蕭特基能障金氧半電晶體元件研製與理論分析-總計畫

計畫編號: NSC 90-2215-E-009-079

執行期限: 90 年 08 月 01 日至 91 年 07 月 31 日

主持人:黃調元 國立交通大學電子研究所 共同主持人:林鴻志 國家奈米元件實驗室

一、摘要

在本研究計畫中,我們結合蕭特基能障電晶 體與新式場引發汲極延伸(field-induced drain)的結 構,可有效的壓抑在汲極端所產生的高電場,抑制 大漏電流的現象,使得元件的特性更加理想,得到 對於 n 通道和 p 通道而言, On/Off 電流的比率分 別為 10⁶和 10⁸。在計畫中,將並詳細研討蕭特基 能障薄膜電晶體的漏電流機制。具有場引發汲極延 伸的新式蕭特基能障薄膜電晶體擁有良好的雙極 性元件特性, 並能有效抑制類似閘極引發汲極漏電 流(GIDL)的 off-state 漏電流, 這種漏電流幾乎使 得傳統結構的特基能障薄膜電晶體不具操作特性. 對傳統結構元件而言,經由對其 off-state 的漏電 流的活化能(activation energy)之探究, 我們認 為由汲極端而來的載子場發射(field emission) 現象是主要的漏電流機制. 然而對具有 FID 結構的 原件而言,因為在汲極延伸區的費米能階被固釘在 靠近導電帶附近(對 nMOS 而言)所以熱離子發射 (thermionic)發射現象將取而代之,這導致對閘極 引發汲極漏電流的有效抑制.

Abstract

In this study, we have fabricated Schottky barrier (SB) MOSFET on SOI wafers. In this study, we have proposed and demonstrated new SB MOSFET devices that incorporated the field-induced-drain (FID) structure in an effort to reduce the large leakage current. We obtained the on/off current ratio for n- and p-channel devices to be 10^6 and 10^8 . Conduction mechanisms for the off-state leakage in Schottky barrier thin-film transistor were

explored. The new SBTFT device with FID extension shows excellent ambipolar performance with effective suppression of gate-induced drain leakage (GIDL)-like off-state leakage that conventional SBTFT devices. It was found that field-emission process dominates the leakage conduction of the device with conventional structure as the field strength in the drain junction becomes high, and results in the strong GIDL (gate-induced drain leakage)-like phenomenon. In contrast, for the device with field-induced-drain structure, the high-field region is pulled away from the silicide drain. As a result, thermionic emission rather than field emission becomes the dominant conduction mechanism, resulting in the effective suppression of the undesirable GIDL-like leakage current.

Keywords: SOI, Schottky barrier, field-induced drain (FID), field emission, thermionic emission.

二、緣由和目的

蕭特基能障電晶體是目前深具潛力的元件,其元件的製作方式是由金屬源/汲極取代傳統離子植入的方式[1]-[5],它的好處包含:較簡單與低溫化製程,對短通道效應能有效抑制,免除離子佈植步驟與其回火動作,另有雙極性(ambipolar)元件特性[5],相當適用於未來奈米級元件的應用。蕭特基能障電晶體傳統上是由自我對準金屬矽化製程形成源/汲極[1]-[5],氧化矽邊襯可有效的避免源/汲極矽化物與閘極產

生橋接現象。然而,蕭特基能障電晶體具有嚴重的漏電流與較差的 On/Off 電流比率,同時在 off-state 時的漏電流表現類似 GIDL 的特性,特別是其值隨閘極與汲極間電壓的增加而增加[1]-[11],大大的抑制其實用性。

近幾年為了要彌補以上的缺失,我們 提出並成功的研製了一種具有場引發汲極 FID的SB MOSFETs[8]-[10]這種新結構, 這種新式結構的元件和傳統的蕭特基能障 電晶體結構類似,除了在通道與蕭特基汲 極間有一個 FID 存在。此外,它亦與具 FID 的金氧半電晶體類似[12][13],除了經由 離子摻雜而形成的汲極與源極以金屬矽化 物取代。更重要的是,在傳統結構中的類 似於 GIDL 的漏電流現象在新結構中可被 完全消除;然而,即使結果令人振奮,但 仍缺少對兩種結構之漏電流機制的瞭解, 在本計畫中,我們分別對兩種結構在不同 偏壓條件下施以便溫量測以對漏電流現象 進行分析. 基於所得的結果, 我們將討論漏 電流的傳導機制並證實之。

蕭特基能障電晶體的元件結構如圖 1 所示。在元件運作時,我們在副閘極上加 一個固定電壓以在 off-set 通道區形成一 個汲極延伸。因此,依照副閘極電壓的極 性,我們可以設定它以 n 型或 p 型操作,即 當副閘極電壓為負時,就是 p 型通道元 件,反之則是 n 型通道元件。

三、結果與討論

圖 2 為 SOI 蕭特基能障電晶體採用新式場引發汲極的電流特性圖,當操作於 N 通道或 P 通道,on/off 電流比率分別可達到 10^7 或 10^8 ,此外,當採用此新式結構,關閉漏電流與閘極電壓大小並沒有相對關係。由圖中可觀察到,元件操作於 P 通道的特性遠優於操作於 N 通道,主要是因為

鎳金屬矽化的蕭特基能障對於電洞(約0.4 eV)遠低於電子(約0.7 eV)[14]。

圖 3 顯示次閘極電壓,對於元件操作 於 N 通道($V_{G,main} = +2.5$)與 P 通道($V_{G,main}$ =-2.5)的汲極電流影響,將此特性與圖2 比較可以明顯看出具有大漏電流,特別是 在N通道操作的模式下,而且會隨著次閘 極電壓的大小而改變。由圖4對四種不同 狀態的 N 通道能帶圖說明之前狀況,圖 4 中 $(V_{G,main} = +2.5 V, V_{G,sub} << 0)$ 的大電 流,主要來自於汲極端的高電場電洞穿 透,不過此現象會隨著 VG.sub 逐漸增加至 0 V 而減小;當 V_{G,sub}增加至一大正電壓時, 相當於元件正常導通的情形(V_{Gmain} = +2.5 V, 圖 4C), 從源極端的高電場電子 穿透會成為主要的汲極電流來源[2]-[5], 换句話說,當 V_{G.main} 切換至關閉狀態(如 $V_{G,main} \sim 0V$),且 $V_{G,sub}$ 維持在高正電壓, 在偏移區的電場感應汲極會抑制汲極漏電 流(即電洞的高電場穿透)[6],此關係如 圖 5D 所示,所以可有效的減小元件關閉 狀態的汲極漏電流。

圖 5(a)是傳統蕭特基能障薄膜電晶體從攝氏25度到150度變溫量測之p型通道的次臨限 Id-Vg 特性圖。元件尺寸為W=20ìm, L=5ìm在這些圖裡面我們可以看到因為 off-state 漏電流太大的關係,導致整個元件絲毫沒有工作的可行性。事實上,我們還發現 off-state 漏電流對存在於主閘極和汲極間的電壓差非常敏感,因為整個 I-V 曲線是 V 字形的。

從變溫量測而得的 Arrhenius 圖中我們可以萃取出電流導通的活化能。在圖 6中我們展示了p型操作的活化能實例.在這些例子中, $|V_G|=0$ or 4.5 V, and $|V_D|=1$ or 3 V.基本上我們可以看到,對某一固定的 V_G 來說, E_A 將隨著 V_D 的增加而下降;同時對一個固定的 V_D 而言, E_A 將

隨著 V_D 的增加而下降 V_G 的增加而下降。以上的趨勢在圖 6 中將更加明顯,在其中我們以 E_A 為 V_G 的函數而作圖,結果顯示, E_A 對 V_{GD} 來講非常敏感。從這個結果我們可得到如下的暗示,即在汲極區的電場強度對漏電流有很關鍵的影響。

圖 5(b)同樣也可用於解釋具有 FID 結構的蕭特基能障薄膜電晶體的變溫量測圖,操作於 p 型通道汲極延伸區 X_D 的長度為 4i m, W=20i m, L=5i m, 與傳統結構一樣。我們可以看到,儘管隨溫度上生會有漏電流增加的現象,但漏電流值和 V_G 之大小並沒有多大的關係.這個結果和傳統結構的結果形成明顯的對比。不過漏電流對溫度的相關性卻較大些,這暗示了導通機制似乎是個熱激發過程。

藉由蕭特基薄膜電晶體的變溫量測中,我們可以更加掌握蕭特基薄膜電晶體的漏電流機制,這有助於我們將來製作更短通道的 SOI 蕭特基電晶體。

四、參考文獻

- [1] M. P. Lepselter and S. M. Sze, *Proc. of IEEE*, pp.1400-1401, 1968
- [2] J. R. Tucker, C. Wang, and P. A. Carney, Appl. Phys. Lett., vol.65, pp.618-620, 1994.
- [3] W. Saitoh, A. Itoh, S. Yamagami, and M. Asada., *Jpn. J. Appl. Phys.*, vol.38, pp.6226-6231, 1999.

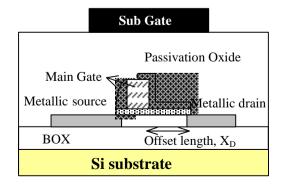


圖 1 SOI SB MOS device 的結構圖。.

- [4] J. Kedzierski, P. Xuan, J. Bokor, T. J. King, and C Hu, in *IEDM Tech. Dig.*, 2000, pp.57-60.
- [5] M. Nishisaka, Y. Ochiai, and T. Asano, in *Proc. Device Res. Conf. (DRC)*, 1998, pp.74-75.
- [6] C. Wang, J. P. Snyder and J. R. Tucker: Appl. Phys. Lett. 74 (1999). 1174
- [7] A. Itoh, M. Saitoh and M. Asada: Jpn. J. Appl. Phys. 39 (2000). 4757
- [8] H.C. Lin, C.Y. Lin, K.L. Yeh, T.Y. Huang, and S.M. Sze, in *IEDM Tech. Dig.*, 2000, pp.857-859.
- [9] H. C. Lin, K. L. Yeh, R. G. Huang, and T. Y. Huang, *IEEE Electron Device Lett.*, Vol.22, pp.179-181, 2001.
- [10] K. L. Yeh, H. C. Lin, R.G. Huang, R. W. Tsai and T. Y. Huang: Appl. Phys. Lett. 79 (2001).635
- [11] H. C. Lin, K. L. Yeh, R. G. Huang, and T. Y. Huang, in *AMLCD Tech. Dig.*, 2001, pp.247-250.
- [12] T. Y. Huang, I.W. Wu, A. G. Lewis, A. Chiang and R. H. Bruce: IEEE Electron Device Lett. **11** (1990). 244
- [13] T. Y. Huang, I.W. Wu, A. G. Lewis, A. Chiang and R. H. Bruce: IEEE Electron Device Lett. **11** (1990).541
- [14] S. M. Sze, *Physics of Semiconductor Devices*, 2nd Ed., 1982, p.292.

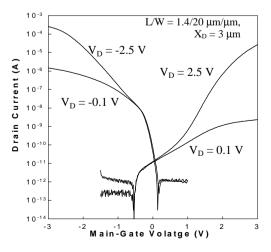


圖 2 元件電流-電壓圖。次閘極電壓分別為 30 和-30 V 對 n- 及 p-通道操作而言。

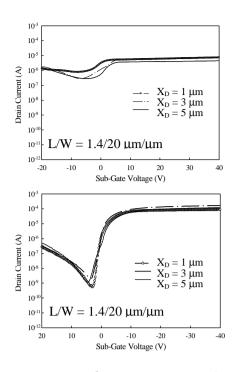


圖 3 次閘極電壓對於 n 或 p 通道元件的影響。 閘極和汲極電壓分別固定為 2.5V 或 -2.5V。

10-4

10⁻⁵ 10⁻⁶

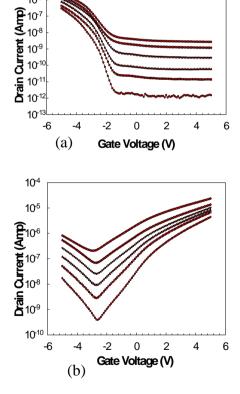


圖 5 蕭特基薄膜電晶體 p 通道的 Id-Vg 特性圖。 (a) 具 FID 結構。(b) 傳統結構。

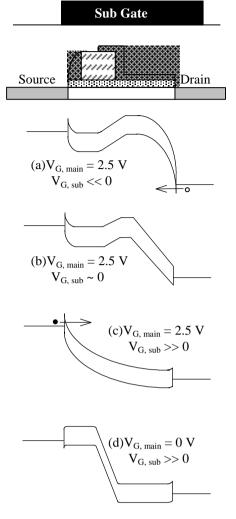


圖 4 不同 n 通道操作電壓對於元件能階示意圖。

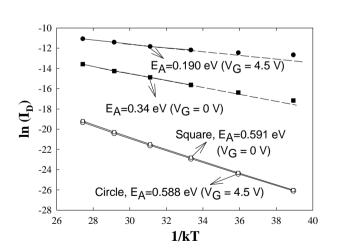


圖 6 蕭特基薄膜電晶體 p 通道的 Arrhenius plots。 (空白圓形為具 FID 結構,實心圓形為傳統 結構。)