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Summary This paper describes an investigation of the influence of uniformly distributed
groundwater recharge on asymptotic macrodispersion in two-dimensional heterogeneous
media. This is performed using a nonstationary spectral approach [Li, S.-G., McLaughlin,
D., 1991. A nonstationary spectral method for solving stochastic groundwater problems:
unconditional analysis. Water Resour. Res. 27 (7), 1589–1605; Li, S.-G., McLaughlin, D.,
1995. Using the nonstationary spectral method to analyze flow through heterogeneous
trending media. Water Resour. Res. 31 (3), 541–551] based on Fourier–Stieltjes represen-
tations for the perturbed quantities. To solve the problem analytically, focus is placed on
the case where the local longitudinal dispersivity aL is much smaller than the integral scale
of log transmissivity k (i.e., aL/k� 1). The closed-form expressions are obtained for
describing the spectrum of flow velocity, the variability of flow velocity and asymptotic
macrodispersion, in terms of the statistical properties and the integral scale of log trans-
missivity, local transport parameters and a parameter b [Rubin, Y., Bellin, A., 1994. The
effects of recharge on flow nonuniformity and macrodispersion. Water Resour. Res. 30 (4),
939–948] used to characterize the degree of flow nonuniformity due to the groundwater
recharge. The impact of b on these results is examined.
ª 2007 Elsevier B.V. All rights reserved.
Introduction

The field-scale spreading of nonreactive solutes in porous
formations is largely determined by the spatial variability
7 Elsevier B.V. All rights reserved
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in groundwater flow velocities. From the stochastic point
of view, the velocity variability is directly related to the
cross-correlation between the log hydraulic conductivity
perturbation and the perturbation in the hydraulic head.
Therefore, the quantification of this relationship is the key
in the prediction of field-scale transport processes in heter-
ogeneous media.
.
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Li and McLaughlin (1995) used the nonstationary spectral
method to analyze flow in nonstationary velocity fields and
concluded that the stationary spectral method (Bakr et al.,
1978) fails to capture the log conductivity-head cross
covariance. Therefore, this excludes the direct applicability
of the stationary spectral method to solve the problem of
transport of solutes in random nonstationary velocity fields.
Motivated by this, this study is devoted to the quantification
of the nonstationarity in the statistics of random velocity
fields using the nonstationary spectral approach (Li and
McLaughlin, 1991, 1995).

Groundwater recharge causes nonuniformity in the mean
gradient of hydraulic head, and results in nonstationarity in
the statistics of random velocity fields, thereby affecting
the behavior of solute transport in heterogeneous aquifers
(e.g., Rubin and Bellin, 1994; Li and Graham, 1998; Butera
and Tanda, 1999; Zhu and Satish, 1999; Destouni et al.,
2001; Maugis et al., 2002). This characteristic allows us to
use the nonstationary spectral approach (Li and McLaughlin,
1991, 1995) to analyze the field-scale spreading process.

Many studies within the framework of stochastic theory
have been devoted to the investigation of field-scale solute
transport in nonuniform groundwater flow (e.g., Rubin and
Bellin, 1994; Li and Graham, 1998; Butera and Tanda,
1999; Zhu and Satish, 1999; Destouni et al., 2001; Maugis
et al., 2002). The works of Rubin and Bellin (1994) and
Butera and Tanda (1999) are more directly relevant to our
concern. Their investigation was carried out using the
Lagrangian transport formalism in a near-source region
where the effect of the pore-scale dispersion is not felt
and the advective transport is strictly dominated. In other
words, the effect of the pore-scale dispersion is negligible
in the evaluation of their numerical results. However, in this
study, focus is placed on the influence of nonuniformity in
the mean flow caused by the uniform groundwater recharge
on the asymptotic behavior of field-scale solute transport,
which is strongly affected by the pore-scale dispersion.
Chang and Yeh (2007) have shown that the prediction of
the large-time behavior of macrodispersion in nonstationary
velocity field made by using the advection-dominated trans-
port theory, which is useful to quantify the near source
transport characteristics, will not provide a good asymp-
totic approximation. Therefore, the effect of the pore-scale
dispersion will be included in the following analysis of the
field-scale solute transport in nonstationary velocity field.

The application of the nonstationary spectral approach
(Li and McLaughlin, 1991, 1995) to the investigation of the
influence of uniformly distributed groundwater recharge
on asymptotic macrodispersion is the task undertaken here.
This will be performed by developing the closed-form
expressions for the asymptotic macrodispersion coefficients
within an Eulerian transport framework under consideration
of the effect of the pore-scale dispersion. To the best of our
knowledge, the large-time closed-form expressions have
never before been presented. It is hoped that our finding
will be useful for the prediction of large-time behavior of
macrodispersion in nonuniform groundwater flow.

Statement of the problem

In this study we consider the problem of transport of a con-
servative contaminant in a two-dimensional aquifer subject
to uniformly distributed recharge where the transmissivity is
a stationary random space function. The spatial persistence
of the random field of the log transmissivity can be fully
characterized in terms of the covariance between two loca-
tions. The theoretical analysis is developed herein for unidi-
rectional mean flow with two-dimensional perturbations in
transmissivity and hydraulic head. For convenience the coor-
dinate axis X1 is selected to be in the direction of the mean
groundwater flow so that U = < u > = (U,0), where u = (u1,u2)
is the groundwater flow velocity vector and < > stands for
the expected value operator. The governing equation for
hydraulic head distribution in a two-dimensional uniformly
recharged aquifer can be written as (e.g., Gelhar, 1993;
Graham and Tankersley, 1994)

o

oXi
TðXÞ o/

oXi

� �
þ QR ¼ 0 ð1Þ

where / is the hydraulic head, T is the transmissivity and QR

is the constant recharge rate. Assume that recharge and lnT
processes are uncorrelated (e.g., Rubin and Bellin, 1994;
Butera and Tanda, 1999). In the analysis that follows, lnT(X)
and /(X) are considered to be random functions.

Gelhar and Axness (1983) presented an Eulerian ap-
proach to analyze the field-scale spreading of solute
transport in heterogeneous media. In this approach the
macrodispersion coefficients are determined by construct-
ing the macroscopic dispersive flux and relating it to the
Fickian-type gradient transport relationship. This approach
has proven useful in characterizing the larger-time behav-
ior of the field-scale solute transport. We will adopt the
formalism outlined by Gelhar and Axness (1983) along
with (1) to investigate the influence of recharge on
asymptotic macrodispersion in two-dimensional heteroge-
neous media.

Head perturbation

The evaluation of asymptotic macrodispersion coefficients
(Gelhar and Axness, 1983) in heterogeneous media would
require relating the variability of the groundwater flow
velocity to that of the local log transmissivity field. Toward
the determination of the variability of the flow velocity we
start with developing the hydraulic head perturbation which
describes the variability of hydraulic head. We then substi-
tute the head perturbation into the perturbed form of the
Darcy equation in developing the spectrum of the flow
velocity in the following section.

The random fields in (1), head and lnT, are decomposed
into ensemble means and small perturbations around the
mean, i.e.,

/ðX1; X2Þ ¼ < /ðX1; X2Þ > þhðX1; X2Þ ¼ HX1Þ þ hðX1; X2Þ
lnTðX1; X2Þ ¼ < lnTðX1; X2Þ > þfðX1; X2Þ ¼ F þ fðX1; X2Þ

ð2Þ

The H in (2) is only a function of the X1 direction, implying
unidirectional mean flow.

Expanding these terms and taking expectation of (1)
yields the mean head gradient equation

o2H

oX2
1

þ QR

eF
¼ 0 ð3Þ
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The general solution for the ensemble mean head gradient is

JðX1Þ ¼ �
oH

oX1
¼ QR

eF
ðx � x0Þ þ J0 ð4Þ

where J0 is the known value of J at X1 = X0. As in the previ-
ous studies (Rubin and Bellin, 1994; Butera and Tanda,
1999), the parameter b = QRk/(e

FJ0) is defined to quantify
the degree of flow nonuniformity due to the groundwater
recharge, in which k is the integral scale of lnT. Thus,
Eq. (4) can be rewritten as

JðX1Þ ¼ J0½1þ bðX1 � X0Þ=k� ð5Þ

After subtracting the mean of the resulting Eq. (3) from (1),
the result is the following first-order equation describing the
hydraulic head perturbation

o2h

oX2
i

¼ of

oX1
JðX1Þ þ

QR

eF
f ð6Þ

Eq. (6) represents the spatial variability in head induced by
aquifer heterogeneity and the groundwater recharge. It is
clear from (5) that themeanhydraulic headgradient is depen-
dent ofX. This spatially variant mean head gradient leads the
head random perturbation in (6) to be nonstationary.

The solution of (6) for the head perturbation h in terms
of f and b can be developed using a nonstationary spectral
approach (Li and McLaughlin, 1991, 1995) based on Fou-
rier-Stieltjes representations for the perturbed quantities
in wave number space. By using this approach, the random
perturbations are represented by the following two-dimen-
sional wave number integrals:

hðXÞ ¼
Z 1

�1
UðX;KÞdZfðKÞ ð7Þ

fðXÞ ¼
Z 1

�1
exp½iK � X�dZfðKÞ ð8Þ

where U(X,K) is a transfer function to be given, dZf(K) is
the complex Fourier amplitude of lnT, and K = K1,K2 is the
wave number vector. Substituting (7) and (8) into (6) and
recalling that b = QRk/(e

FJ0) results in

o2U

oX2
i

¼ ½iK1JðX1Þ þ bJ0=k� exp½iK � X� ð9Þ

The solution to (9) is found to be

UðX;KÞ ¼ � iK1K
2JðX1Þ � ðK2

1 � K2
1ÞbJ0=k

K4
exp½iK � X� ð10Þ

in which K ¼ ðK2
1 þ K2

2Þ
1=2 represents the magnitude of the

wave number vector K. The nonstationary representation
for the head perturbation is then obtained by substituting
(10) into (7)

hðXÞ ¼ �
Z 1

�1

iK1K
2JðX1Þ � ðK2

1 � K2
2ÞbJ0=k

K4
exp½iK � X�dZfðKÞ

ð11Þ

where J(X1) is defined by (5).

Flow perturbation

In this section, we develop the spectrum of the flow velocity
from the perturbed form of the Darcy equation, which re-
lates the velocity variation to the lnT perturbations. The
spectrum of the flow velocity, the key analytical develop-
ment presented in this paper, is necessary for the determina-
tion of closed-form solutions for the field-scale coefficients
of transport using the formalism proposed by Gelhar and Ax-
ness (1983).

Using Darcy’s equation, the first-order equation for the
velocity perturbation takes the form (e.g., Gelhar, 1993;
Rubin and Bellin, 1994; Butera and Tanda, 1999) a

u0i ¼ TG di1JðX1Þf �
oh

o
Xi

� �
ð12Þ

where TG = exp[F], u0i = u(X) � U(X), u(X) is the groundwater
flow velocity vector and U(X) = (U,0) is the mean flow veloc-
ity vector. Note that the zero-order approximation for the
mean velocity is in the form (Rubin and Bellin, 1994; Butera
and Tanda, 1999)

U ¼ TGJ ¼ TGJ0½1þ bðX1 � X0Þ=k�
¼ U0½1þ bðX1 � X0Þ=k� ð13Þ

where U0 is the known mean velocity at X1 = X0.
The last term on the right-hand side of (12) in the X1

direction is found using (11)

oh

oX1
¼
Z 1

�1

K2
1K

2JðX1Þ � i2K1K
2
2bJ0=k

K4
exp½iK � X�dZfðKÞ ð14Þ

Similarly, in the X2 direction

oh

oX2
¼
Z 1

�1

K1K2K
2JðX1Þ þ iK2ðK2

1 � K2
2ÞbJ0=k

K4
exp½iK �X�dZfðKÞ

ð15Þ
Substituting (8), (14), (15) and the Fourier-Stieltjes repre-
sentations of velocity perturbations, i.e.,

u0i ¼
Z 1

�1
exp½iK � X�dZuiðKÞ

into the velocity perturbation Eq. (12) gives the complex
Fourier amplitudes of the longitudinal and transverse veloc-
ities, respectively

dZu1ðKÞ¼U0 ð1�
K2
1

K2
Þ 1þb

X1�X0

k

� �
þ i2

b
k
K1K

2
2

K4

( )
dZfðKÞ

ð16Þ

dZu2ðKÞ¼�U0
K1K2

K2
1þb

X1�X0

k

� �
þ i

b
k
K2ðK2

1�K2
2Þ

K4

( )
dZfðKÞ

ð17Þ

The spectra of the longitudinal and transverse velocities in
terms of the lnT spectrum are obtained by multiplying each
side of (16) and (17), respectively, by its complex conjugate
and taking the expected value

Su1u1ðKÞ¼U2
0 ð1�

K2
1

K2
Þ2 1þb

X1�X0

k

� �2
þ4

b2

k2

K2
1K

4
2

K8

( )
SffðKÞ

ð18Þ

Su2u2ðKÞ¼U2
0

K2
1K

2
2

K4
1þb

X1�X0

k

� �2
þb2

k2

K2
2ðK

2
1�K2

2Þ
2

K8

( )
SffðKÞ

ð19Þ
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where Sff(K) is the spectrum of lnT. Eqs. (18) and (19) allow
for the development of macrodispersion coefficients at
large times.
Velocity variances

To verify indirectly our results in (18) and (19), we compare
the velocity variances, obtained using (18) and (19), with
existing theoretical results of Li and Graham (1998). In order
to evaluate the velocity variation explicitly the spectrum
Sff(K) in (18) and (19) must be specified. For this analysis
the random lnT perturbation field under consideration is
characterized by the following spectral density function
(e.g., Mizell et al., 1982; Li and Graham, 1998)

SffðKÞ ¼
3r2

fa
2K4

pðK2 þ a2Þ4
ð20Þ

where r2
f is the variance of lnT, a = 3p/16k, K is a two-

dimensional wave number vector, and K2 ¼ K2
1 þ K2

2.
0

1

2

3

4

σ

σ
22

0

2

1

f

u

U

0 0.02 0.04

0 0.02 0.04

0

0.4

0.8

1.2

σ

σ
22

0

2

2

f

u

U

a

b

Figure 1 Dimensionless variance of the (a) longitudinal and of the
b for various values of (X1 � X0)/k.
With Sff(K) given in (20), integration of (18) and (19) over
the wave number domain yields the longitudinal and trans-
verse velocity variances, respectively

r2
u1
¼
Z 1

�1
Su1u1ðKÞdK ¼ r2

f U
2
0

3

8
1þ b

X1 � X0

k

� �2

þ 32

9p2
b2

" #

ð21Þ

r2
u2
¼
Z 1

�1
Su2u2ðKÞdK

¼ rf 2U02
1

8
1þ b

X1 �X0

k

� �2

þ 32

9p2
b2

" #
ð22Þ

These are precisely equivalent to the results found by Li and
Graham (1998) (their (22) and (24)) using a first-order per-
turbation technique under the assumption of spatially
invariant recharge. This agreement between two disparate
methods is important because it justifies the application
of the nonstationary spectral approach to problems involved
in nonstationary velocity fields.
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(b) transverse velocity versus dimensionless recharge parameter
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It is clear that in the case of no recharge (b! 0), Eqs.
(21) and (22) reduce to
r2
u1
¼ 3

8
rf2U

2
0 ð23Þ

r2
u2
¼ 1

8
rf2U

2
0 ð24Þ
which are well-known expressions for two-dimensional flow
reported in the literature.

Fig. 1a and b depict the longitudinal and transverse
velocity variances, respectively, as a function of b based
on (21) and (22) for various values of (X1 � X0)/k. These re-
sults show that an introduction of groundwater recharge
leads to an increase in the velocity variance. This can be
attributed to larger recharge resulting in shorter correlation
distance of hydraulic head and hence larger variability of
the flow velocity.
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Figure 2 Dimensionless (a) longitudinal and (b) transverse asympt
parameter b for various values of (X1 � X0)/k and the indicated val
Approximate solutions for the macroscopic
dispersion coefficients

Once the relationship between the spectrum of the flow
velocity and that of the local lnT field is obtained, we are
in a position to develop the approximate solutions for the
asymptotic macrodispersion coefficients. The goal here is
to show the influence of the recharge on the asymptotic
behavior of field-scale solute transport. Following Gelhar
and Axness (1983), under the unidirectional mean flow con-
dition, the macrodispersion coefficient tensor, Dij, at large
times is given by:

Dij ¼
Z 1

�1

aLK
2
1 þ aTK

2
2

½K2
1 þ ðaLK

2
1 þ aTK

2
2Þ

2�U
SujuiðKÞðKÞdK ð25Þ

where aL and aT are the local longitudinal and transverse
dispersivities and U is the mean flow velocity. The longitudi-
nal and transverse macrodispersion coefficients from (25),
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otic macrodispersion coefficients versus dimensionless recharge
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D11 and D22, can be written by substituting (18) and (19) into
(25), respectively, as

D11 ¼
3r2

fl
2U0

p

(
½1þ bðX1 � X0Þ=k�

�
Z 1

�1

Z
kðe2m2 þ gR2

2Þð1� e2m2=R2Þ2

½m2 þ ðe2m2 þ gR2
2Þ

2�
R4

ðR2 þ l2Þ4
dmdR2

þ 4b2aL

½1þ bðX1 � X0Þ=k�

�
Z 1

�1

Z ðR12 þ gR2
2Þ

½R2
1 þ e2ðR2

1 þ gR2
2Þ

2�
R2
1R

4
2

R4ðR4 þ l2Þ4
dR1 dR2

)

ð26Þ

D22 ¼
3r2

fl
2U0

p

(
½1þ bðX1 � X0Þ=k�

�
Z 1

�1

Z
aLðR2

1 þ gR2
2Þ

½R2
1 þ e2ðR2

1 þ gR2
2Þ

2�
R2
1R

2
2

ðR2 þ l2Þ4
dR1 dR2

þ b2k
½1þ bðX1 � X0Þ=k�

�
Z 1

�1

Z ðe2m2 þ gR2
2Þ

½m2 þ ðe2m2 þ gR2
2Þ

2�
R2
2ðe2m2 � R2

2Þ
2

R4ðR4 þ l2Þ4
dmdR2

)

ð27Þ

where Ri ¼ kKi;R
2 ¼ R2

1 þ R2
2 ¼ k2K2; e ¼ aL=k; m ¼ R1=e; g ¼

aT=aL, and l = 3p/16.
The integrals of the forms of (26) and (27), for the gen-

eral case, cannot be integrated analytically. Because of
the form of the denominator in (26) or (27), the main con-
tribution to the integral comes from m ffi 0 as e! 0 (Gelhar
and Axness, 1983). Therefore, for the physically reasonable
case of relative small local dispersion (e = aL/k� 1),
approximate analytical expressions can be developed by
taking the limit e! 0, as illustrated by Gelhar and Axness
(1983). Note that for field conditions the ratio aL/k is typi-
cally 10�2 or small (Gelhar and Axness, 1983).

The integrals in (26) and (27) are approximated by taking
the limit e! 0 in the integrands and integrating separately
over each variable, to get

D11 ¼ U0r
2
fk ½1þ bðX1 � X0Þ=k� þ

32

9p2

eb2ð1þ 5gÞ
½1þ bðX1 � X0Þ=k�

( )

ð28Þ

D22 ¼ U0r
2
fk

1

8
eð1þ 3gÞ½1þ bðX1 � X0Þ=k�

�

þ 256

9p2

b
½1þ bðX1 � X0Þ=k�

�
ð29Þ

It is evident from (28) and (29) that for the case of advec-
tion-dominated transport (aL! 0 and aT! 0), the longitu-
dinal and transverse macrodispersion coefficients in (28)
and (29), respectively, reduce to

D11 ¼ U0r
2
fk½1þ bðX1 � X0Þ=k� ð30Þ

D22 ¼
256

9p2

U0r2
fb

2

½1þ bðX1 � X0Þ=k�
ð31Þ
Fig. 2a and b shows how the longitudinal and transverse
macrodispersion coefficients, respectively, vary with b,
according to (28) and (29). The increase of macrodispersion
coefficient with b is related to the fact that larger recharge
results in increases in the variation of flow velocity (Fig. 1a
or b) and, consequently, results in more spreading of the
solute plume. In the limit as b! 0 (the no-recharge case),
the longitudinal and transverse macrodispersion coefficients
tend to

D11 ¼ U0r
2
fk ð32Þ

D22 ¼
U0r2

fke

8
ð1þ 3gÞ ¼

U0r2
faL

8
ð1þ 3gÞ ð33Þ

which recover the results of Gelhar and Axness (1983) in the
case of the two-dimensional flow.
Conclusions

The problem of solute transport in two-dimensional uni-
formly recharged heterogeneous aquifers has been investi-
gated from a stochastic point of view. Results here have
been developed to quantify the influence of groundwater re-
charge on the spectrum and the variation of flow velocity
and asymptotic macrodispersion, in terms of the statistical
properties and the integral scale of lnT, local transport
parameters and a parameter b (Rubin and Bellin, 1994) char-
acterizing the degree of flow nonuniformity due to recharge.
The stochastic methodology employed to develop the results
of this work is based on the nonstationary spectral approach
(Li and McLaughlin, 1991, 1995). In particular, the introduc-
tion of this approach allows for quantifying the nonstationa-
rity of head perturbation, and in turn developing the
spectrum of the flow velocity, which is the key analytical
development in the prediction of the field-scale transport
coefficients in random nonstationary velocity fields. Our re-
sults indicate that the increase of the variation of the
groundwater flow velocity caused by the recharge leads to
more spreading of the solute plume. This implies that ignor-
ing the influence of the recharge in field applications leads to
the erroneous conclusion in the predicted spreading of sol-
ute plume. Our presented formulation for velocity variances
compares well with the solutions obtained by Li and Graham
(1998) using a first-order perturbation technique.
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