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Abstract system-on-chip
The System-On-Chip (SOC) design = ~ 3% d g2 @ ¢h

encompasses a large design  space.
Typicaly, the designer explores the possible
architectures, selecting agorithms, choosing

Intellectual Property (IP) reuse is
becoming essential in system-on-a-chip



design. It helps designers meet the challenges
of increasingly complex applications, highly
integrated systems and shorter design cycles.
However, effective IP reuse poses severa
problems, notably in the integration and
validation of the foreign IP within the target
system. State-of-the-art design
methodologies do not address these issues,
but rather rely on IP vendors to assist
designers with the custom integration of their
IP cores. Recently, several EDA companies
teamed up with IP vendors to provide some
solutions to these problems [4]. The results
are interesting, but still rather 1P-specific.
Our approach is meant to put IP integration
technology at the fingertips of the designers
themselves, thus reducing the gap between IP
vendors and system designers.
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Figure 1 A typical SoC architecture

We describe a  system-on-a-chip
architecture in terms of IP cores. Figure 1
depicts a typica embedded architecture
composed of: a communication cloud
connecting all system components, an
embedded controller, a DSP, ASIC blocks,
memory components, 1/0, and a DMA. Each
component in the system can be an in-house
or third-party Intellectual Property core.
Each IP core can be accompanied by its own
different set of verification and modeling
tools (e.g., an instruction set simulator (I1SS),
an HDL model, a C model, or an emulator
board), of varying speed, accuracy, and level
of abstraction. We allow the designer to
treat |P cores of heterogeneous provenance as
black boxes characterized by their 1/0
interfaces; if the unified design environment
is VHDL-based, for example, the IP cores
look like VHDL entities. The reuse
considered in this paper is at the architecture
level. Other levels of reuse (e.g., core level)

are described in [3].

We use our own front-end system level
verification environment, developed last year
[9], to identify the appropriate architecture,
and IP cores for the target application. Once
the architecture and the appropriate IP cores
are identified, we use our co-simulation
environment to generate a system
co-simulation test-bed by producing all the
required interfaces and wrappings between
the different 1P cores. Our interfacing
approach deals with the 1/O interfaces. It is
independent of the communication protocols
adopted between IP coreq1]. We do not
intend to synthesize the communication
device interfaces between the hardware and
software [6], but rather to focus on
synthesizing the means to alow
plug-and-play IP integration and validation.
In order to accomplish this, we have
developed a multi-layered wrapping scheme
for IP cores. The innermost layer is an
Application-Programming-Interface  (API)
layer. It allows access to core resources
without the necessity for detailed knowledge
of the core itsef, thus simultaneously
simplifying integration and protecting the
owner of the IP. The second wrapper layer is
the communication layer; it handles the
exchange of required information between
the individual IP core and the overal
simulation  environment, alowing for
heterogeneous cosimulation. The outermost
layer is the synchronization layer. It
synchronizes the interactions, timing, and
collection of results between the IP core and
the system simulation environment.

Our approach extends the work
described in [7]. It alows for integration and
validation of IP cores of different forms (i.e.,
not limited to C programs), and proposes an
optimized synchronization scheme that can
run in both event-driven and lock-step modes
(based on the different phases of interactions
between the IP core and the rest of the
system). The API layer adds to the generaity
and flexibility of the proposed wrapping
scheme, and protects the IP core.
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The system-level co-simulation
technology described in this report has been
validated successfully on severa applications,
and at different design stages of severd
telecommunications and multimedia products.
We have applied our wrapping technology on
a H.263 CODEC, an ADSL application, a
High-Density Central Site Modem (HDSM),
and an MPEG-4 decoder. Within al these
applications, the embedded architecture looks
much like the architecture of Figure 1. What
varies from one application to the other is the
number of ASICs, the type of DSP, the
version of the embedded controller, and the
communication interconnect and protocols.
In all cases, we had to deal with in-house and
third-party 1P cores. Some of the in-house IP
cores were still under development, and our
wrapping scheme helped plug them into the
system prior to, or upon, their completion.
It also helped us, when we started devel oping
the wrapping scheme, to work first on
in-house IP cores. This gave us the
opportunity to develop the API functions for
the cores ourselves, after collaboration with
the (in-house) IP core designers.
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Figure 2 HW/SW co-verification model

Based on the model described earlier,
most of the wrapped IP cores ended up
looking like the model of Figure 2. The IP
core is visible to the system simulation
environment through its entity. The entity is
composed of acontrol bus and adata bus. If a
VHDL model of the IP core is used, no
wrapping is required. Otherwise, the IP entity

must interface to the three layers:
Synchronization, Communication, and API.
Those layers, as described earlier, alow the
system simulation environment to break
seamlessly into heterogeneous environments
and run in a co-simulation mode. The
heterogeneous co-simulation is based on a
Client/Server model. Thus, every IP has both
aclient and a server side. The client is the IP
instantiation model within the system
simulation environment. It calls upon a
server IP mode (that executes in a foreign
environment) whenever an execution of the
IPisrequired.

The following describes a scenario for
heterogeneous cosimulation (master/save
model) using our wrapping technol ogy:

1) Initialization phase: The master drives
the control bus with address and data.
The interface technology
(synchronization layer) trandlaes this
information into a register index and a
programming value. This information is
used to program the IP core.

2) Execution phase: The master drives the

control bus to stat the dave. The
interface  model then dumps the
program/data memory spaces into

program/data files. It aso issues an
execution order to the IP core. The IP
core starts processing based on the
program/datafiles.

3) Termination phase: Upon completion of
execution, the I[P core signas the
completion of the task to the IP interface.
The interface model then updates the
data memory space (loading from the
result files), and issues a time-accurate
interrupt request to the master.

Our hardware/software co-simulation
technology is verified to be an efficient and
fast way to run heterogeneous cosimulation,
and quickly incorporate foreign IP cores into
embedded systems. Substantial productivity
gans and design-time reductions have
resulted from its use. In a high-density central
site modem (HDCSM) application, we
have been able to wrap several in-house IP
cores and st up a heterogeneous



cosimulation system platform in less than
two weeks. This includes the development of
the API functions for the IP cores, and the
interaction models with the system. We have
developed and tested the heterogeneous
cosimulation IP models with little knowledge
about the cores themselves. Applying
different speedup techniques, we have been
able to accelerate the heterogeneous system
cosimulation substantially (often by three
orders of magnitude). For example, we have
been able to speed up the system simulation
of the HDCSM application from three
instructions per second (RTL) to 1600
instructions per second. Thus far, the
IP-based synthesis technology is only
partialy automated. The communication
layer and the client/server interfaces are
generated automatically. However, the
designer’s assistance is needed to define the
interaction model, and the API functions.
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