
1

行政院國家科學委員會補助專題研究計畫成果報告
※※※※※※※※※※※※※※※※※※※※※※※※※
※ ※
※ 對以智財單元為基系統晶片設計之 ※
※ 驗證與測試技術開發研究 ※
※ 子計畫一:與組織探索階段互動之系統階層驗證技術 ※
※ ※
※※※※※※※※※※※※※※※※※※※※※※※※※

計畫類別：整合型計畫

計畫編號：NSC 90－2215－E－009－083－

執行期間： 90 年 8 月 1 日至 91 年 7 月 31 日

計畫主持人：董蘭榮

共同主持人：沈文仁

計畫參與人員： 陳宥霖
蔡逸凡
張智凱
簡偉勝
黃旭榕

執行單位：國立交通大學電機與控制工程學系

中 華 民 國 91 年 10 月 29 日

2

行政院國家科學委員會專題研究計畫成果報告
對以智財單元為基系統晶片設計之驗證與測試技術開發研究

子計畫一:與組織探索階段互動之系統階層驗證技術
System-Level Ver ification Interacting with Architecture

Exploration
計畫編號：NSC 90－2215－E－009－083－
執行期限：90 年 8月 1日至 91 年 7月 31 日
主持人：董蘭榮 國立交通大學電機與控制工程學系
共同主持人：沈文仁 國立交通大學電子研究所
計畫參與人員：
陳宥霖 國立交通大學電機與控制工程學系
蔡逸凡 國立交通大學電機與控制工程學系
張智凱 國立交通大學電機與控制工程學系
簡偉勝 國立交通大學電機與控制工程學系
黃旭榕 國立交通大學電機與控制工程學系
Email: lennon@cn.nctu.edu.tw

一、中文摘要

系統晶片設計涵蓋很廣的設計空間。
設計者通常需要考量許多可能的系統組織
包括選擇演算法則、挑選組織元件、建構
候選組織。設計如此的複雜系統誠屬不
易，而要設計出能完全符合要求、正確無
誤的系統更為困難。設計上的失誤必須要
儘早排除，否則在後續階段才發現的失誤
將造成耗費耗時的再設計周期。因此，設
計者必須面對兩項課題，其一是實現設計
程序本身、另一是建立正確的設計結果。
其中，設計的正確性將為本計劃的主軸。
此子計劃第一年之工作為提出組織元素的
成本模型、發展成本評估核心公式、定義
效能模型資料結構、發展基礎效能模型。

關鍵詞：效能模型、系統階層驗證、系統
晶片

Abstract

The System-On-Chip (SOC) design
encompasses a large design space.
Typically, the designer explores the possible
architectures, selecting algorithms, choosing

architectural elements, and constructing
candidate architectures. Designing such a
complex system is hard; designing such a
system which will work correctly is even
harder. Design errors should be removed as
early as possible; otherwise, errors detected
at the later stages will result a costly,
time-consuming redesign cycles. Thus, the
designer should face two distinct tasks in
SOC design; carrying out design process
itself and establishing the correctness of a
design. Design correctness is the main
theme of this project. In the first year, the
tasks of this project are: proposing cost
models of architecture elements, developing
cost estimation engine, defining the data
structure of performance modeling,
developing the fundamental performance
models

Keywords: performance modeling,
system-level verification,
system-on-chip

二、緣由與目的

Intellectual Property (IP) reuse is
becoming essential in system-on-a-chip

3

design. It helps designers meet the challenges
of increasingly complex applications, highly
integrated systems and shorter design cycles.
However, effective IP reuse poses several
problems, notably in the integration and
validation of the foreign IP within the target
system. State-of-the-art design
methodologies do not address these issues,
but rather rely on IP vendors to assist
designers with the custom integration of their
IP cores. Recently, several EDA companies
teamed up with IP vendors to provide some
solutions to these problems [4]. The results
are interesting, but still rather IP-specific.
Our approach is meant to put IP integration
technology at the fingertips of the designers
themselves, thus reducing the gap between IP
vendors and system designers.

Figure 1 A typical SoC architecture

We describe a system-on-a-chip
architecture in terms of IP cores. Figure 1
depicts a typical embedded architecture
composed of: a communication cloud
connecting all system components, an
embedded controller, a DSP, ASIC blocks,
memory components, I/O, and a DMA. Each
component in the system can be an in-house
or third-party Intellectual Property core.
Each IP core can be accompanied by its own
different set of verification and modeling
tools (e.g., an instruction set simulator (ISS),
an HDL model, a C model, or an emulator
board), of varying speed, accuracy, and level
of abstraction. We allow the designer to
treat IP cores of heterogeneous provenance as
black boxes characterized by their I/O
interfaces; if the unified design environment
is VHDL-based, for example, the IP cores
look like VHDL entities. The reuse
considered in this paper is at the architecture
level. Other levels of reuse (e.g., core level)

are described in [3].
We use our own front-end system level

verification environment, developed last year
[9], to identify the appropriate architecture,
and IP cores for the target application. Once
the architecture and the appropriate IP cores
are identified, we use our co-simulation
environment to generate a system
co-simulation test-bed by producing all the
required interfaces and wrappings between
the different IP cores. Our interfacing
approach deals with the I/O interfaces. It is
independent of the communication protocols
adopted between IP cores[1]. We do not
intend to synthesize the communication
device interfaces between the hardware and
software [6], but rather to focus on
synthesizing the means to allow
plug-and-play IP integration and validation.
In order to accomplish this, we have
developed a multi-layered wrapping scheme
for IP cores. The innermost layer is an
Application-Programming-Interface (API)
layer. It allows access to core resources
without the necessity for detailed knowledge
of the core itself, thus simultaneously
simplifying integration and protecting the
owner of the IP. The second wrapper layer is
the communication layer; it handles the
exchange of required information between
the individual IP core and the overall
simulation environment, allowing for
heterogeneous cosimulation. The outermost
layer is the synchronization layer. It
synchronizes the interactions, timing, and
collection of results between the IP core and
the system simulation environment.

Our approach extends the work
described in [7]. It allows for integration and
validation of IP cores of different forms (i.e.,
not limited to C programs), and proposes an
optimized synchronization scheme that can
run in both event-driven and lock-step modes
(based on the different phases of interactions
between the IP core and the rest of the
system). The API layer adds to the generality
and flexibility of the proposed wrapping
scheme, and protects the IP core.

三、結果與討論

Embedded
Controller

MEM MEM MEM

MEMMEM

ASIC ASIC ASIC

DSP

Communication

DMA/Arbiter/Interface

I/O

4

The system-level co-simulation

technology described in this report has been
validated successfully on several applications,
and at different design stages of several
telecommunications and multimedia products.
We have applied our wrapping technology on
a H.263 CODEC, an ADSL application, a
High-Density Central Site Modem (HDSM),
and an MPEG-4 decoder. Within all these
applications, the embedded architecture looks
much like the architecture of Figure 1. What
varies from one application to the other is the
number of ASICs, the type of DSP, the
version of the embedded controller, and the
communication interconnect and protocols.
In all cases, we had to deal with in-house and
third-party IP cores. Some of the in-house IP
cores were still under development, and our
wrapping scheme helped plug them into the
system prior to, or upon, their completion.
It also helped us, when we started developing
the wrapping scheme, to work first on
in-house IP cores. This gave us the
opportunity to develop the API functions for
the cores ourselves, after collaboration with
the (in-house) IP core designers.

Figure 2 HW/SW co-verification model

Based on the model described earlier,
most of the wrapped IP cores ended up
looking like the model of Figure 2. The IP
core is visible to the system simulation
environment through its entity. The entity is
composed of a control bus and a data bus. If a
VHDL model of the IP core is used, no
wrapping is required. Otherwise, the IP entity

must interface to the three layers:
Synchronization, Communication, and API.
Those layers, as described earlier, allow the
system simulation environment to break
seamlessly into heterogeneous environments
and run in a co-simulation mode. The
heterogeneous co-simulation is based on a
Client/Server model. Thus, every IP has both
a client and a server side. The client is the IP
instantiation model within the system
simulation environment. It calls upon a
server IP model (that executes in a foreign
environment) whenever an execution of the
IP is required.

The following describes a scenario for
heterogeneous cosimulation (master/slave
model) using our wrapping technology:

1) Initialization phase: The master drives
the control bus with address and data.
The interface technology
(synchronization layer) translates this
information into a register index and a
programming value. This information is
used to program the IP core.

2) Execution phase: The master drives the
control bus to start the slave. The
interface model then dumps the
program/data memory spaces into
program/data files. It also issues an
execution order to the IP core. The IP
core starts processing based on the
program/data files.

3) Termination phase: Upon completion of
execution, the IP core signals the
completion of the task to the IP interface.
The interface model then updates the
data memory space (loading from the
result files), and issues a time-accurate
interrupt request to the master.

Our hardware/software co-simulation
technology is verified to be an efficient and
fast way to run heterogeneous cosimulation,
and quickly incorporate foreign IP cores into
embedded systems. Substantial productivity
gains and design-time reductions have
resulted from its use. In a high-density central
site modem (HDCSM) application, we
have been able to wrap several in-house IP
cores and set up a heterogeneous

System/IP
Interface

Mem
Ctl

Local
Memory

COMM

File System

CTL BUS

Data BUS

FLI

C

Synchronization
Layer

Communication
Layer

API
Layer

C API IP

5

cosimulation system platform in less than
two weeks. This includes the development of
the API functions for the IP cores, and the
interaction models with the system. We have
developed and tested the heterogeneous
cosimulation IP models with little knowledge
about the cores themselves. Applying
different speedup techniques, we have been
able to accelerate the heterogeneous system
cosimulation substantially (often by three
orders of magnitude). For example, we have
been able to speed up the system simulation
of the HDCSM application from three
instructions per second (RTL) to 1600
instructions per second. Thus far, the
IP-based synthesis technology is only
partially automated. The communication
layer and the client/server interfaces are
generated automatically. However, the
designer’s assistance is needed to define the
interaction model, and the API functions.

四、成果自評

本計畫第二年已建立軟硬體共模擬環
境，可有助於組織探索階段完成軟硬體互
動之驗證工作。本計畫之研究成果已發表
下列兩篇國際會議論文與一篇國內會議論
文：
1. Ting-Hsun Wei, Shiuh-Rong Huang, and

Lan-Rong Dung, 2002, “An Automated IP
Synthesizer for Limited-Resource DWT
Processors,” ICASSP 2002

2. Shiuh-Rong Huang and Lan-Rong Dung,
2002, “A MAC-level Synthesis of
Resource-Constrained DWT SIP,” VLSI/CAD
Symposium 2002

3. Shiuh-Rong Huang and Lan-Rong Dung,
2002, “VLSI Implementation for
MAC-Level DWT Architecture,” ISVLSI
2002

另外，部分研究成果正投稿于 IEEE 期刊。
經由本計畫之執行已培養四名碩士畢

業生。該四名碩士畢業生目前服務於系統
晶片相關之高科技企業。

五、參考文獻

[1] Lan-Rong Dung, Vijay K. Madisetti, and John W.
Hines, “Model-Based Architectural Design and

Verification of Embedded DSP Systems,” 1996
VLSI Signal Processing Workshop, October
1996

[2] Lan-Rong Dung, Mohamed Ben-Romdhane and
Marius Vassiliou, “IP-Based Architecture
Exploration,” DesignCon99, February, 1999

[3] Mohamed Ben-Romdhane, Marius Vassiliou and
Lan-Rong Dung, “Rapid Prototyping of
Multimedia Chip Sets”, ICASSP-99, March,1999

[4] Richard Goering, “New Tools will Force
Embedded Designers to Link Hardware/Software
Efforts – Codesign turns workplace on its head,”
EETimes, Issue:988, January 12, 1998

[5] J.K. Adams and D.E. Thomas, “The Design of
Mixed Hardware/Software Systems,” Proc. Of
33rd DAC, 1996, pp.515-520

[6] Lan-Rong Dung and Vijay K. Madisetti,
1996, Fall, “Conceptual Prototyping of
Scalable Embedded DSP Systems,” IEEE
Design and Test of Computers, pp. 54-65

[7] C. A. Valderrama, François Naçabal, Pierre
Paulin, Ahmed Amine Jerraya, “Automatic
Generation of Interfaces for Distributed
C-VHDL cosimulation of Embedded
Systems: an Industrial Experience,” 7th IEEE
International Workshop on Rapid
Prototyping, June 1996

6

	page1
	page2
	page3
	page4
	page5
	page6

