the portfolio are real num-
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bers, which are difficult to implement. Specifically,
each asset has its minimum transaction lot, while
the solutions involve only real-number asset weights
rather than asset trading units. For example, stocks
might be traded at the unit one share, and mutual
funds have their individual minimum trading
amounts. Thus, the solution obtained by Marko-
witz” model must be integers to be applicable in
practice.

Other than Markowitz’ model, Speranza [2],
Mansini and Speranza [3,4], and Kellerer et al. [5]
proposed their respective portfolio selection models
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based on Konno and Yamazaki’s mean absolute
deviation (MAD) model [6]. Speranza [2] proposed
a mixed integer program considering realistic char-
acteristics in portfolio selection, such as minimum
transaction lots and the maximum number of secu-
rities, and suggested a simple two-phase heuristic
algorithm to solve the proposed integer program.
Mansini and Speranza [4] showed that the portfolio
selection problem with minimum transaction lots is
an NP-complete problem and proposed three heu-
ristic algorithms to solve the problem. Based on
the MAD model, Konno and Wijayanayake [7] pro-
posed an exact algorithm for portfolio optimization
problems under concave transaction costs and min-
imum transaction lots. However, minimum transac-
tion lots were not the major concern in their study.
Later, Mansini and Speranza [8] derived a mean-
safety model with side constraints from the MAD
model, and proposed an exact algorithm to solve
for portfolios under the consideration of transaction
costs and minimum transaction lots. However,
Markowitz’ model is still the most widespread port-
folio selection model. Solving the portfolio selection
problem based on Markowitz’ model and, simulta-
neously, considering minimum transaction lots are
of practical significance. However, it appears that
no methods in the past solving the portfolio selec-
tion problem with minimum transaction lots were
based on Markowitz’ model.

Apart from considering minimum transaction
lots, Markowitz” model is intrinsically a multi-
objective  decision-making (MODM) problem
whose decision criteria conflict with each other.
The return is required to be maximized and the risk
minimized. However, the risk is often high when the
return is maximized, and the return is often low
when the risk is minimized. Researchers have pro-
posed different approaches, such as goal program-
ming [10] and multiple objective programming
[11], to solve multi-objective portfolio selection
problems. Lee and Lerro [10] pioneered goal pro-
gramming in portfolio selection, but their method
is not based on Markowitz” model. Arenas Parra
et al. [12] proposed a fuzzy goal programming
approach to solve a portfolio selection problem,
using a multi-index model to estimate the return
and risk of portfolios and treating fuzzy goals as
fuzzy numbers. However, their method ignores the
existence of minimum transaction lots. Apart from
goal programming, fuzzy programming can also
be used to solve MODM problems [13], but conven-
tional fuzzy programming methods cannot incorpo-

rate objective weights that are usually important for
the decision maker (DM) to express his/her prefer-
ence regarding return and risk. Lin [14] recently pro-
posed a weighted max-min model to incorporate
objective weights with fuzzy programming. Promis-
ingly, this method can be applied to solving the
portfolio selection problem. Using this method,
the DM obtains portfolios through setting appro-
priate objective weights.

The portfolio selection problem with minimum
transaction lots is a combinatorial optimization
problem whose feasible region is not continuous.
Studies have shown that genetic algorithm (GA) is
a promising approach to combinatorial optimization
problems. Shoaf and Foster [9] applied GA to
Markowitz’ portfolio selection problem and found
that the time complexity of GA approximates
O(nlogn) and is better than that of quadratic pro-
gramming. However, their approach does not con-
sider the constraints of minimum transaction lots.
The solution obtained will be much more realistic
if the constraints of minimum transaction lots are
considered when solving with GAs. Therefore, this
study presents and compares three possible decision
models with their corresponding GAs to solve the
portfolio selection problem with minimum transac-
tion lots, an NP-complete MODM problem. The
proposed GAs are highly efficient and effective in
providing near optimal solutions within a few
minutes.

The rest of this paper is organized as follows.
Based on Markowitz’ model, Section 2 derives two
models for portfolio selection with minimum trans-
action lots. Section 3 presents the fuzzy MODM
model of Lin [14], and then an integrated model for
portfolio selection based on fuzzy MODM and con-
sidering minimum transaction lots is proposed. The
GAs for solving the proposed models are stated in
Section 4. Section 5 presents the experiments with
the proposed GAs on the mutual funds in Taiwan
and discusses the results. Finally, Section 6 concludes
the paper and suggests possible future research.

2. Portfolio selection and minimum transaction lots

Originally an MODM problem, portfolio selec-
tion attempts to maximize the rate of return and
minimize the portfolio risk simultaneously. In prac-
tice, the MODM problem is often degenerated to a
single objective one by introducing a preference
structure to compromise between the objectives, or
simply optimizing one of the two objectives while
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bounding the remaining one. The latter approach
leads to the well-known Markowitz” model [1].
Markowitz’ model assumes that rational investors
aim to maximize return under a certain risk level
or minimize risk above a certain return level. For
convenience, the decision maker usually fixes the
expected rate of return and then minimizes the port-
folio risk under this return constraint. Conse-
quently, Markowitz’ model can be expressed as a
quadratic programming problem as follows:

Model 1

n n
. 2
min O'p = E E W[WjG,‘j (1)
1 j=1

i=

subject to 7, = Zwm =r, 2)
i=1

Zn:wizl, (3)

where n is the number of assets; r,, is the expected
rate of return; r is the required rate of return; r; is
the expected rate of return of asset i; g;; is the return
covariance between assets 7 and j, and 0'12) is the re-
turn variance of the portfolio. w; represents the
weight of budget invested in asset i. As in the origi-
nal Markowitz’ model, w; > 0, that is, no short sell-
ing is allowed.

However, in practice, each asset has its minimum
transaction lot that should be taken into consider-
ation in finding minimum-risk portfolios. Solutions
to portfolio selection problems thus must be inte-
gers because real-number solutions might be diffi-
cult to implement. As a consequence, the portfolio
selection models need to be modified to consider
the minimum transaction lots. A modified Marko-
witz’ model can be formulated as follows to con-
sider the minimum transaction lots.

Model 2
min O'IZ) = i inWjUip (1)
=1 =1
subject to e, = i:xicm- = br, (4)
P
ixici < b, (5)
P
w,—z%, i=1,...,n, (6)

xiGZ,

where b represents the budget and e, the expected
portfolio return. ¢; denotes the unit price of asset
i, and x; represents the units invested in asset i. Since
the same rate of return can be achieved with differ-
ent budgets, Eq. (4) uses portfolio return instead of
rate of return to maximally utilize the budget. More
return is earned as more capital is invested. Never-
theless, constraint (5) requires that the total invest-
ment be below the budget. Similar to (3),
constraint (6) requires that the sum of weights be
unity. Notably, this constraint causes the model to
be nonlinear.

Similar to Model 1, Model 2 minimizes the
investment risk with respect to a given rate of return
r except that the optimal solution must be in inte-
gers. However, the modification might make a port-
folio with a rate of return equals r unobtainable,
namely, the rate of return might not exactly equal
r. Owing to constraints (4), the rate of return can
only exceed r. In a portfolio selection problem
whose solution is in real numbers, the desired rate
of return along with its corresponding risk repre-
sents a target portfolio to be achieved. The target
portfolio can always be achieved in a real-number
solution space. However, in an integer solution
space, the target portfolio might be unreachable,
and the optimal solution conforms to constraint
(4) can be far from the target. Specifically, the risk
of the optimal solution to Model 2 might be too
high to be acceptable if its rate of return is to exceed
the desired r. Conversely, a portfolio with a rate of
return slightly less than the desired r might be more
appealing if the portfolio risk can accordingly be
lowered significantly. This alternative leads to
another decision model that minimizes the distance
between the obtained and the target portfolios. The
model is as follows:

Model 3
0, — 0\ 2 e, —br \°
. &= ( p ) p 7
min pr— + b — b ) ()
subject to 012, = Z ZWinUij, (1)
=1 =1

DY

.X','EZ7
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Fig. 1. Portfolio efficient frontier.

where ¢ is the minimum risk corresponding to the
desired r. Notably, the risk and return are normal-
ized to eliminate the influence of scales. As shown
in Fig. 1, " and ¢" represent the maximal rate of re-
turn and the minimal risk that can be achieved, and
o~ and r~ are their corresponding risk and rate of
return. Therefore, (¢*,77) and (¢7,r*) represent
the lower and upper ends of the efficient frontier.

Obviously, this model is also a nonlinear integer
programming problem that is difficult and time-con-
suming to solve. Fortunately, genetic algorithms are
helpful in solving difficult nonlinear and/or combi-
natorial optimization problems. That is why this
study uses genetic algorithms to solve the portfolio
selection problem with minimum transaction lots.
Nevertheless, despite seemingly workable, the mod-
els still have some potential problems. The same rate
of return might involve different levels of risk in dif-
ferent markets or in different time periods. Deter-
mining an appropriate value of r to reflect the
investor risk preference is a tricky business. Further-
more, the desired ¢ for Model 3 must be obtained in
advance by solving Markowitz’” model (Model 1).
Obtaining the target portfolio might be time-con-
suming when the number of assets is large. The next
section presents an alternative approach that might
be more applicable to solving the portfolio selection
problem, which is a fuzzy MODM approach requir-
ing no predetermined r and o, and might be promis-
ing when applied to different scenarios.

3. Fuzzy multi-objective portfolio selection

Conventional MODM approaches involve goal
programming, compromise programming and fuzzy
programming. Goal programming minimizes the
weighted sum of absolute deviations to the objective

goal values subjectively given by the DM. Model 3
can be considered as a goal programming approach.
The major problem with goal programming lies in
the incommensurability between objectives of differ-
ent measures. Different metrics of objectives lead to
incommensurable goal values and deviations from
them. Summing up these incommensurable devia-
tions is simply unreasonable. Compromise pro-
gramming minimizes the sum of weighted
distances to the ideal solution, based on some dis-
tance metric. Usually, compromise programming
uses Minkowsky distance L, as the distance metric,
and thus, the solution obtained depends on the
parameter p. Although the incommensurability
problem in compromise programming can be
resolved by normalization, the choice of an appro-
priate distance parameter p becomes a tricky prob-
lem to the DM. Fuzzy programming has been
widely and successfully applied to various MODM
problems, such as those in the studies of Chang
and Chen [15], Abd El-Wahed and Abo-Sinna
[16], and Rasmy et al. [17]. Fuzzy programming
helps to resolve the incommensurability problem
between objectives, and thus provides an alternative
for solving MODM problems.

Since Zadeh [18] proposed fuzzy set theory in
1965, related theories and methodologies have been
widely applied to many fields, including operations
research, decision science, engineering and artificial
intelligence. Fuzzy programming arose when
Zimmermann [13] first applied the max—min opera-
tor of Bellman and Zadeh [19]to MODM problems.
The DM defined a membership function for each
objective to represent the achieved level of that
objective regarding different objective values. Fuzzy
programming thus maximizes the minimal achieved
level among the objectives. Narasimhan [20] incor-
porated fuzzy sets with goal programming before
many related approaches for such problem, fuzzy
goal programming, were proposed. Fuzzy program-
ming can be regarded as a special case of fuzzy goal
programming where the goals to achieve are pre-
cisely the optimal values for the objectives.

A fundamental fuzzy goal programming problem
with m fuzzy goals can be formulated as follows:

Model 4

Find X, 9)

to satisfy fj(x)}Jgj7 j=12.....m, (10)
b, (11)

subject to Bx <
x = 0,
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where x is the solution in vector form with compo-
nents xy,x», . . ., X,; f;(X) means the jth objective, and
Bx < b are the system constraints in vector nota-
tion. The notation > means that the relation > is
fuzzy such that the goal g; can be partially achieved.
The achievement of g; is measured by a membership
function defined for that goal. Any fuzzy goal pro-
gramming problem can be expressed with Model 4
without any loss of generality because every = con-
straint can be replaced with a < constraint and a >
constraint, and every < constraint can be converted
to an equivalent > constraint.

Since all objectives might not be fully achieved
simultaneously, the DM may define a lower toler-
ance limit and a corresponding membership func-
tion for each objective to determine the achieved
level of that objective. A membership function
w,(f;) for the jth goal can be defined as

1 if gj gf/(")?
- <
0 if g <1y

where g; and /; are the specified goal value and the
lower tolerance limit for the jth objective.

After Zimmermann [13], several alternative
methods [21-23] have been proposed to solve fuzzy
MODM problems. However, no model seems to
consider objective weights. Lin [14] recently pro-
posed a weighted max—min model for fuzzy MODM
problems. The weighted max-min model can be
expressed as follows:

Model 5
max 2, (13)
. ; l
subject to wj-/lgf’(x) Lo j=1,2,...,m,
g =1
(14)
Bx < b, (11)

where A represents the minimal achieved level
among the objectives; @, denotes the weight of the
Jjth objective.

Lin’s model can readily be applied to the portfo-
lio selection problem. Let return and risk be the first
and second objectives. Then let b7* and 6™ be their
goal values, and br~ and ¢~ their tolerance limits.
The membership functions for return and risk can
be defined as follows, respectively.

1 if br* <e,,

wep) = 4 22— if br~ < ep < br, (15)
0 if e, <br,
1 if 0, < 0%,

Ho(op) = § =2 0" <op <, (16)
0 if 07 < oy

Let w, and @, denote the weights of return and risk,
respectively. The fuzzy programming model for the
portfolio selection problem can be formulated as
Model 6.

Model 6
max A, (13)
e, — br~
' PR |
subject to @, P (17)
g 0,
o < o 18
@ — (18)

CiX;
- n )
D1 CiXi

x,-EZ.

i=1,...,n (6)

With Model 6, the DM expresses his/her preferences
for the return and risk through assigning the objec-
tives weights. DMs with higher risk aversion can
give the risk higher weights to raise its achieved le-
vel. The portfolio risk can be lowered through sac-
rificing the achieved level of return. By contrast,
DMs with lower risk aversion give the return higher
weights to raise its achieved level. Assume, without
losing generality, that @, + @, = 1. @, = 1 indicates
that the risk-neutral DM considers only return, and
the left-hand side of constraint (18) equals zero, rep-
resenting that any risk is acceptable. By contrast,
@, = | indicates that the DM considers only risk
and thus that any return is acceptable. The DM
can easily obtain a satisfied efficient portfolio
through assigning proper weights to the objectives.
Model 6 still represents a time-consuming nonlinear
combinatorial optimization problem such that a ge-
netic algorithm is necessary for solution.
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4. Genetic algorithms

Many optimization problems are very complex
and difficult to solve by conventional methods.
Therefore, evolutionary algorithms simulating natu-
ral processes were developed to solve them [24].
Among them, GA has been successfully in solving
many optimization problems. Originally proposed
by Holland [25], GA is a stochastic searching tech-
nique based on the mechanism of genetics and nat-
ural selection [26]. The models for portfolio
selection with minimum transaction lots are combi-
natorial optimization problems. Many studies have
showed that GAs can efficiently find near optimal
or even the optimal solutions for many combinato-
rial optimization problems. Most GAs, including
those in this study, use roulette wheel selection,
one-point crossover and one-point mutation [25].
The roulette wheel approach belongs to the fit-
ness-proportional selection and can select a new
population with respect to the probability distribu-
tion based on fitness values. The GAs in this study
employs a different evolution mechanism from con-
ventional ones. In the original GA [25], all parents
are replaced by their offspring to form a new gener-
ation, which is called generational replacement. Off-
spring may be less fit than their parents because
GAs are blind, causing some fitter chromosomes
to be lost from the evolutionary process. Therefore,
several replacement processes have been examined
to resolve this problem. Holland [25] suggested to
replace an arbitrarily selected chromosome with a
new-born offspring. DeJong [27] proposed a crowd-

begin
t<0;
initialize P(t);
evaluate P(7);

ing strategy that selects the parent that is most clo-
sely resembles the new-born offspring to die when
the offspring is born. Gen and Cheng [28] proposed
that both parents and their immediate offspring are
all candidates for the new generation to preserve the
best chromosome. The GAs in this study follows a
similar strategy to prevent the populations from
degenerating. The population evolves continually
without being replaced by another population. Let
P(?) be the population at iteration ¢. Fig. 2 describes
the basic GA.

Although the GA represents a possible way of
solving the models, some problems remain in its
implementation. The main problem in applying a
GA to constrained optimization problems is how
to deal with the constraints. Constraints can be
dealt with strategies such as reject, repairing and
penalty strategies, and the strategy of modifying
genetic operators [28]. The reject strategy excludes
infeasible solutions immediately on generation,
resulting in an efficient GA. The repairing strategy
transforms an infeasible solution into a feasible
one through a repairing process. The difficulty in
designing a repairing process to comply with the
problem weakens the repairing strategy. The pen-
alty strategy uses a penalty function to penalize all
infeasible solutions, hoping that infeasible solutions
might evolve toward feasible. Finally, the strategy
of modifying genetic operators aims to devise prob-
lem-specific representations and specialized genetic
operators to maintain feasibility. Comparatively,
the strategies of penalty and modifying genetic oper-
ators appear more suitable for this study. Therefore,

find the best and worst chromosomes of P(?);
while < a predetermined iteration number do

select two parents from P(t);

generate two offspring by crossover and mutation;

evaluate the offspring;

if the offspring is fitter than the worst chromosome of P(¢) then

randomly select a parent except the best one and replace it;
find the best and worst chromosomes of P(¢);

tt+1;
end
end

Fig. 2. Proposed genetic algorithm.
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the strategies of penalty and modifying genetic oper-
ators were used in this study to deal with constraints
(4) and (5), respectively.

4.1. Encoding and decoding

The way to encode a solution into a chromosome
is a key issue in using GAs. Although the solutions
to the proposed models are integers, this study
opted to use real numbers, for the sake of opera-
tional simplicity, to encode the weight w; instead
of directly encoding the trading units x; with an inte-
ger. The genes of a chromosome are real numbers
between 0 and 1 to represent the weights invested
in the assets. However, the summation of these
weights might not be 1 in the initialization stage
or after genetic operations and thus violate con-
straint (6). To overcome this problem, the weights
are normalized as follows:

/ Wi

K Wi 19)
where w; represents the new weight invested in asset
i after normalization. Even though, the normalized
weights are still inapplicable, as stated previously.
Multiplying w; by the budget b gives the actual
amount that could be invested in asset i. However,
there are usually residuals left. The actual units in-
vested in asset i/ is then obtained by

bw
x,:{W’J, i=1,....n. (20)

Ci

The residuals make the total investment below the
budget b and thus conformant with constraint (5).
However, the actual investment weights are prone
to change. Eq. (6) is used to compute the actual
weights before computing the return variance of
the portfolio. The w; of the chromosomes in the ini-
tial population is randomly generated before being
normalized using Eq. (19). Two of the three effective
constraints in the models, constraints (5) and (6),
can be satisfied with the above weight normalizing
and budget controlling strategies. However, con-
straint (4) in Model 2 might be easier to handle
using a penalty strategy, which will be stated in
the next subsection.

4.2. Fitness functions
Three GAs were implemented to verify the effec-

tiveness of Models 2 and 3 and 6. The primary dif-
ferences between these models lie in their objective

functions, leading to different fitness functions in
their respective GAs. With the encoding and decod-
ing scheme, the constraints in Models 2 and 3 are
resolved, leaving constraint (4) in Model 2 to be
dealt with a penalty strategy. The penalty function
that impels the solutions to satisfy constraint (4) is
formulated as follows to make the actual return
exceed the expected return.

br — ; xicir; if br > ) XiCil'i,
p(x) = 2 % (21)

0 otherwise.

Incorporating the objective function (1) and the
penalty function (21), the fitness function for Model
2 can be defined as,

fitness = exp(—k(a; + Mp(x))), (22)

where k is a positive constant and M a large positive
number. The negative exponent transforms the min-
imization problem into an equivalent maximization
problem for the GA to solve. The exponential func-
tion with constant k confines the range of the fitness
and thus alleviates the selection pressure of chromo-
somes with higher fitness, to prevent the GA from
premature convergence. The large positive number
M forces the solution to meet constraint (4) before
minimizing the portfolio risk.

Model 3 is also a minimization problem such that
the fitness function for this problem is defined sim-
ilarly as,

fitness = exp(—kd"). (23)

The fitness function for Model 6, a maximization
problem, is simply its objective function /, and thus

e, — br- 6~ —0p
. (24
@, (br' — br7) @,(6 — a*)} (24)

fitness = min {

5. Empirical study

This study used Taiwanese mutual fund data
from the year 1997 to 2000 to test the proposed
models and GAs. The monthly rates of return were
used to determine the mean rates of return of the
mutual funds and the return covariances between
the assets in each year. The monthly rates of return
were used instead of weekly ones because monthly
horizon is more likely to be the real investment hori-
zon than weekly horizon when investing in mutual
funds. Studies [29,30] have shown that portfolio per-
formance indexes such as Sharpe’s measure do
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depend on sampling horizon and thus its estimated
risk measure. However, while a simple experiment
has been conducted to find out that the observed
risks of weekly data tend to be significantly larger
than those of monthly data, whether sampling hori-
zon affects the obtained portfolios remains uninves-
tigated. Therefore, this study has chosen to adopt
monthly data.

Also, the r*, r~, ¢" and ¢~ for each year’s data
were obtained with Model 1 and LINGO. Table 1
shows the characteristic values of the terminal port-
folios on each year’s efficient frontier. To measure
and compare the effectiveness of the proposed mod-
els, a number of target portfolios spread on the effi-
cient frontiers are selected for the GAs to approach.
For Models 2 and 3, let the desired rate of return r
be ar~ + (1 — o)r*. Eleven values of « raging from 0
to 1 and differenced by 0.1 were used. Model 2 was
then used to obtain the optimal ¢ with respect to
these target rates of return. Table 2 shows the 11
target portfolios for each year. However, the desired
rate of return disappears in Model 6. The solution
to this model depends upon the objective weights
(w,,@,). Since each target portfolio corresponds
to a specific set of (w,, @, ), the corresponding objec-
tive weights are derived inversely from the 11 target
portfolios to be used in Model 6 and its correspond-
ing GA. From Egs. (17) and (18), for a target port-
folio on the efficient frontier there would be

o U,
_ K 25
s (25)

Let w, = 1 — @,. Eq. (25) leads to,

br, — br~

@y brf —br”
(1-w,) 0 —0p° (26)

o —o0o*

Thus, the @, for a target portfolio with (o, ) can be
obtained by

r—r-
_ r—r-
w’_rp—r*_'_o’—a' (27)
r —r- o —o*
Table 1

Characteristics of efficient frontiers

Year Number of funds " (%) r (%) " (%) o (%)

1997 129 6.663  0.480 0.007 15.296
1998 160 3.674  0.480 0.014 7.362
1999 197 9.158  0.388 0.014 8.925
2000 204 0935 0422 0.007 1.557

Table 2

Characteristics of target portfolios

Year @, r (%) a (%)

1997 0.000 0.480 0.007
0.097 1.098 1.076
0.189 1.716 2.210
0.277 2.335 3.344
0.364 2.953 4.600
0.450 3.571 5.955
0.536 4.189 7.342
0.620 4.808 8.745
0.704 5.426 10.159
0.787 6.044 11.582
1.000 6.663 15.296

1998 0.000 0.480 0.014
0.097 0.799 0.538
0.192 1.119 1.171
0.284 1.438 1.806
0.374 1.758 2.442
0.462 2.077 3.077
0.547 2.396 3.713
0.631 2.716 4.348
0.712 3.035 4.984
0.795 3.355 5.657
1.000 3.674 7.362

1999 0.000 0.388 0.014
0.096 1.265 0.581
0.188 2.142 1.232
0.275 3.019 1.883
0.358 3.896 2.534
0.437 4.773 3.185
0.512 5.650 3.836
0.584 6.527 4.487
0.656 7.404 5.181
0.788 8.281 6.767
1.000 9.158 8.925

2000 0.000 0.422 0.007
0.092 0.474 0.024
0.169 0.525 0.036
0.251 0.576 0.168
0.337 0.627 0.337
0.430 0.679 0.530
0.530 0.730 0.732
0.636 0.781 0.936
0.749 0.832 1.143
0.871 0.884 1.350
1.000 0.935 1.557

Table 2 also shows the corresponding objective
weights of the target portfolios.

The parameter setting of the proposed GAs is as
follows. For each year’s data, the number of popu-
lation and the chromosome length both equal the
fund number. The crossover and mutation rates
were set to 1 and 0.05, respectively. The number
of iterations was 5000. The values of k and the M
were set to 0.005 and 100, respectively. The budget
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Table 3
Comparisons between models
Year Model 4 Model 5 Model 9
rp (70) op (Y0) Deviation (%) rp (Y0) ap (%) Deviation (%) rp (Y0) ap (%) Deviation (%)
1997 0.494 0.012 0.015 0.494 0.013 0.015 0.486 0.012 0.008
1.155 1.250 0.182 1.117 1.177 0.102 1.159 1.249 0.183
1.789 2453 0.253 1.729 2.330 0.121 1.769 2.400 0.197
2.404 3.561 0.228 2.357 3.457 0.115 2.378 3.523 0.184
3.073 5.026 0.442 2.979 4.766 0.168 2.981 4.908 0.310
3.703 6.476 0.537 3.555 6.149 0.195 3.611 6.235 0.282
4.299 7.821 0.491 4.191 7.543 0.201 4.168 7.599 0.258
4.873 9.167 0.427 4.804 8.946 0.200 4.755 8.879 0.144
5.514 10.509 0.361 5.420 10.318 0.159 5.403 10.239 0.083
6.091 11.750 0.175 6.049 11.680 0.098 6.007 11.613 0.049
6.663 15.296 0.000 6.650 15.280 0.021 6.663 15.296 0.000
Average 0.283 0.127 0.154
1998 0.508 0.048 0.044 0.499 0.046 0.037 0.503 0.043 0.037
0.853 0.701 0.172 0.806 0.623 0.086 0.854 0.710 0.181
1.196 1.401 0.242 1.138 1.272 0.102 1.175 1.336 0.174
1.538 2.071 0.283 1.461 1.922 0.118 1.512 2.027 0.233
1.865 2.707 0.287 1.767 2.552 0.111 1.811 2.643 0.208
2.190 3.418 0.359 2.117 3.259 0.186 2.106 3.271 0.196
2.504 4.013 0.319 2.429 3.853 0.144 2.444 3.893 0.187
2.845 4.683 0.359 2.752 4.521 0.176 2.696 4.451 0.105
3.154 5.339 0.374 3.064 5.086 0.106 2.995 5.075 0.099
3.457 6.274 0.626 3.357 5.767 0.110 3.240 5.524 0.176
3.674 7.362 0.000 3.674 7.362 0.000 3.674 7.362 0.000
Average 0.279 0.107 0.145
1999 0.415 0.016 0.027 0.388 0.016 0.002 0.415 0.016 0.027
1.454 0.866 0.342 1.253 0.708 0.127 1.406 0.840 0.294
2.394 1.620 0.463 2.183 1.407 0.179 2.328 1.542 0.361
3.357 2.375 0.597 2.987 2.071 0.190 3.200 2.259 0.417
4.320 3.234 0.818 3.832 2.734 0.209 3.784 2.978 0.458
5.138 4.053 0.941 4.761 3.554 0.369 4.760 3.626 0.441
5.979 4.606 0.838 5.479 4.229 0.428 5.458 4.267 0.471
7.031 5.440 1.078 6.372 4.900 0.441 6.281 4.791 0.391
7.855 6.038 0.968 7.339 5.647 0.470 7.015 5.393 0.443
8.980 8.659 2.017 7.955 6.737 0.327 7.929 6.056 0.793
9.158 8.925 0.000 9.158 8.925 0.000 9.158 8.925 0.000
Average 0.735 0.249 0.372
2000 0.434 0.019 0.016 0.436 0.020 0.019 0.400 0.013 0.023
0.486 0.051 0.029 0.485 0.050 0.028 0.487 0.051 0.031
0.538 0.168 0.133 0.487 0.051 0.040 0.538 0.168 0.133
0.610 0.569 0.403 0.538 0.154 0.041 0.571 0.427 0.259
0.682 0.789 0.455 0.601 0.481 0.146 0.598 0.507 0.173
0.765 1.040 0.517 0.654 0.640 0.113 0.667 0.722 0.192
0.807 1.182 0.457 0.706 0.873 0.144 0.688 0.780 0.064
0.908 1.476 0.554 0.763 0.962 0.032 0.698 0.813 0.149
0.932 1.547 0.417 0.830 1.277 0.135 0.715 0.971 0.208
0.935 1.557 0.214 0.830 1.277 0.090 0.715 0.971 0.414
0.935 1.557 0.000 0.935 1.557 0.000 0.935 1.557 0.000
Average 0.290 0.072 0.150

b was set to 200, and the unit price ¢; is an integer
that was randomly assigned a value 1-5, because a

budget that is too large or unit prices that are too
small ease the problem by increasing the number
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of feasible combinations and thus might be unable
to verify the effectiveness of the proposed methods.
The experiments were conducted on a PC with a
Pentium IV 1.8 GHz CPU, and the average execu-
tion time was about 3-5 minutes. For the data of
each year, 10 trials with each GA were conducted
for each target portfolio. Table 3 shows the average
results of each of the 10 trials. The deviation
between the obtained and target portfolios are mea-
sured in terms of Euclidean distance.

Regardless of the year, the average deviations
lead to an obvious and consistent conclusion that
Model 5 obtains portfolios closest to the target.
Compared with Model 3 and Model 6 obtains port-
folios farther from the target than those by Model 3
yet much better than those by Model 2. As stated
above, constraint (4) in Model 2 confines the solu-
tions to the area above the horizontal line r, =r
and below the efficient frontier. Compared with
other models, the smaller feasible region for Model
2 leads to poorer solutions. Unless the DM insists
that the r, of the obtained portfolio must exceed
the desired r, Model 2 does not seem to be a good
approach to the portfolio selection problem. Also,
Figs. 3-6 show that the GA obtains portfolios very
close to the efficient frontiers, indicating that the
proposed approach is efficient in finding efficient
portfolios under the constraint of minimum transac-
tion lots. Figs. 3 and 4 show that the GAs obtain
integer solutions whose (o,7) are very close to the
target values. However, Figs. 5 and 6 reveal that
the differences between the integer and target solu-
tions grow large as the fund number increases. Fund
number may be the main cause of the solution
degeneration because the fund number increases
the population and chromosome sizes and thus
the solution space such that the GA failed to find
efficient integer solutions within 5000 iterations.
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Fig. 3. Model performance with funds in 1997.
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Fig. 6. Model performance with funds in 2000.

Another cause might be that compared with those
of 1999 and 2000, more mutual funds of 1997 and
1998 approach their respective efficient frontiers so
that more combinations of assets near the efficient
frontiers can be found, increasing the possibility of
finding better solutions. Consequently, increasing
the program running time or reducing the fund
number might help when the number of assets is
large.

Fig. 7 shows the experimental results obtained by
Model 6 for the year 2000 after the fund number is
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Fig. 7. The effects of reducing asset number.

reduced from 204 to 47 by simply eliminating funds
with negative expected rate of return. Though the
eliminating method is naive, the efficient frontier
does not seem to change, and the performance
was remarkably improved after the asset number
was reduced. Nevertheless, the naive and rough
method is not recommended because the efficient
frontier might change in other cases. A more sophis-
ticated method remains to be investigated to retain
the efficient frontier while reducing the asset
number.

According to the experimental results, all the
proposed models obtained the solutions within a
few minutes, with an average budget utilization rate
above 96%. Models 3 and 6 appear more effective
than Model 2. However, as Models 2 and 3 depends
on the specification of a desired rate of return and
additionally requires solving for the minimum risk
corresponding to the specified rate of return using
Markowitz’ model. Besides, the clients need to
assure themselves that their desired rates of return
are sufficient to reflect their preference for risk. On
the other hand, Model 6 (the fuzzy MODM
approach) requires only the weights regarding
return and risk, which can be applied in various
situations and time periods if only the client’s pref-
erence for risk aversion remains unchanged. There-
fore, Model 6 is recommended for practical use.
Notably, the number of assets significantly influ-
ences the performance of the proposed GAs even
if the program execution time is prolonged. An
effective way of reducing the asset number without
changing the efficient frontier is crucial in finding
quality solutions.

6. Conclusion

This study proposes decision models for portfolio
selection problems with minimum transaction lots

and uses genetic algorithms to solve the models.
The proposed models include one directly modified
from the well-known Markowitz’ model, one mini-
mizing the distance between the target and obtained
portfolios, and one derived from a fuzzy multi-objec-
tive decision making approach. Genetic algorithms
were devised to solve the portfolio selection problem
formulated by the models. The results of empirical
studies show that the genetic algorithms for these
models can obtain near-optimal within a reasonably
short time. The obtained solutions not only are appli-
cable in practice, but also exhibit high mean-variance
efficiency. The model incorporates a fuzzy multi-
objective decision-making approach is recom-
mended because of its adaptability and simplicity.
With this approach, the DM is able to express his/
her preferences for the return and risk through
assigning the weights of return and risk. Notably,
sifting assets ahead can not only save the computa-
tion time, but also improve the solution quality. Con-
sequently, how to sift the assets without changing the
efficient frontier and the solution quality is not only
one of the possible future works, but is critical to
solving the portfolio selection problem. Another
possible future research direction is how to adjust
existing portfolios to look after both transaction
costs and the workability and efficiency of portfolios.
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