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Abstract--Several feature-preserving two-class clustering methods are investigated in this paper. By 
preserving certain features of the input data, some formulas useful in calculating the two class representatives 
and population percentages are derived. The derived formulas are expressed in general forms suitable for any 
dimensionality higher than two. The complexities of the investigated methods are all of order N if the data 
size is N and hence are much faster than any other clustering method which uses N x N dissimilarity matrix. 
Additionally, all investigated methods use no initial guesses. Experimental results are included to make 
a comparison among the four investigated methods so that only two methods are recommended. Further 
comparisons with the k-means method and hierarchical clustering methods also are included. The proposed 
feature-preserving approach was found to be fast, automatic and suitable for any field requiring fast 
high-dimensional two-class clustering. Copyright © 1996 Pattern Recognition Society. Published by 
Elsevier Science Ltd. 
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1. INTRODUCTION 

Clustering is a data analysis technique that has seen 
wide application in many fields such as image segmen- 
tation, <L2) image registration, ~3'4) computer  vision, ~s) 
psychiatry ~6~ and pol i t icsS  ) A special branch of clus- 
tering methodology concerns two-class clustering 
techniques. These techniques can be applied in BTC 
image compression (8'9) and binary decision tree con- 
struction, ~7) among others. In order to meet the practi- 
cability requirements among  these applications, these 
techniques are expected to perform fast automatic  
two-class clustering. However,  most of the existing 
clustering methods, such as the k-means method  and 
the hierarchically methods using dissimilarity matrix, 
are either nonautomat ic  or time-consuming. There- 
fore, it is desirable to develop a real-time method  
which can part i t ion input data  into two classes auto- 
matically. The major  concern of the design introduced 
in this paper thus focuses on two basic goals: real-time 
and automation. 

In this paper we design and compare four new 
analytical methods that use analytical formulas to 
evaluate the two-class representatives and populat ion 
percentages directly. We begin with three dimensions 
and then extend the derived formulas to include higher 
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dimensions. All the formulas were obtained by solving 
equations that confined the class representatives and 
populat ion percentages to preserve certain features 
of input data. For  3-D (three-dimensional) data, our 
approach not only preserves {p,9~,37,~}, where p 
denotes the populat ion and (2,y,5) denotes the 
data centroid, but also the features combined in one 
of the following four ways: {Ixyl, l ~ l , l ~ l ,  lkTI}, 
{xy, xz,  yz, xyz} ,  {~2,y2,z 2,r}, {~2,/,z2,~yz}. 
(Throughout  this paper, the "bar" always denotes the 
average function. For  example, I ~ [  = 1 N x E k  = 1 I xky~ I.) 
All of these features are easily calculated. Note  that 
al though readers might  want to try many other fea- 

tures, for example, {Ixl + l yl + I z I, xiy, sin x, log z . . . .  }, 
we found that many combinations do not  yield 
reasonable experimental results and some combina- 
tions even yield no solution for almost every data 
set. For  example, when we preserved {p;~,37,Z; 

x2,yi, z2;Ixl + lYl + [zl}, we found that (after certain 
derivations) preserving these features will constrain 
the input data to satisfy 

~ + ~ + ~ =  [xyl + lxzl + fYzl 

which, of course, is not  necessarily true for an arbitrar- 
ily given data  set. After examining (and experimenting 
with) many methods that preserve different features, 
we introduce in this paper only four of them, namely, 
Methods  1-4. 

The remainder of this paper is organized as follows. 
In Section 2, the 3-D case is investigated and the 
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corresponding formulas for each of the four methods 
are listed. In Section 3 these four methods are general- 
ized to handle data with more dimensions. In Section 
4 some experimental results are shown. In Section 
5 some comparisons with the k-means and the hier- 
archical clustering methods are illustrated. Conclud- 
ing remarks are presented in Section 6. Finally, 
a mathematical proof is collected in the Appendix to 
simplify the reading. 

2. T W O - C L A S S  F E A T U R E - P R E S E R V I N G  
C L U S T E R I N G  F O R  3-D D A T A  

In this section the four feature-preserving two-class 
clustering methods for 3-D data are introduced. We 
first derive the formulas for Method 1. Let 

N H = {(xk, yk, Zk)}k= I be a given data set that is to be 
clustered into two classes A and B. Let (XA, y/,, Z/,) and 
(xB, YB,ZB) denote the two corresponding class repre- 
sentatives. Similarly, let the population percentages be 
PA and PB, respectively. To solve for the eight un- 
knowns: 

{PA, XA, YA, ZA, PB, XR, YB, ZB}, (1) 

we need eight equations. The first equation we may use 
is the natural requirement: 

PA + PB = 100% • 1. (2) 

Also note that in order to avoid having the estimated 
class representatives be far away from the given data, 
we should also preserve the position of the centroid 
(2,)5, ~) of the given N-point data set. That is, we should 
require that: 

1 N 

PAXA 4- PBXB = N k ~ l  Xk = "~ = O, (3) 

1 N 
PAYA + PBYB = ~ k~=l Yk = )7 = 0,  (4) 

1 N 
PAZA + PBZB = Nk~I  zk = ~ = 0. (5) 

(For simplicity, we always assume that the centroid of 
the given data set is the origin. If this is not the case, we 
just do a preprocessing step to translate all N data 
points to meet this assumption.) In addition to the four 
basic equations listed above, we still need 8 -  4 = 4 
more equations. We therefore try to preserve four 
other features of the given data. Here we use 

{ I xy[, I xz], l yzl, I xyz[ } for Method 1. Stated more com- 
pletely, the remaining four equations are: 

Pa I XAYA ] 4- PB I XBYB I = I xy], (6) 

pA I XAZA I + P,  I x , z ,  I = I xzl, (7) 

PA [YAZA I 4- P~I y~zB I = l yz[ ,  (8) 

pAIXAYAZAI 4- p ,  Ix~YBZBI = I xyzl. (9) 

Using the eight equations listed in (2) (9), we solve for 
the eight unknowns mentioned in (1). Equations (3)-(5) 

imply that: 

PA 
X B = - - - - X A  , 

PB 

YB = - PA YA, 
PB 

PA 
Z B = -- - -  ZA. 

PB 

Equations (10) and (11) together yield: 

[XByB] = 2--/PB ]XAYa[, 

and hence 

(10) 

(11) 

(12) 

p ,  lxBy,  I = ~ p-~ I xAYAI. 
PB 

AS a result: 

pA[XAyA' + P"[XBY"[ = (PA + ~ )lXAyA] 

__ PA(PB 4- PA) ]xAy A I 

P, 

Pa Ix - -  AYA 
P~ 

by equation (2). Therefore, equation (6) implies: 

Pa IxAYAI = txyl. (13) 
PB 

By symmetry, we also have: 

pa IxAzAI = Ixz[, (14) 
PB 

PA [YAZA[ = lyz[. (15) 
Pn 

Cyclically multiplying any two of equations (13), (14) 
and (15), then dividing the product by the remaining 
one, we can finally obtain the analytical formula of 
class A's representative ( x A, y j,, z a), namely: 

x a =  +_/p , ]xy l l x z [ ,  (16) 

"4PA l yzl 

+_ / pBlxyl lyz[, (17) 
YA= x4 PA [xzl 

zA= + / pBlxz[lyz[. (18) 
- X/PA [xyl 

Once (x~,yA, z~) is known, the representative 
(XB, YB, ZB) of class B can then be evaluated using 
equations (10)-(12). The remaining problem is there- 
fore to determine the signs of {XA, YA, ZA} and the 
values ofpA and PB" To evaluate the values ofpa and pB, 
note that equation (2) indicates that: 

PB = 1 - -  PA- ( 1 9 )  
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Substituting equations (10)-(12) and (16)-(19) in (9), we 
obtain (see the Appendix for details): 

I ~ / , f ~  + 8 6  - 6 -  2 (20 )  
P ~ = 5 + z x /  2 ' 

where 

[xyz[ ~ 
5 = . (21) 

Ixyl Ixzl lyzl 

Below we show how to determine the signs of 
{xA, YA, Z,~,xB, YB, ZB}. Assume there are at least as 
many points in class A as there are in class B, that is, 
PA >-- PB" Then: 

1 1 /x/6x/6x/6x/6x/6x/6~ 86 -- c5 -- 2 (22) 
P ~ = z + z x /  2 

To determine the signs of x A, YA, ZA, XB, YB and z B, we 
proceed as follows: By equations (10)-(12), there are 
only four possible cases for the signs of (xA, YA, ZA) and 
(x~, YB, zB), namely, Case I (( + ,  + ,  + ) and ( - ,  - ,  - ) ) ;  
Case II ((+,  + ,  - )  and ( - ,  - ,  +)); Case III ( (+,  - ,  +)  
and ( - ,  + ,  - ) ) ;  case IV ( ( - ,  + ,  +)  and (+ ,  - ,  - ) ) .  
Here, " + "  indicates "' > 0," and '" - "  indicates "_< 0." 
Also note that each case contains two subcases, e.g. 
Case I includes not only the subcase "(x A, YA, ZA) being 
(+ ,  + ,  + )  and (x~, y~, z~) being (-- ,  - ,  - ) " ,  but also 
"(XA, YA, ZA) being ( - - , - - , - - )  and (x~,y~,z~) being 
(+ ,  + ,  + ) ' .  To determine the signs we only have to 
inspect the data to check which case is most likely to 
happen. For  example, if 52 points have been checked, 
and if (X53,Y53, Z53 ) is (75, 43, - 9 ) ,  then Case II 
receives one more point, etc. When all N data points 
are checked, the case receiving the highest score gives 
the signs of (xA, YA, Za) and (x~, y~, zg). Assume Case II 
is the case. Then, if (+ ,  + ,  --) occurs more often than 
( - ,  - ,  +)  in the N data points, we set (xa, yA, Za) to be 
(+ ,  + ,  - )  and (XB, YB, ZB) to be ( - ,  - ,  +). 

Having obtained the two class representatives 
(xx, YA, ZA) and (x~, y~, z~), the decision boundary that 
separates the input data into two classes can be defined 

as a plane perpendicular to the line segment ~B con- 
necting A = (XA, YA, ZA) and B = (x~, y~, z~) and cutting 
the 3-D space such that NpA points fall in the halfspace 
containing A. However, if we notice that pa and p~ are 
just some estimated values, and keep in mind the 
real-time requirement that we pointed out in the first 
paragraph of the Introduction, then a simpler and 
faster way to cluster data is to use the nearest-neighbor 
rule: a data point is assigned to class A if and only if the 
data point is closer to (xA, ya, ZA) than to (x~, y~, z~). In 
other words, just take the decision boundary to be 

a plane perpendicular to ~ B  and passing through its 
mid-point. Hereafter, we will use this simpler rule for 
Methods 1-4. As a result, the clustering result (i.e. the 
job of assigning each data point to a suitable class) is 
completely determined by the positions of the com- 
puted values of the class representatives. 

Below, we list the formulas for the other three 
methods (Methods 2-4). To save space, we omit the 

proofs and just give the features they preserve and the 
resulting formulas. Method 1 is also summarized here 
for comparison. 

Method 1. Preserving {p,2,Y,~,lxyl, lxzl, lyzl, lxyzl} 
to obtain: 

1 1 / , , ~ + 8 6 - 6 - 2  
P A = 5 + 2 ~  2 

(where c5 ! x y z ] 2 _ ) ,  
Ixyl Ixzl lyzl/  

/p.l yll= , 
xA = + ~P~ ~ 

/p.L yl yz , 
Y~ = +- ~P~ ~Yl 

= + / p ,  lxzl 
1 

lyzl 

Method 2. Preserving {p, ~, y, ~, xy, xz, yz, xyz} to ob- 
tain: 

/ 1 1 
PA = - + - /- 

2 - 2 ~ / ~ 2  + 4x-y ~ ~ '  

X A =  -t- - -  ~ , 
- ~ / P A  yz 

YA = ~- / N B ~  Y~, 
- ~ P A  

pBxz yz. 
ZA = +_ ~ P a  

Method 3. Preserving {p, 2 , y , i , x  2,y2, Z2, r}, where 
F-- [x~N / x  2 2 -w-..k=l~v k + Y~ + zk)/N, to obtain: 

1 1 ~  (r)2 1 1 ~  (r) 2 
pA = ~ q - ~  1 - - = = - _ +  5 1 r 2 2 x 2 + y2 + z 2 

NkPA / 

Method 4. Preserving {p, ~, y, ~, x 2, y2, z 2, xyz} to ob- 
tain: 

/ 1 1 
PA = -- +~ -- / 2 2 ~ / ~ 2  Av 4x2 y2 z 2' 

XA=--X/\PAA / 

~/\PA /I 
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The signs used in these formulas can be determined 
using the rule discussed earlier. Also note that Method 
2 might not  have a solution if: 

x y - x z . y z  < 0, (23) 

because equation (23) will make one of the two popula- 
tion percentages negative• This problem, however, 

will not  occur with Methods 3 and 4 (here ~2 _< r 2 is 
guaranteed by Schwartz's inequality). Method 1 might 
have no solution if ~ < 1 [see equation (20)]. How- 
ever, we found that 3 < 1 rarely occurs (especially if 
the data-rotat ion preprocessing introduced in 
Section 4 was used first). In the following section we 
extend the proposed methods to handle data with 
more dimensions• The generalized formulas are also 
listed. 

3. G E N E R A L I Z A T I O N  T O  d - D I M E N S I O N A L  S P A C E  

We extend Method 1 first. Assume that the N-point  
two-class data are d-dimensional and hence can be 
expressed as {(x(1 k), x~  ), x(3 k) . . . . .  X(dk)) }N= 1 . Let the popu- 
lation percentages and class representatives of these 
two classes be ,, ~ t~CA) ~(A) . . . .  x(aA)) and FA~ FB~ k ~ l  , ~ 2  , 
(~(B) ~(m . . . .  x(f)), respectively. Therefore, 2d + 2 
equations are needed because there are 2d + 2 un-  
knowns to be solved for. As before, we may preserve 
the input  data centroid. If we preserve these d features 

- -  d {xi}i=l and require that PA +PB = 1, there are still 
(2d + 2) - (d + 1) = d + 1 features to be preserved. The 
natural  extension of Method 1 from 3-D to d-dimen- 
sional space is to assign the remaining d + 1 features to 

be {HIxII, HI~21 . . . . .  Hlxal , Ixxx2x3. . .xal  }. Here, HI:~ I is 
defined as: 

1 N 
__~1/ I ~(k)~(k) ~(k)/~(k) ,~ (24) HIx , l=2vk_X7 kl ~1  ~2 "' '~d /~i I?, 

a value which is known once the N-point  data set is 
given• Consequently, the set of features that we pre- 

serve is {p; ~ . . . . .  x-~; H[XI[ . . . . .  HIXI[; ]X ~x2x3 . . . x  d ]}. The 
resulting 2d + 2 equations are: 

PA + P8 = 1; (25) 

{ PaXi a~ + p .x i  ~ = xZ = O, 
PaX~2 A) + PBX~2 m = ~ = 0, (26) 

pAX~ A) + pBx(a B) = X~ = 0 ;  

Note that we have assumed here for simplicity that 

xl = x2 = x3 . . . . .  ~aa = 0,just  as we did in the previ- 
ous section. After certain derivations, it can be proved 
that the generalized formula of class A's representative 
(xl a), x~ ~1 . . . . .  x5 A)) is: 

x~A~ = +~ Ixl•..xA _+~lx~•'•x~l 
- f l l x~x~ . . . xA  - f l  Hix~l ' 

Ixl ' "xA c~ Ix~ '"xA xl A) = + + 
~ [ x l x 2 . ' . X d _ l [  ~ Hix~ I ' 

(29) 

and the populat ion percentages Pa and PB satisfy: 

/ d \ d -  1 

t d - - l \ d  " Hix~j-.. IIl~al cd + P~ _ ~ (30) 

Here, c~ and fi are defined as: 

p~- 1 
O: = PA -t pa B 2' 

p~ 
f l = P a  q p ~ - l "  

Note that it is difficult to obtain the populat ion 
percentages PA and PB by solving equation (30) directly, 
although the leftmost expression in equation (30) is 
a known value easily obtained from the given data. An 
alternative strategy is to build up a 50-entry table (see 
Table 1) of the computed values: 

pa \ a -  1 

(31) 

PA + P - B -  

for PB ~ { 1, 2 . . . . .  50% } (assume that PA = 1 - P B  >-- PB)" 
Then, according to the value of: 

I~ ""xA "-~ 
(32) 

Hix~[ "•" I I ixa  I ' 

we can use equation (30) to obtain the corresponding 
populat ion percentages Pa and Pn easily by looking 
them up the table. (Due to space limitation, only 
d = 9, 10, 11 are shown in Table 1.) 

The obtained values of PA and PB can then be used to 
evaluate c~ and fi, and then substituted into equation 

p Ix(A)xCA}"'x]A)I + p,  IX~"'X~")'"X~B)I = nfx,,, A 2 3 
CA~ CA,... x'?'l + p ,  lx?'x'?'.., x,?,l  = n,x2,, PAIXI X 3 

(A) (A) (A) CA) 4- n IxCB)x (B).. .X cB) x(B)[ = II ixd_l l  ' PAIX~ x2 • " X a - 2 X a  ] - - r B ,  1 2 ¢1-2 d i 

PA [x(A)x(A)••'•CA)I 2 "'d 2"VdY(A) 1 [~-PB [x(B)x(B)'"Y(B)I 2 "'d 2"VdY(B)-- 1 [ = Hlxd[; 

(27) 

(A) (A) (A), (A) (B) (B)..• (B) (B) + p ~ l x i  x2 xa_lXa } . . . .  PAIXl xa "••Xa_lXa I Ix1 xal. (28) 
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Table 1. The computed values of the left-hand side of equa- 
tion (33) 

p~ d = 9  d=  10 d =  11 

1% 1 0 0 . 0 0 0 0 0  1 0 0 . 0 0 0 0 0  100.00000 
2% 5 0 . 0 0 0 0 0 0  5 0 . 0 0 0 0 0 0  50.000000 
3% 3 3 . 3 3 3 3 3 3  3 3 . 3 3 3 3 3 3  33.333333 
4% 25.000000 25.000000 25.000000 
5% 20.000000 20.000000 20.000000 
6% 1 6 . 6 6 6 6 6 6  1 6 . 6 6 6 6 6 6  20.000000 
7% 1 4 . 2 8 5 7 1 3  1 4 . 2 8 5 7 1 4  14.285714 
8% 1 2 . 4 9 9 9 9 6  1 2 . 5 0 0 0 0 0  12.500000 
9% 1 1 . 1 1 1 1 0 3  l l . l l l l l 0  11.111111 

10% 9.999983 9.999998 10.00000 
11% 9.090877 9.090905 9.090908 
12% 8.333276 8.333325 8.333332 
13% 7.692208 7.692291 7.692305 
14% 7.142691 7.142827 7.14852 
15% 6.666397 6.666614 6.66666 
16% 6.249575 6.249910 6.249981 
17% 5.881698 5.882204 5.882320 
18% 5.554576 5.555315 5.555498 
19% 5.261693 5.262777 5.263060 
20% 4.997864 4.999409 4.999838 
21% 4.758836 4.761002 4.761642 
22% 4.541104 4.544096 4.545035 
23% 4.341734 4.345812 4.347167 
24% 4.158229 4.163718 4.165646 
25% 3.988437 3.995735 3.998442 
26% 3.830458 3.840052 3.843805 
27% 3.682592 3.695063 3.700203 
28% 3.543274 3.559309 3.566266 
29% 3.411036 3.431433 3.440740 
30% 3.284465 3.310128 3.322438 
31% 3.162175 3.194104 3.210198 
32% 3.042781 3.082044 3.102835 
33% 2.924890 2.972572 2.999100 
34% 2.807101 2.864230 2.897630 
35% 2.688027 2.755457 2.796902 
36% 2.566346 2.644603 2.695200 
37% 2.440883 2.529971 2.590605 
38% 2.310736 2.409904 2.481020 
39% 2.175445 2.282981 2.364276 
40% 2.035196 2.148229 2.238358 
41% 1.891034 2.005511 2.101784 
42% 1.745040 1.855914 1.954167 
43% 1.600395 1.702127 1.796912 
44% 1.461282 1.548636 1.633888 
45% 1.332564 1.401588 1.471757 
46% 1.219294 1.268198 1.319616 
47% 1.126143 1.155796 1.187777 
48% 1.056928 1.070791 1.086000 
49% 1.014359 1.017925 1.021876 
50% 1.000000 1.000000 1.000000 

(29) to obtain the representative of class A. The sign of 
class A's representative in each dimension can be 
determined using the method  described in the previous 
section. The class representatives of class B can then be 
evaluated using equat ion (26). Below, we list the gener- 
alized formulas for Methods  2-4. The proofs are omit-  
ted to save space. For  comparison,  the generalized 
formulas from Method  1 are also included. 

Method 1 (d-dimensional). Preserving the features 

{ p ; ~  . . . . .  x-i; n ,~, l , . . . ,n ,~;  Ixlx2...xa_ixal } to 

obtain: 

( + y-1 
pA p~-l/ _ lx l . . . x / -~  

(33) d 1 \d  
PA+ Pp~)  H t x d  " " " l ~ l x d l  

pd 1~ 

PA +p~-I j 

Vi=  1 . . . . .  d. (34) 

Method 2 (d-dimensional). Preserving the features 

{P;)Cl ..... :~d; Ilxl . . . . .  Ilxd; XlX 2'''x d lXa} to obtain: 

(PA +(--1) ~ - I )  

PA + (-- 1) a-1 pd-~ J 

X l  . . .  Xd d 1 

- 17x ...Fi~a, (35) 

( 
x! A ) -  \PA + ( - - 1 )  a- p~-2 jE  ...xa 

la pda 

Vi= 1 . . . . .  d. (36) 

Here, II~, is defined as in equat ion (24), except that the 
absolute value symbols on both sides of the equation 
are now taken away. 

Method 3 (d-dimensional). Preserving the features 

{p; ~ . . . . .  ~ ,  x 2 . . . . .  x2; F} to obtain: 

1 1X/ (/7)2 1 1N/1 (f)a __ (37) 
pA=~q-~ 1 r~ 2±~  x~+. . .+x  2, 

xlA) = _+ N/p~ ~2i2, V i = l  . . . . .  d. (38) 

Method 4 (d-dimensional). Preserving the features 

{P; ~ ..... -~d; x2 ..... x2; I xlxz...x a_ lxa} to obtain: 

r~d/2 ~2  
d UA | __ X l X z ' " X a -  1Xa 2 

[ p~/2 +(-1)  ~ J  x~ 2 2 x~ (39) 
X2 " "  X d -  1 

V i  = 1 . . . . .  d. (40) 

The signs of xl a) in equations (34), (38) and (40) 
can be determined in the manner  proposed in Sec- 
tion 2. Furthermore,  the PA in equations (33), (35) and 
(39) can also be obtained from the (50-entry) table 
look-up technique just described because the right- 
hand sides of equations (33), (35) and (39) are known 
values. 
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Fig, 1. The computed class representatives of Method 1 for two data sets (a) and (b) in 3-D. Each class 
representative, when projected on a 2-D coordinate plane, is denoted by the centroid of a cross. 

4. EXPERIMENTAL RESULTS 

In this section we compare experimental results 
from the four proposed methods, remarking first that 
before we apply the methods to the data, we always 
preprocess it by rotating the data set so that 

x~ = x~ . . . . .  x~, because we found that the prep- 
rocessing gives a general improvement  in clustering 
results no matter  which of the four methods is used. 
The reason this preprocessing can improve the per- 
formance is probably that: all clustering formulas (33)- 
(40) are symmetric among the d variable xl ,  x 2 . . . . .  x d 
and hence no variable should be more dominant  than 
the others; on the other hand, all d variables having 
identical variations indicates that the ability to distin- 
guish the clusters is similar among the d variables 
(for example, if x 2 ~ 0, then the data are less dis- 
tinguishable on the xa axis); therefore requiring 

x 2 = x~ . . . . .  x~ seems to fit the unbiased nature 
(unbiased among variables) of our formulas (33) (40). 
It can be proved that the preprocessing can be carried 
out using two-dimensional  rotations d -  1 times and 
the rotat ion angles can be calculated explicitly. 

Figure 1 shows the experimental results from 
Method  1 for two data sets in 3-D space. The two 
classes in data set (a) are spherical, while the two 
classes in data set (b) are oval-like. In this figure, to 
sketch 3-D data, we first project each 3-D point 
( x l , x2 , x3 )  on the x l - x  2 plane to yield a "top-view", 
then on the x l - x  3 plane to yield a "side-view". There 
are 2000 points in each data set illustrated in Fig. i and 
the running time, including the time to rotate data, was 
about  0.1 s on the average using a Pentium-90 PC. 
Each data set's computed class representatives 
(xA, YA, zA) and (xB, YB, zB) are marked by crosses. [-For 
example, in Fig. l(a), the centroids of the two crosses in 
the x l - x 2  plane arc (x A, YA) and (x B, YB), whereas the 
centroids of the two crosses in the x 1 x 3 plane are 
(xA, zA) and (xB, zB). ] We can see that the "crosses" are 
close to the actual positions of the class centroids. 

Figure 2 shows the mis-assignment rates when 
Methods 1 4 were used for 10 designed 3-D data set. 
Each data set contained 2000 points and the popula- 
tion ratios of these data sets, from left to right, were 
designed to be 1:9, 2:8, 3:7, 4:6, 5:5, 1:9, 2:8, 3:7, 4:6 
and 5: 5. Furthermore,  in each data set the two classes 
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Fig. 2. The mis-assignment rates of Methods 1-4 for 10 tested 3-D data sets. 

Top-view 
x 2  

• :i.:. ~~ i )  :~-": ' . 

Side-x4ew 

....?~.:.~ 

- . s,-.(..:~ 

x3 

) x l  

Top-view x2 

• ...;.... ~... 

• ..-..71.3.@:~ ....-. 
- . . . :  

Side-view 

• ,~,~.~': ... 

. . . . : ! . ~ . [ !  

x3  
\ 

• " . ' . . .  : . .  

x l  

> x l  

(a) (b) 

Fig. 3. The computed class representatives of Method 1 for the data sets 3dnl [shown in (a)] and 3dn5 
[shown ill (b)] mentioned in Fig. 2. 

were designed to be closer in Category 3dn than in 
Category 3dmn. The distributions of the two designed 
classes in each data  set are both Gaussian distribution. 
The mis-assignment rates used in this paper were 
evaluated by counting the percentage of mis-classified 
data  points for a specified data set when a specified 
method was applied. Fo r  example, the 2000-point data  
set 3dnl  was originally created by merging a 200-point 
set S A and a 1800-point set S B. When a method  was 
applied to cluster the data  set 3dnl ,  if 5 out of the 200 
points in S A were mis-assigned to Class B and if 35 out 
of the 1800 points in S B were mis-assigned to Class A, 
then there were 5 + 35 = 40 points mis-assigned and 

the mis-assignment rate is thus 40/2000 = 2% for the 
data set 3dnl  and the method in question. Figure 3 
shows the computed class representatives of Method 
1 for the data  sets "3dn l "  and "3dn5" mentioned in 
Fig. 2. Al though "3dn l "  was the most troublesome 
data set for Method  1 to handle (see Fig. 2), it can be 
seen from Fig. 3(a) that the two computed class repre- 
sentatives are still not  far away the actual ones. 
Fig. 3(b) illustrates the good estimated class represen- 
tatives of Method  1 for the data  set "3dn5". 

Figure 4 illustrates the mis-assignment rates of 
Methods 1-4 for some 10-D data sets. The data tested 
in Fig. 4 were designed in a way similar to that of 
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Fig.  2. I n  o t h e r  words ,  the  t wo  c lasses  a re  c loser  in 

C a t e g o r y  10dn  t h a n  in  C a t e g o r y  1 0 d m n  a n d  t he  p o p u -  

l a t i on  r a t i o s  b e t w e e n  the  two  c lasses  were  d e s i g n e d  to  

be  1:9 for  the  d a t a  set  1 0 d n l ,  2 :8  for  t he  d a t a  set  10dn2,  

a n d  so  on.  N o t e  t h a t  t he  e x p e r i m e n t a l  r e su l t s  o f  

M e t h o d  2 for  10 -D d a t a  a re  poo r .  ( M o r e o v e r ,  M e t h o d  

2 d id  n o t  yield a s o l u t i o n  for  the  d a t a  set  " 1 0 d n 5 "  

b e c a u s e  t he  d a t a  m a d e  t he  r i g h t - h a n d  side of  e q u a t i o n  

(35) nega t ive ,  w h e r e a s  the  l e f t - hand  side of  e q u a t i o n  

(35) was  f o u n d  to be  pos i t ive  for all PA a n d  PB.) Also  

n o t e  tha t ,  re la t ive ly  speak ing ,  M e t h o d  4 d id  n o t  h a n d l e  

t he  3 -D  a n d  10-D tes t s  well  e n o u g h .  As  for  M e t h o d  3, 
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Fig. 5. A comparison of(a) Method 1 and (b) Method 3. The 3dn3 data  set was used in both (a) and (b). The 
computed class representatives are denoted by crosses. The data  points which are assigned to class A (class B) 

are those data  points enclosed (not enclosed) by the dotted closed curves. 
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although its mis-assignment rate was not  high, the 
detected class representatives are in general worse than 
those detected by Method 1 (one such example is 
illustrated in Fig. 5). We therefore think that, on aver- 
age, Method 1 is better than the other three. To 
convince ourselves, we tested many  other data sets 
from 3-D to l l-D. On average, Method 1 outper- 
formed the other methods. Therefore, we recommend 
Method 1 as a "first-choice" method. The other three 
methods, especially, Method 3, should be used as 
"second-choice" auxiliary methods in case Method 
1 fails to generate a solution [this very rare case occurs 
if and only if there is no PA and p~ that satisfy equation 
(33) for a specified right-hand side]. In our experi- 
ments, with the data-rotat ion preprocessing technique 
ment ioned above, only two of the 180 tests caused 
Method 1 to fail. (In fact, these two data sets still 
caused Method 1 to fail if we did not  apply the 
data-rotat ion technique.) Of course, if a reader wishes 
to stop worrying about  whether a solution exists or 
not, he may always use Method 3 directly without 

trying Method 1. However, after all points are assig- 
ned, he should re-calculate the two class centroids by 
averaging the coordinates of all points assigned to 
class A (class B). For  example, averaging all points 
enclosed (not enclosed) by the dotted closed curves in 
Fig. 5(b). This is because, as stated above, Method 
3 gives good point-assignment but  poor class represen- 
tatives. 

5. COMPARISON WITH k-MEANS AND 
HIERARCHICAL METHODS 

In this section we compare Method 1 with two other 
types of widely used clustering methods, the/c-means 
method and the hierarchical agglomerative clustering 
methods. Figure 6 shows the computed class represen- 
tatives of the/c-means (k = 2) method for the two data 
sets used in Fig. 1. It can be seen that the clustering 
results are very similar to that of Fig. 1. However, for 
the data shown in Fig. 7(a), the results are completely 
distinct. In Fig. 7(b) we list the mis-assignment rates 
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Fig. 6. The computed class representatives of k-means (k = 2) for the two data sets used in Fig. 1. 
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Fig. 7, The mis-assignment rates and computation time for the k-means and several hierarchical methods. 
The 3-D data used is shown in (a). 

and computat ion time of the proposed Method 1, the 
k-means and four distinct versions of hierarchical ag- 
glomerative clustering methods. The number  of points 
in the data  set is 1000 and the machine used was 
a Pentium-90 PC. The reason the k-means showed 
a very poor  mis-assignment rate is that the k-means 
tried to minimize the total square sum and hence cut 
the set into upper and bot tom halves (along with the x 3 

axis) rather than the proper cut of splitting the set into 
left and right halves (along with the x 1 axis). As for the 
extremely poor  mis-assignment rate of the single link- 
age hierarchical method, it is because one of the two 
detected clusters contains one point  only. It can also be 
seen that the computat ion time of the k-means method 
was about  twice as long as ours and the hierarchical 
agglomerative clustering methods were several hun- 
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dred- to several thousand-times slower than ours. In 
general, the k-means and hierarchical methods do not 
guarantee better clustering results than ours (some- 
times theirs are even worse) and the k-means always 
requires some initial guesses, while the hierarchical 
method  always has extremely slow computat ion speed. 
Our  (fast) methods therefore deserves a try. A special 
note is that the memory  requirement of the hierarchi- 
cal agglomerative methods is proport ional  to the 
square of the number  of data points; this often makes it 
impossible to hierarchically cluster large size data on 
a PC. (Just 7000 points will cause PC  problems if 
hierarchical methods are used.) 

An interesting comparison can also be made be- 
tween the natures of the proposed approach and the 
k-means method  (using k = 2). The clustering result 
and the computat ion time of the k-means method  
strongly depend on the initial guess of the partit ions 
(or cluster centroids). This does not  happen to our 
approach because the inputs of our formulae are com- 
pletely determined by the "whole" given data set rather 
than of a "part ial"  data  set (which will need to guess 
which data  points should be used). As for the computa-  
tion time, the k-means and ours were found to be 
competi t ive (we used several initial guesses to run the 
k-means method several times to obtain an average 
computa t ion  time, al though the computat ion time 
used by our approach was a fixed number  once the 
number  of points and the dimensions were fixed). 

6. C O N C L U D I N G  REMARKS 

In this paper we investigated several feature- 
preserving two-class clustering methods for 3-D or 
higher dimensional data. The proposed methods oper- 
ate analytically even when applied to cluster data in 
a great many dimensions. Among  the four investigated 
methods. Method  1 is the one we recommend most  
highly because of its low mis-assignment rate and 
acceptable estimation of class representatives. On  the 
other  hand, Method  3 can also be used if the reader 
remembers that, once the data points are all assigned, 
the two-class representatives should be replaced by the 
two-class centroids (see the end of Section 4). As for the 
other two, Methods  2 and 4, al though they are also 
unsupervised, and have general forms in any space 
with more than two dimensions, their mis-assignment 
rates, on average, were found to be not  as good as that 
of Methods  1 and 3. 

Also note that Methods  1 4 are all automatic  and 
thier processing speeds are satisfactory. According to 
our experiments, to cluster 2000 points using a Pen- 
tium-90 PC, none of the four methods took more than 
0.5 s to do the computat ion (including the data-rota-  
t ion preprocessing) if the data are 10-D. This computa-  
tion speed is several hundred- to several thousand- 
times faster than that of the hierarchical agglomerative 
clustering methods. Furthermore,  comparing to the k- 
means,(10) none of the proposed methods needs initial 
guesses. 

In summary, our methods are fast, storage-saving, 
free from choosing initial guesses, easy to cluster high- 
dimensional data, etc. Their  direct applications in- 
clude the code-book design for VQ, color image sharp- 
ening, (11) color image compression, ( :2 /color  palette, 
etc. Also note that when the methods are repeatedly 
used to parti t ion a data set into several subsets, and the 
distances between the subsets are then checked so that 
adjacent subsets can be merged back to form a cluster, 
then the proposed methods can also be used in a split- 
and-merge manner  to cluster data formed of more than 
two classes. This approach of using a two-class cluster- 
ing method in a split-and-merge manner  to solve 
multiple-classes problem can be found in reference 
(13). 
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APPENDIX 

Preserving {p,x,y,z, ]xy], ]xz], ]yz], ]xyz[} yields: 

1 1 / ~ 8 ~ - 5 - 2  (Here, IxYzl2 pA=~±~/ ~ . \ ~ ) 
Ixyl Ixzl [yzl 

Proof. Taking absolute values in equations (10) (12), we can 
rewrite equation (9) as: 

(pA +Pp~B)Ix4YAZn,=Ixyzl. (41) 
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By squaring the two sides of equation (41), then using equa- 
tions (16)-(18), we have: 

PA PB 
PA + Ixyl Ixz[ lyzl = Ixyzl a. (42) 

Since: 

. ~ 2,~p~p~ (p~ +p~)~ 
= (Pa + P.) ~ PaPa 

((Pa + PB) 2 - 2papB) z (1 -- 2pap.) z 
= 

PaPa PaPB 

equation (42) can be simplified as: 

(1 - -2pap . )  z [xyz[ 2 
- _ _  = 6 (43)  

PaPa ]xy] ]xz] ]yz] 

by the definition of 6 in equation (21). Since 1 - 4pap. + 
2 2 4papB = @aP. ,  we have 4(pap.) a - (5 + 4)(pAp. ) + 1 = 0. 

Therefore: 

(6 + 4) ± ~ 8~5 
PxPg = (44) 

8 

Let: 

(6 + 4)-t- ~ 86 
7 = (45) 

8 

then equation (44) can be rewritten as: 
PAPB = 7 "  (46) 

Substituting equations (2) into (46), we obtain: 

PA( 1 -- PA) = 7, i.e. 

p2 Pa + 7 = 0. 
Consequently: 

1 
_+ ~ 1  -- 47,. (47) PA = 

Although 7 has two possible values in equation (45), 
y = ((6 + 4) + ~ + 86)/8 should never be used. (Otherwise, 
Pa becomes non-real because equation (47) implies: 

1 l k / 1  (5 + 4 ) + ~ 8 6  

pA:~_+~ 2 
= _ 1 + !  / 8 + 2 + ~ 8 6  

2 - 2 " , ]  2 

1 1 
= ~ _+ ~ a  negative number, 

for the 5 defined in equation (21) is always non-negative.) We 
therefore always use 7 = ((6 + 4) - ~ ) / 8 .  Substituting 
this y into equation (47), we can obtain: 

1+-1 /1  6 + 4 - - X / ~ 7 + 8 6  
P A = 2 - - 2 ~ /  2 

: - 1+ -1  /X/87-+ 86 6 - - 2  
2 -- 2 X/ 2 ' (49) 

Note that equation (49) requires the 8 defined in equation (21) 
satisfy ~ -  6 -  2 >_ 0, which occurs if and only if 
6 _> 1. In other words, [xyz[ 2 >_ ]xy[ [xz[ lyz] is required. 
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