
Pergamon

Computers & Geosciences Vol. 22, No. 9, pp. 1033-1049, 1996
Copyright IQ 1996 Elsevier Science Ltd

PII: SOO98-3004(96)00042-8
Printed in Great Britain. All rights reserved

0098-3004/96 St500 + 0.00

A XERION-BASED PERL PROGRAM TO TRAIN A NEURAL
NETWORK FOR GRID PATTERN RECOGNITION

JEHNG-JUNG KAO

Institute of Environmental Engineering, National Chiao Tung University, Hsinchu, Taiwan 30039,
R.O.C.

e-mail: jjkao@green.ev.nctu.edu.tw

(Received 27 April 1995; revised 5 December 1995)

Abstract-Neural network training with the back propagation algorithm is an important artificial
intelligence technique for grid pattern recognition. The training is time-consuming however and generally
requires a trial-and-error procedure to configure the network. A Per1 program executed with Xerion is
presented to relieve the training burden. Statistical reports such as computation time, learning
performance, and validation performance are generated automatically by the program. A case study
applying the program for training networks to determine a drainage pattern from Digital Elevation Model
data is demonstrated and discussed. Manually determining drainage patterns from topographical maps
for a grid-based model is tedious and subjective. The neural network has a self-learning capability that
can replace human judgment involved in the conventional approach. Copyright 0 1996 Elsevier Science
Ltd

Key Words: Neural network, Grid pattern, Digital Elevation Model, Drainage pattern.

INTRODUCTION

Human judgment to determine a grid pattern for a
geographical feature from a topographical map,
image, or aerial photograph, involves not only the
attributes of a grid cell but also the spatial
distribution of adjacent grid cells. Such a manual
approach is time-consuming and generally subjective.
A program in a conventional language (e.g. C or
FORTRAN) or an expert system is used typically to
replace such a manual determination. The spatial
distribution and relationships among grid attributes,
however, introduce complexity for a program or
expert system to consider numerous variants of grid
patterns. Such complexity may make the program or
expert system inefficient compared to the conven-
tional manual method. A neural network method
thus is explored for its potential applicability.

Several difficulties may occur during implemen-
tation, even though the neural network method is
now studied widely. Training a network to learn from
a set of training data may require extensive
computation before convergence to an optimum.
Local optima instead of the global optimum may
occur in determining a set of weights for network
links during training. Another major difficulty is that
no theory is available yet to construct an appropriate
network configuration for a general problem, even
though the optimum number of hidden nodes in the
training cycle have been determined in previous
research (e.g., Mirchandani and Cao, 1989). The
optimal configuration of a neural network is still an
important research issue. A trial-and-error procedure
is employed generally by applying various learning

methods and testing several different configurations.
Such a process is however time-consuming and
tedious. Preparation of training reports from
numerous results obtained by applying different
network training strategies and configurations are
also cumbersome.

This paper presents a program written in Per1 (Wall
and Schwartz, 1992) to apply Xerion (Camp, Plate,
and Hinton, 1993), a neural network package, for
training neural networks with various methods and
network configurations in a batch fashion. The user
can leave the program as a background job and
results are summarized automatically. Intermediate
training progress is reported to the user through an
electronic mailer. It is believed that a neural network
study can be implemented effectively with the
program. A case study applying the program to train
and to find a neural network for determining a
drainage pattern from Digital Elevation Model
(DEM) data is demonstrated.

OVERVIEW OF BACK PROPAGATION NEURAL
NETWORKS AND XERION

An artificial neural network is made up a number
of layers of highly interconnected simple processors.
A neural network generally is trained with a set of
training patterns of which both input stimuli and
corresponding output response are known. Once the
network is trained completely, it is then applied as a
transfer function to provide desired output patterns
from given untrained external inputs. The advantages
of a neural network include generalization, massive

1033

1034 J.-J. Kao

parallel processing, self-organization, etc. A good
network trained from a proper set of training cases
is capable of giving the appropriate response to a
given input pattern, even if a certain degree of noise
exists within the input pattern. A well-trained
network can make generalizations from learned
training patterns similar to an unfamiliar input
pattern to produce a desired output response without

user intervention or supervision. These advantages
make it attractive to build a neural network for grid
pattern recognition.

In this study, the popular three-layer network, as

shown in Figure 1, with input, hidden, and output
layers is used. Nodes are interconnected with
numerous links whose strengths are expressed by
numerical values named weights. Each node is

activated from a function of the sum of the inputs
received from other nodes through the weighted
links. For a neural network to learn a set of training
patterns involves modifying the weights via a learning
algorithm. The back propagation approach applied
frequently for this learning purpose was used in this

study.

As this approach is described in detail by

Rumelhart and others (1989), only a brief description
follows. The implementation includes two stages. In
the first stage, the output vectors obtained from a
neural network according to the input vectors of a
given training set are determined based on an initial
weight set. Comparison of output vectors with the
desired output (“target”) vectors is made at the end
of the first stage. A back propagation learning
procedure, the second stage, is then initiated if
differences (or “errors”) result from the comparison.
The differences are used as error signals to propagate

backward through the network to correct the weights.
This two-stage procedure is repeated until all the
given training patterns are learned correctly.

The following summed square function is used to

measure the error:

E = CEp = C&p, - op.)’
P P I\ 1

where p ranges over all input patterns, i ranges over

output nodes, E,, is the error on pattern p, r,, is the

DEM Data

INPUT Units

OUTPUT Units

RESULT

Figure 1. Neural network configuration and data processing flows.

A neural network for grid pattern recognition 1035

target value of a node, and Opi is the output
(activation) value of a node. A direct method such as
steepest descent then can be applied to find the set of
weights that minimizes this function. For example,
the weight on each link (between nodes i and j) can
be modified on the basis of the error signal and the
output value, A, y, = $,o,, where 6 is the step size
factor, p is the input pattern number, and 6 is the
error. For an output node, 6 is computed with
S,, = (r,, - o,,)J(ner,,), wherex(ner,,) is the derivative
of an activation function, such as the logistic
equation shown subsequently in this section. For a
hidden node, however, there is no desired target, and
the error signal is determined from
hp, =_f~(net,,)Z&,~~~,, where 6, are the error signals of
the nodes to which the hidden node directly connects
and M’~, are the weights of the connections. This
procedure is based on the method of steepest descent
with a fixed step size. This method, however, may not
perform well and other algorithms for nonlinear
optimization such as the conjugate gradient method
are applicable also.

Xerion is a publicly accessible neural network
package developed by Camp, Plate, and Hinton
(1993). A collection of C libraries is provided to
implement many neural network paradigms. Besides
the back propagation network, the package provides
also the Boltzmann machine, the mean-field-theory
machine, hard and soft competitive learning, the
Kohonen, cascade correlation, and recurrent back
propagation networks. The user interface, which is
built on X-windows, provides a friendly environment
for either a novice or an experienced user to
implement interactive training. The bp module of the
Xerion (Camp, Plate, and Hinton, 1993) system
implements the back propagation learning algorithm.
Other than the steepest-descent method, the package
also provides the methods of momentum descent,
conjugate gradient, Rudi’s conjugate gradient, and
others, described by Camp, Plate, and Hinton (1993);
only a brief description follows.

Momentum-descent method

This method sets the direction to be the steepest
descent with a momentum term. The momentum
term is the previous direction multiplied by a decay
factor, u, as shown in Equation (2).

Aw,j(n + 1) = q(6,0,,) + aAw,(n). (2)

This method is intended to decrease the amount of
wandering in ravines of the error surface.

Conjugate-gradient method

This method, based on the method described by
Press and others (1992), is expressed according to
Equation (3):

s
“**

= s (G,,. - Wk. _ G

G.G “0”’ 3 (3)

where S.,, is the new search direction, S is the
previous search direction, G,,.. is the current gradient,
and G is the previous gradient.

Rudi’s conjugate-gradient method

This method modified by Rudi Mathon (Camp,
Plate, and Hinton, 1993) from the previous method
is expected to provide rapid convergence. The search
direction is expressed as:

S.G.,,,
” = (Gn,,, - ‘XG,,,, - G)

(Cm - GWn,. 2SG>,
‘* = (G,,.. - G).(G.,,, - G) - (G.,,. - G)S

Sm,, = u,*(G.,, - Cl + u,*S - u,*G,,,,

Step methods

(4)

Once the search direction is determined, the step
size should then be determined. Two types of step
methods were provided by Xerion: a fixed step and
a line search. The former uses a fixed size of step. A
line search method is intended to find the minimum
value of a function along a given search direction.
For example, if W is the current weight set (starting
position) and S is the search direction vector, the line
search should find q that minimizes the error function
E(W+ f) S).

THE PERL SCRIPT PROGRAM

Per1 (Wall and Schwartz, 1992) is a freely available
script language to manipulate text, files, and
computational processes that were implemented
previously with complex programming in C, AWK
(Aho, Kerninghan, and Weinberger, 1988) or a shell
script language. The script program is written in Per1
to operate with Xerion in a batch fashion. Although
the interactive display provided with Xerion is useful
for learning and monitoring training strategies, it is
tedious to manipulate inputs and reports for massive
training strategies using various learning methods,
network configurations, and numbers of nodes in
each layer. The pseudocode listed in Table 1 describes
the execution flow of the script program listed in the
Appendices. The user must provide a file including all
training cases and a validation file including all
testing cases to verify the results obtained from a
trained network. Two other files must be provided
also by the user to specify formats for reporting the
result and validation outputs, shown in Appendices
2 and 3. The script program frequently is executed as
a background job on a UNIX workstation. A typical
command to run the script is listed next, although
other commands such as crontab can be used also.

nohup per1 doNet demRnet dem.train
dem.velid > & /dev/null &where doNet is the

1036 J.-J. Kao

Table I. Pseudocode of Per1 script program, doNet

Usage: doNet netName trainingFileName validationFileName [#_ofinput-nodes #_of_output_nodes]
main program:

Set user-defined variables (or use default values): #_of_hiddeuodes, email address, etc.
Initialization for this run, netsame:

create a directory named by netName for keeping information for this run.
link files (use ‘In’ instead of ‘cp’ to save space).

Disable the Xerion X-window display.
If the user provides a user specified reporting file, ‘report. sub, include it into the script program.
for each specified #_ofL_bidden_nodes do
(

l.set learning method and related parameters.
2.call function doNet to implement a training and validation path.
3. repeat 1. and 2. until all desired learning strategies are implemented.

)
Function doNet:

Set a unique identification for current training and validation path.
Set input and output file names.
Create a tag for monitoring the training progress.
If the user’s email address is provided, the tag is sent to the user.
Implement the training stage:
Write Xerion bp input command files by calling function writeNetIn.
Implement the training by Xerion bp module in batch mode.

Computation time is logged to a time report file.
Implement the validation stage:
Write Xerion bp input command files by calling function WriteNetIn.
Implement the validation stage by Xerion bp module in batch mode with weights obtained in the training stage. Computation time

is also logged to a time report file.
Implement the user specified reporting function (reportsub) to generate statistical summary report.

Function reportsub:
General steps:
Extract computation time summary from the time report file created by doNet.
Extract the first iteration and last iteration information from Xerion bp output.
Problem dependent steps for the case study: (implemented by function compare)
Report the summary of validation result for the training set.
Reoort the summarv of validation result for the validation set.

script file name, demNnet is the name of the current
run, dem. train is the name of a training file, and
dem.valid is the name of a validation file. Several
such commands can be executed simultaneously for
separate training or validation sets. A tag file is sent
automatically to the user’s e-mail address, if
provided, to report training progress. Several files are
created at each stage of training and validation
including a summary report for CPU-time usage and
learning performance.

A CASE STUDY

A case study to apply the program for training
neural networks to determine drainage patterns from
DEM data is described. The example is used
primarily to demonstrate how the program works; for
the complete results see Kao, 1992a. The drainage
pattern of a watershed is an important parameter in
non-point-source water quality modeling to deter-
mine hydrological runoff paths within a watershed.
Manual preparation of this pattern from topographic
maps is tedious and subjective. DEM data are
obtained normally from stereoscopic aerial photo-
graphs, although a ground survey or radar scanning
can provide alternative data sources. The altitude
matrix (Burrough, 1986) of the point model is used
in this research. The use of DEM data to determine
micro-drainage patterns has been explored previously
by other researchers (e.g. Band, 1986; O’Callaghan
and Mark, 1984). These algorithms, although

demonstrated successfully for generating a micro-
drainage network from a set of DEM data, are
unsuitable for generating drainage directions for a
grid-based model such as AGNPS (a non-point
source pollution model, described by Young and
others, 1994), because approximating macro-scale
trends from micro-variation data is difficult. For
example, the DEM data used here have a pixel
resolution 40 m x 40 m. Grid-based models, such as
those used for water quality and regional planning,
do not require such detailed topographical infor-
mation. A typical cell size for AGNPS is 10 acres,
which includes roughly 5 x 5 DEM pixels. The
drainage direction of a grid cell is illustrated in
Figure 2 is restricted to one of eight directions. Each
direction points to an adjacent grid cell. The DEM
data for micro-scale areas (pixels) are processed for
approximating drainage trends of larger area, model
grid cells. Unlike the research undertaken for a
micro-scale drainage network, the micro-scale DEM

(2* (0,-l) (k*

Figure 2. Possible drainage directions.

A neural network for grid pattern recognition 1037

(8 x to,-

Figure 3. Micro-scale variation vs. macro-scale trend (vectorial average method).

data in this research are converted into macro
approximations of drainage trends. An example of
applying the vectorial average method (Kao, 1992b)
is provided in Figure 3, in which a grid drainage
direction was approximated from 25 pixel directions.
Some difficulties may be encountered during such
approximations. For example, Figure 4 shows two
grid cells with the same vectorial average but with
different spatial distributions of micro-scale pixel
directions. The drainage directions of the two grid
cells, if manually determined, obviously differ.
Methods developed previously for determining
micro-scale drainage network cannot be used directly
for macro approximations because of such
difficulties. The detail of micro-variation vs. macro-
scale trend is discussed by Kao (1992a, and 1992b).
Human judgment involved in determining the
drainage directions from a topographic map is
difficult to model mathematically or with a computer
code. Therefore the neural network method with
self-learning capability was explored.

Six methods were developed by Kao (1992a, and
1992b) to approximate a drainage pattern with a
FORTRAN program. The drainage network method
is demonstrated to be superior to other methods. The
following discussion is focused therefore on compari-
son of results obtained from the manual, drainage
network and neural network methods. A subwater-
shed within Chi-Mei Creek in North Taiwan serves
as the test area. The area is divided into 1962
200 m x 200 m grid cells. All DEM pixels within the
test area are divided into groups of 5 x 5 pixels; each
group represents a typical model grid cell used for
AGNPS.

Manual method

A manual method for creating a drainage pattern
from topographical maps based on visual inspection
was first imnlemented before testing other methods.

J

(A) (B)

Figure 4. Two grid cells with same vectorial average.

The manual method was performed using two
approaches. One was carried out by placing grid cell
boundaries on the maps, and grid cells were examined
sequentially so as to determine their drainage
directions manually. This process was, however, time
consuming. In the second method a three-dimen-
sional display, a contour figure, and an elevation-
based figure were provided, and for each grid cell the
major drainage direction was determined from the
local grid cells. Inherent bias exists during the
application of this method (see discussion in Kao
1992a, and 1992b). The drainage pattern so
determined is illustrated in Figure 5. The darker area
in the figure indicates lower ground, and vice versa.
The three dark grid cells are outlets of the
subwatershed. The subwatershed is encircled with a
darkest line, which was digitized from topographical
maps.

Drainage-network method

Each grid cell, in using this method, is treated as
a small watershed. The first step is to determine the
drainage direction of each DEM pixel. Allowing the
drainage direction to drain towards the adjacent pixel
with the lowest elevation is the simplest way to
determine the pixel drainage direction. The outlet
pixel is then determined on the basis of all pixel
drainage directions within a composite grid cell. The
drainage direction of the outlet pixel is then used as
the drainage direction of the whole grid cell. If no
outlet is found due to a depression pixel existing at
a pixel within the grid cell, the pixel is then filled by
re-setting its elevation to be slightly greater than that
of the adjacent pixel with minimal elevation. This
process is repeated until an outlet is found. This
process was adopted from the Apparent Elevation
method proposed by Yuan and Vanderpool (1986).
The outlet pixel, however, may not be unique; having
more than one outlet pixel within a grid cell is
possible. If such a problem arises, the outlet pixel into
which the greatest number of upstream pixels drain
is chosen as the outlet. Discussion of the differences
among the results obtained from this method and
others are provided later.

NEURAL NETWORK DEMONSTRATION BY THE
PROGRAM

Network configuration and hidden nodes

The neural network configuration tested (Fig. 1) is
constructed of three layers: 25 input nodes, several
hidden nodes, and eight output nodes. Each input

1038 J.-J. Kao

Figure 5. Manually determined drainage pattern

node is associated with a DEM pixel of a grid cell,
and each output node is associated with one of eight
drainage directions shown in Figure 2. Networks with
2, 3, 5, 8, 10, 13, 15, 18, 20, 23, 26, 29, 32, 35, 38, 41,
and 44 hidden nodes were tested, as defined by the
Per1 array @hiddenSet in the program.

Preparation of training sets

The selection of an appropriate training set is
important for learning convergence and neural
network performance. Of 1959 manually determined
grid patterns, 160 grid patterns (less than 10%) were
selected as a training set for the network. Training
patterns were prepared in two sets as follows:

1. the entire grid cell set was divided into eight
pools; the manually determined drainage direction of
each grid cell in the same pool is the same;

2. grid cells are deleted from each pool if their
drainage directions determined according to the
manual and drainage network methods are not the
same;

3. to form training set Dl, 20 grid cells were
selected randomly from each pool;

4. repeat step (3) to form training set D2.

grid pattern. Other training sets such as those
generated randomly from the entire grid cell set were
tested also, but are not demonstrated here.

Normalization of input patterns

The normalization function shown in Equation (5)
was used to compute the input value for each input
node based on the associated DEM pixel elevation.
Input values are between zero and unity.

I, = n1 - nmm *0.9 + 0.1
nmsr - nmin

(5)

where I, is the final input value to an input node,

n, = (e, - e~,.)/(e~,, - eP,,,)*O.9 + 0.1, e, is the el-
evation of the current DEM pixel, ef,, is the minimum
elevation of all pixels within the tested area, einx is the
maximum elevation of all pixels within the area, n;,,
is the minimum of n, and nkpx is the maximum of q’s

of the 25 pixels within the current grid cell. The
network was sometimes not completely trained with
the normalized value n,. Several obvious patterns, but
with a small elevation, were observed to not be
learned during many learning cycles. The magnitude

The output node values lie between zero and unity. of the elevation appeared to be learned by the
Only one output node of each training grid pattern network. The drainage pattern is governed primarily
is set to unity; all others are set to zero. The node with by the pixel elevation variation rather than by the
a nonzero output is associated with the drainage magnitude. The normalized function (Eq. 5) is thus
direction assigned for the input pattern of the training proposed to enlarge the variation of a flat area.

A neural network for grid pattern recognition 1039

Direction and step methods

Direction and step methods in various combi-
nations were tested (see the end of the program in
Appendix 1 after START JOBS). The steepest
descent method was tested for a step size equal to 0.1,
0.3, or 0.5 and the momentum-descent method was
tested with a step size 0.1, 0.3, or 0.5, and decay rate
0.5, 0.7, or 0.9. In total 442 (2 training
sets x 17 numbers of hidden nodes x 13) cases were
tested according to steepest- and momentum-descent
methods with fixed step sizes. Because these methods
failed to learn the training set completely within 2000
iterations, the results are not reported here. These
two methods were not tested further, because finding
a good fixed step size is arbitrary, requires an
extensive iterative procedure, and because the
optimal solution may be missed. Only the methods of
steepest descent (SD), conjugate gradient (CG), and
Rudi’s conjugate (RC) gradient with line search
generated satisfactory results.

Network training and results

Each input value is computed by the normalized
function (Eq. 5). All training grid patterns are fed
through the network once, and the link weights are
modified at the end of each epoch. The values of

weights are not constrained. The network is trained
in at most 2000 iterations (training stage). The 1959
grid drainage patterns of the test area are then
determined by the trained network (validation stage).
The drainage direction of each grid cell is set to be
that associated with the output node with the
maximum output value. All neural network training
for this study was implemented with Xerion on a Sun
Spare workstation with the following two commands.

nohup per1 doNet demNnet dem.trainDl
dem.valid >& /dev/null&nohupperldoNet
demNnet1 dem. trainD2 dem.valid > & /dev/
null &
where dem. trainD1 and dem. trainD2 are names
of files for the two sets of training cases, and
dem.valid is the file name for the validation set.
Several intermediate and summary files are created
for each training and validation stage. The files
include an input file to operate the Xerion bp module,
a Xerion bp output file, a file to store link weight
values, validation reporting files for training and
validation sets, and a summary file. Table 2 shows an
example of the Xerion bp input file created by the
program for both training and validation stages.
Table 3 shows a sample of the summary file for
learning performance, validation performance, and
CPU time usage. The summary file is created mainly

Table 2. Sample Xerion bp input file created by program

sample input for demNnetDI_12_cg.in used for the training stage.
addNet “demNnetD1”
useNet “demNnetD1”
addGroup -type INPUT input 25
addGroup -type HIDDEN hidden 12
addGroup -type OUTPUT output 8
disconnectGroups “Bias” “input”
ConnectGroups input hidden
ConnectGroups hidden output
addExamples -type TRAINING dem.trainDl
seed 120
randomize 1
set currentNet.extension.zeroErrorRadius = 0
minimize -tolerance l&e-IO -iter 5 -cg -epsilon 0.3
saveweights wt/demNnetDl_llcg.wt
exit
sample input for demNnetDl_lLcg.inV used for the validation stage.
open demNnetD1 > validate/demNnetD1_1Icgvalidate
format UnitRec.target “%7.4f’
format UnitRecoutput “%7.4f’
addTrace doExamples “print ”
(trace.fmt listed in Appendix 3 is included here.)
@demNnetDl”
addNet “demNnetD1”
useNet “demNnetD1”
addGroup -type INPUT input 25
addGroup -type HIDDEN hidden 12
addGroup -type OUTPUT output 8
disconnectGroups “Bias” “input”
ConnectGroups input hidden
ConnectGroups hidden output
addExamples -type TRAINING dem.trainDl
loadweights wt/demNnetD1_12_cg.w
addExamples -type VALIDATION dem.test
doExamples -t VALIDATION
close demNnetDI
deletestream -quiet demNnetD1
open demNnetD1 r vaIidate/demNnetDl_ILcg.train
doExamples -type TRAINING
close demNnetD1
exit

1040 J.-J. Kao

Table 3. Sample list of summary file created by program

Report for demNnetDL02steepestRay on 941025232212
TIME user = 188.3 = 2.3 real = 21 I .9 sys
TIMEV user = 65.4 = 7.2 real = 78. I sys
iter= OnFE= If= 380.65738u= 1.2e+02d= -1,33e+O4dr= 1
iter = 2000 nFE = 2061 f = 65.805695 /g! = 0.77 d = - 0.741 dr = - 0.23
TDiff 0:124 45:35 9O:l 135:O 180:0 - > 160
VDiff 0:1032 45:785 90:106 135:32 180:4 _ > 1959...OK’?...

Report for demNnetD1_02_cg_Ray on 941025232520
TIME user = 82.2 = 0.8 real = 88.5 sys
TIMEV user = 65.4 = 5.9 real = 79.5 sys
iter= OnFE= 1 f= 380.65738u= 1.2e+02d= -1.33e+04dr= 1
iter = 525 nFE = 893 f = 61.628765 u = 0.32 d = - 0.00542 dr = 1
TDiff 0:122 45:35 90:3 135:0 180:0 - > 160
VDiff 0:998 45:751 90:144 135:47 180:19 - > 1959...OK?...

Report for demORG_OS_cgrudiRay on 941026000227
TIME user = 99.4 = 1.4 real = 107.3 sys
TIMEV user = 64.8 = 5.8 real = 77.5 sys
iter= 0 nFE= 1 f= 315.37115 I@1= 1.3e+02 d = - 1.62e+04 dr= 1
iter = 471 nFE = 689 f = 2.0000029 u = 3.5e - 05 d = - 9.3e - 07 dr = 1
TDiff 0:158 45:2 90:0 135:0 180~0 - > 160 Hmmm...Try further...
VDiff 0:1180 45:590 90~109 135:50 180:30 - > 1959...OK?...

by a user provided function call reportsub. A

sample of reportsub for the case study is listed in

Appendix 2 and its pseudocode is shown at the end
of Table 1. The function compare called by
reportsub is a problem-dependent function and
must be modified if the problem is altered. This
function compares the result from the validation
stage with the desired one based on a comparison
method provided by the user. The function appears
complicated for this example because comparison of
the results is not straightforward and requires data
conversion from a numeric value to an angular value
(unit: degree). For most problems that require direct
comparison of numeric values, the function can be
simplified significantly.

In total 102 (2 training sets x 3 methods (SD, CG,
and RC) x 17 numbers of hidden nodes) cases, were
trained. Table 4 shows all completely trained cases
for each training set and method. A completely
trained case is one that learns all the given training
patterns within 2000 iterations. Cases with 2, 3, or 5
hidden nodes were unable to learn any of the tested
training sets completely, consistent with the concept
that more hidden nodes are required in learning a
complex problem. The computation time and final
errors for training the completely trained cases are
summarized in Table 4. Comparisons are made on
the basis of the difference between the computed and
manual results reported according to the difference in
the number of grid directions matching or 45“, 90’,
135”, or 180”. 1293 grid cells exactly match the
manually determined ones, 573 grid cells have a 45’
difference, 73 grid cells have a 90” difference, 40 grid
cells have a 135” difference, and sixteen grid cells have
a 180” difference. Grid cells at a 45’ difference from
the manually determined results may arise because
during the manual process one or two alternative
adjacent directions are observed frequently. Grid cells

with a 45” difference from manual ones therefore are
considered acceptable. There are 36 cases in which
the computed and manual methods were different.
However, this number was reduced greatly if
directions off by 45” were considered acceptable.

CONCLUSION

Researchers seek automated methods for imple-

menting conventional modeling tasks. A neural
network with self-learning and self-organization
capability is a promising technique to replace tasks
that involve human judgment. The Per1 program
developed in this work is intended to relieve the
burden on an analyst from implementing the
conventional iterative neural network training pro-
cedure and research result reporting. A complex test
such as the study demonstrated here can be
implemented with a small number of nohup
commands.

The result obtained from the neural network

method applied to a case study is satisfactory in
comparison to the manually determined drainage
pattern, and is superior to other previously developed
numerical methods. The selection of appropriately
balanced training sets, sufficient hidden nodes, a
suitable normalization method, and the best direction
methods are the major factors in building an efficient
neural network. These factors are explored readily
with the program which can be executed in a
background mode. With slight modification the
program can be applied to explore neural network
research of other types. All programs, including
several data and report processing scripts developed
in this work are available for public accesses.
Information for obtaining them can be requested by
e-mail addressed to environ@ev004.ev.nctu.edu.tw.,
or by anonymous FTP from IAMG.ORG.

A neural network for grid pattern recognition 1041

Table 4. Completely trained cases

Training set # of hidden units Direction method CPU time # of iterations SSE # of different grids Good
Difference in degrees

0 45 90 135 180

For pattern determined by the drainage network method *
-

DI
DI
Dl
DI
Dl
DI
DI
Dl
DI
Dl
Dl
Dl
DI
DI
Dl
DI
DI
DI
Dl
DI
Dl
DI
Dl
DI
Dl
Dl
Dl
Dl
DI
Dl
Dl
DI
Dl
DI
D2
D2
D2
D2
D2
D2
D2
D2
D2
D2
D2
D2
D2
D2
D2
D2
D2
D2
D2
D2
D2

8 CG
IO SD
IO CG
IO RC
I3 SD
I3 CC
13 RC
18 SD
I8 CG
18 RC
20 SD
20 CG
20 RC
23 SD
23 CG
23 RC
26 SD
26 CG
26 RC
29 SD
29 CG
29 RC
32 CG
32 RC
35 SD
35 RC
38 SD
38 RC
41 SD
41 CG
41 RC
44 SD
44 CG
44 RC
8 SD
10 CG
13 RC
I8 CG
23 CG
26 SD
26 CG
26 RC
29 CG
29 RC
32 CG
32 RC
35 SD
35 RC
38 SD
38 RC
41 SD
41 CG
41 RC
44 SD
44 CG

I
3.1
0.9
1.3
4

1.7
I.1
4.5
I.2
0.8
7.6
4.1
2.2
2.3
1.1
0.9
3.1
0.9
0.6
3.2
1.1
0.7
2
1

2.1
0.8
2.5
0.8
2.2
1.1
0.7
2.8
1.1
I.4
4.1
1.5
1.4
2.4
0.9
2.8
1.1
1.2
3.5
1.9
2.5
1.5
6.1
1.4
6

1.4
5.8
2.8
1.7
7.8

Acknowledgments-The author thanks Mr C. H. Tsai and
Mr S. F. Bau for assistance in determining drainage pattern
from DEM data manually, the National Science Council of
Taiwan R. 0. C. for providing partial financial support
(NSC 82-0410-E-009-18), and to Camp, Plate, and Hinton
(1993) for providing Xerion; without it, complicated
research such as the case study could not be achieved with
only two simple nohup commands.

REFERENCES

Aho, A. V., Kerninghan, P. J., and Weinberger, P. J., 1988,
The AWK programming language: Addison-Wesley,
Massachusetts, 210 p.

414
2000
401
308

2000
278
205
2000
356
212

2000
455
363

2000
357
253

2000
416
213

2000
453
258
580
279

2000
265

2000
296

2000
534
254

2000
346
221

2000
465
297
476
421
2000
487
233
480
303
553
275

2000
234

2000
324

2000
418
217

2000
372

1293 537 73 40 16

3.26E - 05 1272 573 66
69

36 I2
0.304 1311 532 33 14

0.000117 1293 536 77 43 IO
5.358 - 06 1232 566 loo 40 21

0.0345 1330 509 65 34 21
8.26E - 06 I288 536 73 36 26
1.62E - 05 I287 555 63 42 12

0. I48 1328 511 65 37 I8
2.99E - 05 1319 521 61 41 17
4.31E - 06 I334 517 57 32 19

0.0963 1323 517 74 32 13
9.79E - 06 1302 540 79 29 9
8.OOE - 06 1275 557 76 38 13

0.342 I364 492 63 26 14
3.86E - 05 I335 509 65 35 I5
4.20E - 06 1336 513 63 31 I6

0.0265 1351 488 65 35 20
l.93E - 05 1353 494 58 39 15
3.90E - 06 I363 477 63 43 13

0.136 1364 486 51 31 21
3.488 - 05 I349 487 65 34 24
8.60E - 07 I326 519 61 31 22
1.96E - 05 I354 484 65 30 26
3.97E - 06 1364 494 54 33 14

0.22 1377 481 53 28 20
4.52E - 06 1344 509 56 33 17

1.98 I398 453 59 31 18
1.79E - 06 1344 495 68 34 18

0.404 1364 483 62 28 22
5.02E - 05 1360 484 58 33 24
I .70E - 06 1360 489 55 31 24

0.00609 1357 500 55 25 22
l.83E - 05 1350 507 58 24 20
4.70E - 06 1341 510 56 29 23

0.863 1283 528 80 38 30
7.988 - 05 1338 471 75 47 28
8.658 - 07 1387 430 61 37 38
2.70E - 05 1350 448 81 47 33
4.87E - 05 1377 440 73 34 35

0.169 1397 428 57 40 37
4.758 - 05 1373 440 68 39 39
1.26E - 06 1367 473 58 33 28
2.20E - 05 1390 434 68 33 34
9.628 - 07 1396 437 75 22 29
2.82E - 05 1387 445 59 42 26
9.66E - 06 1356 463 74 40 26

0.411 1407 425 60 33 34
I .77E - 06 1414 418 55 34 38

0.031 I I393 426 59 40 41
5.28E - 06 1375 443 64 41 36

0.379 I377 428 67 42 45
I .93E - 05 1392 417 66 41 43

1355 449 75 33 47
0.21 1381 435 64 39 40

8.478 - 05 1376 436 62 40 45

Band, L. E., 1986, Topographic partition of watersheds
with digital elevation models: Water Resources Research,
v. 22, no. 1, p. 15-24.

Burrough, P. A., 1986, Principles of geographical infor-
mation systems for land resources assessment: Clarendon
Press, Oxford, 194 p.

Camp, D., Plate, T., and Hinton, G., 1993, The Xerion
neural network simulator version 3.1: Department of
Computer Science, Univ. Toronto, 43 p.

Kao, J.-J., 1992a, Determining drainage pattern using DEM
data for nonpoint source water quality modeling: Final
Report to National Science Council, Taiwan, R. 0. C.
(NSC 80-0410-E-009-18), 84 p.

Kao, J.-J., 1992b, Determining drainage pattern using
DEM data for nonpoint source water quality modeling:

1042 J.-J. Kao

Water Science and Technology, v. 26, no. 56, p.
1431-1438.

Mirchandani, G., and Cao, W., 1989, On the hidden nodes
for neural nets: IEEE Trans. Circuits and Systems, v. 36,
no. 5, p. 661-664.

O’Callaghan, J. F., and Mark, D. M., 1984, The extraction
of drainage networks from digital elevation data:
Computer Vision, Graphics, and Image Processing, v. 28,
p. 324-344.

Press, W. H., Teukolsky, S. A., Vettlerling, W. T. and
Flannery, B., 1992, Numerical recipes in C: Cambridge
University Press, New York, 994 p.

Rumelhart, D. E., McClelland, J. L., and the PDP research

group, 1989, Parallel distributed processing: MIT Press,
Cambridge, Massachusetts, 547 p.

Wall, L., and Schwartz, R. L., 1992, Programming Perl:
O’Reilly and Associates, Inc., California, 465 p.

Yuan, L. P., and Vanderpool, N. L., 1986, Drainage
network simulation: Computers & Geosciences, v. 12, no.
5, p. 653665.

Young, R. A., Onstad, C. A., Bosch, D. D., and
Anderson, W. P., 1994, Agricultural non-point
source pollution model, version 4.03, AGNPS user’s
guide: US Dept. Agriculture-ARS North Central Soil
Conservation Research Laboratory, Morris, Minnesota,
112 p.

APPENDIX 1
Program doNet

#!/usr/local/bin/perl
Script name: doNet
Purpose : Implement batch Neural Network trainings using Xerion/bp.

Computation time is computed by Unix command ‘time.’
Tested successfully on SunOS4.l.x and HPUX 9.02.

Author: Jebng-Jung Kao jjkao@green.ev.nctu.edu.tw
ftp site: ftp.edu.tw:/misc/environment/NCTU_HV/nnet/doNet

evOOs.ev.nctu.edu.tw:/nnet/doNet
Last updated on 03/10/1995.

Variable sets to be predefined by the user.
~hiddenSet~("02~~,"05","08","11","14","17"

number of nodes in the hidden layer. ’
"20*~ 88231t "2508, 182g8$, "328:. 0035<*, ";*w,) ;

’
$email_address=~~jjkao@evOOl.ev.nctu.edu.tw";

Default values for optional user-specified variables.
$traceFMTfile="trace.fmt";
$reportsub=flreport.sub'Q. # user defined subroutine for producing reports
$reportFile="report/Summary";

Default values for problem dependent variables.
$inUnitNum=49;
$outUnitNum=S;
$rep="l"; # if you need information for every $rep iterations.
$iter="2000";

Problem independent variables(well! you can change them also.)
$seed=llO;
$randomize=l.O;
#$weightCost=$l; #if set, minimize error with network cost errors
$zeroErrorRadius=O;
$doExamples="VALIDATION";
$doMinimize="yes";

Command path which may be system-dependent;
$MVBIN="/bin/mv"
$MKDIRBIN=*1/bin/mkdir80;
$TIMEBIN="time".
SXBRION_BPBIN=~~~~~~;
$MAILCMD="/usr/ucb/Mail";

for hpux, $MAILcMD=q8/usr/bin/mailx";
$RMBIN="/bin/rm";
$LNBIN="/bin/ln";

Tag character for validation path.
$validateTAG='QV't;

$usage="Usage: donet netName trainFile validateFile (in# out#l";
if($#ARGV != 2 && $#ARGV != 4) { print "$usage\n"; exit;}
$netName=$ARGV[O];
$trainFile=$ARGV(l];
$validateFile=$ARGV(2];
if ($#ARGV == 4) {

$inUnitNum=$ARGV[3];
$outUnitNum=$ARGV(4] ;

)

Check file and directory existence.
if (! -s StrainFile) {

print "Error: Training Set file StrainFile does not exiSt.\n$USage\n";
exit;

\

if (! -s
print
exit;

1

if (! -d
print

A neural network for grid pattern recognition

$validateFile) (
"Error: Validation Set file $validateFile does not exist.\n$usage\n";

$netName) (
"Creating directory SnetName/ . ..\n". ~~~~.

system("$MEDIRBIN SnetName") ;
}

chdir($netName) ;

if(! -s "$trainFile") {
print "Linking StrainFile to SnetName/ . ..\n".
system("$LNBIN -s ../$trainFile StrainFile");

J

if(! -s 08$validateFile") (
print "Linking $validateFile to SnetName/ . ..\n".
system("$LNBIN -s ../$validateFile SvalidateFile") ;

1

if(! -s U ../$traceFMTfile") (
$traceFMTfile="";
print "Warning: no trace format file. No trace done.\n";

) elsif (! -s "$traceFMTfile")(
print "Linking $traceFMTfile to SnetName/ . ..\n".
system("$LXBIN -s ../$traceFMTfile StraceFMTfile");

1

user-provided reporting file.
if(-s U ../$reportsub")(

if you want to keep different version of the report file, pls.
uncomment the following 5 lines.
if(-s $reportFile) {

:
$thistime=‘date +%y%m%d%?i%MtS‘;
chop($thistime);

1

system("$MVBIN $reportFile $reportFile.$thistime");

if(! -s "$reportsub") {
print "Linking Sreportsub to SnetName/ . ..\nl'.

\
system("$LNBIN -s ../$reportsub Sreportsub");

I donot want to see display in batch training,
but it is useful for interactive training.
$ERV(*DISPLAY')="/dev/null~;

Create a TAG file for which run is being implemented.
$home=$ENV{'HOME'};
$hostname=‘hostname‘; chop($hostname);
if (! -d "$home/tmp") (system("$MRDIRBIN $home/tmp");)
$tagFile="$home/tmp/donet$user$netName$hostname";

create required directories.
@needDirs=("in","wt","validate","out","report");
foreach $d (@needDirs)(

if (! -d Sd) {
system("mkdir $d") ;

1
1

1043

if(-s $reportsub) (require Sreportsub;}

This function execute a training and validation process.

1044 J.-J. Kao

sub doNet(
set name=$netName ShiddenUnitNum ($cg($method}[_$epsilon[_$alphall I_$lsl

SthisRunName=VS(netNameJ ShiddenUniENum":
if($method eq A;) { # non~momentum and non-steepest-decent method

$thisRunName="$(thisRunWame)_$cg";
} else (

$thisRunName="$(thisRunWame} Smethod";
if($epsilon ne "") ($thigRunName=" $(thisRunName}_$epsilon"; }
if($alpha ne "") ($thisRunName="$(thisRunName)_$alpha";)

if($ls ne ~~)($thisRunName="$(thisRunName)_$ls");

set input/output file names.
$weightFile="wt/$thisRunName.wt"; # weight
$loadWeights=$weightFile; # re-load weight
$validateOutputFile="validate/$thisRunName.validate"; # validation
$trainOutputFile="validate/$thisRunName.train"; # training
$bpInFile="in/$thisRunName.in"; # bp input
$bpOutputFile=~80ut/$thisRunName.bp"; # bp output
$timeReportFile=@lreport/$thisRunName.time'D; # time report

create a TAG to keep track where it is, when running background.
system("echo I am doing this case:$thisRunName now. >$tagFile");

notify the user; NOTE: you may receive too many message.
if you want to reduce, you may move this line after dolet.
system("$MAILCMD -s \O'$thisRunName$hostname\'V $email_address <StagFile");

training
$validateIt=OV";
&writeNetIn($bpInFile,""J ;
system("$TIMEBIN $XERION BPBIN c$bpInFile$validateIt l>$bpOutputFileSvalidateIt

2>$timeReportFile$validateIt7);

validation
$validateIt=$validateTAG;
&writeNetIn($bpInFile,$validateIt);
system(

8V$~~~~~~ BPBIN <$bpInFile$validateIt i>$bpOutputFileSvalidateIt Z>/dev/null")
In most case, validation is quick and no need to report.
system("$TIMEBIN $XERION_BPBIN <$bpInFile$validateIt 1~SbpOutputFileSvalidateIt

2>$timeReportFile$validateIt");

execute user-specified reporting, if provided
if(-s Sreportsub) (

&reportsub($thisRunName,$bpOutputFile,$timeReportFile,$trainOutputFile.$validateOut
putFile,$reportFile) ;

This function write a XERION input file. You may consult XERION manual to
modify it to meet your needs.
sub writeNetIn{

local($netInFile,$validateIt)=@_;
#print "Writing $netInFile, please wait...\n";
open(NETIN,">$netInFile$validateIt') 1)

die "Error:canot open $netInFile$validateIt $!\n";

if($validateIt eq $validateTAG) (# validation phase
if($validateOutputFile ne "") {print NETIN

"open $netName > $validateOutputFile\n';J
if($UnitRectarget ne "I') (print NETIN

"format UnitRec.target \"$UnitRectarget\"\n";)
if($UnitRecoutput ne 'I") {print NETIN

"format UnitRec.output \"$UnitRecoutput\"\n";}
if($traceFMTfile ne "") {

A neural network for grid pattern recognition

$count{$diffDegree}++;

)

$test_validEntry=cTEST_VALID>; # ignore blank lines

close(TEST VALID);
report t&al # of cases, if desired. should be = $matchcount
print "TOtal=$totalcount\n";
$matchcount=o;
foreach $d (@degreeList){ Smatchcount += $count($d}; }

set flag for success
$success=~'~8;

best result;
if($count{'O'} == $totalcount){$success== Yu...Hoo...";}

for training set, < 5 untrained case; marginally trained.
elsif(($totalcount-$count('0'j) < 5) ($success=fl Hmmm...Try further...";}

for validation set, 0+45 > 1350 cases is acceptable.
elsif(($count('O')+$count('45')) > 1350)($success=" . ..OK?...".)

report the summary.
print REPORT 8 TDiff\tO:Scount('O') 45:$count{145') 90:$count{190*)

135:$count('135') IBO:$count('l80~) -> $matchcount$success\n";

1045

close(REPORT);
if($success eq "") (return "0";) # bad case
return #'II;

1

This function extract time information from Unix time command output.
sub timeOSdep (

local($OSNAME,$timeReportFile)=@ ;
local($systime,$realtime.Suserti~e);
open(TIME,"$timeReportFile');

SunOS's and HP-UX's 'time'
while (<TIME>) (

commands produce slightly different output.

if ($oSNAME eq "SunOS") (

if(/^[\t]+([\w.]*) [\tl+realI \tl+(I\w.l*) [\tl+user[\tl+([\w.l*) 1 \tl+sYs/) I
$realtime=$l;
$usertime=$2;
$systime=$3;

)
) elsif ($OSNAME eq "HP-UX") (

if(/^sys[\tl+([\w.l*) [\tl*/) ($systime=Sl)
if(/^real[\tl+([\w.l*) [\tl*/)
if(/^user[\tl+([\w.l*) [\tl*/)

1
I
$realtime=$l
$usertime=Sl I

else {
print "Hmmm... I donot know your OS: SOSNAME\n";
return (-1,-1,-I);

1
\

YOU may add other OS dependent code here, if applicable

system("$RMBIN -f $timeReport"); #NOTE SRMBIN is defined in doNet

)

return ($systime,$realtime,$usertime);

Function called by doNet for user-specified reporting.
sub reportsub(

get OS name for 'time' command output format.
if ($uname eq "")(

1046 J.-J. Kao

$uname=‘uname -a‘; chop($uname);

1
if ($uname =-/^([\w-I*) [\tl+/) { $thisOS=Sl)

0~633 (REPORT, ">>$reportFile");

get system date/time.
$thistime='date +%y%m%d%H%M%S‘; chop($thistime);
print REPORT "Report for SentryName on $thistime\n*;

if $timeReport file exists, extract time and add it into the summary.
if(-s "$timeReport") (

($systime,$realtime,$usertime~=&timeOSdep~$thisOS,$timeReport~;
print REPORT 'I TIME\tuser=$usertime\tsys=$systime\treal=$realtime\n~~;

I

if time report file for validation phase exists, summary it also.
#In most case, validation is quick, and no need to report it. see doNet.
#NOTE: $validateTAG is defined in doNet.

if(-s "$timeReport$validateTAG") (
($systime,$realtime,$usertime)=&timeOSdep~$thisOS,"$timeReport$validateTAG"~;
print REPORT " TIMEV\tuser=$usertime\tsys=$systime\treal=$realtime\n~1;

)

try to get 1st and last Iter lines.
YOU may edit function getIter for this purpose.

if(-s $bpOut) {
&getIter($entryName,$bpOut) ;

$firstIter='head -1 $bpOut';
if($firstIter ne "") (print REPORT ' $firstIter";}
$lastIter=‘tail -1 $bpOut‘;
if($lastIter ne "") (print REPORT ' $lastIter";}
system("$RMEIN -f $bpOut"); #NOTE: $RMBIN is defined in doNet.
system("$RMBIN -f $bpOut$validateTAG");

I

________-_------Specific steps for DEM case _--__--__--__
check training results.
if the Nnet configuration produce acceptable result, return "";

otherwise $lastFlag will return "D"
$lastFlag=hcompare($trainOut,$reportFile) ;
$lastFlagl="D"; # kill all files, anyway, to save space
if($lastFlag == "DW) {

system("$RMBIN -f $trainOut");
system('$RMBIN -f in/$entryName.in");
system("$RMBIN -f in/$entryName.in$validateTAG");
system(19$RMBIN -f wt/$entryName.wt");

I
check validation results.
if the Nnet configuration produce acceptable result, return "";

otherwise $lastFlag will return "D"
$lastFlagl=&compare($validateOut,$reportFile) ;
$lastFlagl="D"; # kill all files
if($lastFlagl == "D'@) (

I anyway. to save space

system(81$RMBIN -f $validateOut");
if($lastFlag eq "") {

system(3'$RMBIN -f $trainOut") ;
system("$RMBIN -f in/$entryName.in");
system("$RMBIN -f in/$entryName.in$validateTAG");

1
system("$RMBIN -f wt/$entryName.wtt8);

I

---------- END of report.sub included (use require) into doNet-----------

A neural network for grid pattern recognition

APPENDIX 2
Sample report. sub

----------- START of report.sub included by doNet-----------
This is a sample file for report.sub for running doNet.
Case description: DEM Drainage Network training.
Author: Jehng-Jung Kao jjkao@evOOl.ev.nctu.edu.tw
ftp site: ftp.edu.tw:/misc/environment/NCTU_EV/nnet/donet
Last updated on 03/10/95.

This function keep only lines with ^iter= from Sthefile, XERION/bp output.
sub getIter(

local($entryName,$thefile)=@_;
local($tmpfile)="/tmp/junk$entryName";
open(THEFILE,"$thefile");
open(TMPFILE,">$tmpfile");
while (<THEFILE>) { if (/^iter= /) {print TMPFILE $_;)}
close(TMPFILE); close(THEFILE);
system("$MVBIN $tmpfile $thefile"); #NOTE SMVBIN is defined in doNet

IO47

List of degrees to be reported for differences.
@degreeList=('O','45','90','135','180');

This function compare training or validating DEM drainage pattern results
sub compare{

local($test_validOutFile,$reportFile)=@_;
if(! -6 $test_validOutFile) (return;)

Initialization.
open(R~P0~~, ">>$reportFile");
open(TEST_VALID,$test_validOutFile);
$totalcount=O; # count total # of cases.
foreach $d (@degreeList){ $count($d)=O; }

Do comparison for reporting difference.
while (<TEST-VALID>) (

$totalcount++;
delete leading blanks
$test_validEntry=$_; chop($test_validEntry) ; $test_validEntry =_ s/* [\tl*//;

split into a List
@targetList=split(/[\tl+/,$test_validEntry);

find the target direction, with maximal value.
Smax=O.O: _---- ,
for($i=O; $i < 8; $i++){

if ($targetList [$il > $max) (Smax=$targetList [Sil ;

\
$targetDir=$i+l;)

.$targetDegree=($targetDir-1)*45;

find the Nnet determined direction, with maximal value.
$test_validEntry=cTEST VALID>; chop($test_validEntry);
$test_validEntry =- s/~[\tl*//; # delete leading blanks.
@test_validList=split(/[\tl+/,$test_validEntry);
$max=O.O;
for($i=O; $i < 8; $i++){

if($test_validList[$il > $max) {$max=$test_validList[$il ;

1

$test_validDir=$i+l;}

$test_validDegree=($test_validDir-1)*45;

compute the difference and count
$diffDegree=$targetDegree-$test_validDegree;
if($diffDegree < 0) ($diffDegree=-SdiffDegree;}
if($diffDegree > 180) ($diffDegree=360-$diffDegree;-)

1048 J.-J. Kao

if (! -s $traceFMTfile) {print "Error: $traceFMTfile is empty.\n";exit;)
print NETIN "addTrace doExamples \"print \I\"';
open(TRACEFMTFILE,"$traCeFMTfile");
while (cTRAcEFMTFILE>) (print NETIN "\t$_";)
close(TRACEFMTFILE);
print NETIN "@$netName\"\n";

1
I
print NETIN "addNet \"$netName\"\n";
print NBTIN "useNet \"$netName\"\n";
if($inUnitNum eq "") (print "Error: no inUnitNum.\n"; exit}
print NETIN "addGroup -type INPUT input $inUnitNum\n";
if($hiddenUnitNum eq "") (print "Error: no hiddenUnitNum.\n"; exit]
print NETIN "addGroup -type HIDDEN hidden $hiddenUnitNum\n";
if($outUnitNum eq "I') { print "Error: no outUnitNum.\n"; exit)
print NETIN "addGroup -type OUTPUT output $outUnitNum\n";
print NETIN "disconnectGroUpS \"Bias\" \"input\"\n";
print NETIN flconnectGroups input hidden\n";
print NETIN "coMectGrOUpS hidden OutpUt\n";
if($trainFile ne 'I") (print NETIN "addExamples -type TRAINING $trainFile\n";)

fi && $validateIt ne $validateTAG) { # training phase
~:~~~~!$i~?~f)eq "g?nt NETIN "seed $seed\n";}
if($randomize ne ""1 (print NETIN "randomize $randomize\n";}
if($weightCost ne @'") (print NETIN "set currentNet.weightCost = $weightCost\n";}
if($zeroErrorRadius ne "") { print NETIN

"set currentNet.extension.zeroErrorRadius = $zeroErrorRadius\n";}
print NETIN "minimize -tolerance l.Oe-10";
if($rep ne 18t0) (print NETIN I' -rep $rep";}
if($iter ne "I*) (print NETIN II -iter $iter";)
if($method ne "") (print NETIN 'I -$method";

if($method eq "quickprop" && $1~ eq "")(print NETIN ' -qpEpsilon 0.1";)

1
if($cg ne "") (print NBTIN 'I -$cg";)
if($epsilon ne "") (print NETIN 'I -epsilon $epSilOn”;}

if($alpha ne 8t") (print NETIN " -alpha $alpha";)
if($ls ne "") (print NETIN I(-ls$ls";}
print NETIN *'\n";
if($weightFile ne "") (print NETIN "saveweights $weightFile\n";}

1
if($validateIt eq SvalidateTAG) (

if($loadWeights ne "") (print NETIN "loadweights $loadWeights\n";}
if($validateFile ne "") (print NETIN

"addExamples -type VALIDATION $validateFile\n";}
if($doExamples ne 'I") (print NETIN "doExamples -t $doExamples\n";}
print NBTIN 10close $netName\n";
print NETIN "deleteStream -
if($trainOutputFile ne "") print NBTIN 7"

iet $netName\n";
"open $netName > $trainOutputFile\n";)

if($trainFile ne I"*) (print NETIN "doExamples -type TRAINING \n";}
print NBTIN tOclose $netName\n";

I
print NETIN "exit\n";
close (NETIN);

I

#___________ST~T JOBS_______________________________

foreach Sh (@hiddenSet) (
repeat for number of hidden nodes = Sh.
$hiddenUnitNum=$h;
START OF USER SPECIFIED TRAINING STRATEGIES

steepest method -epsilon [0.310.5] and -1sRay
$ls=""; # line search method
$cg= 1’ ” ;

$method="steepest".
$epsilon="0.3"; ’

only one can be non-null string
for step size 0

&doNetO;
$epsilon=*0.5";
&doNetO ;

for step size 0

A neural network for grid pattern recognition

$epsilon=""; # for step size 0
$ls=OURayU.
&doNetO ;’

momentum method -epsilon [0.110.3] -alpha [0.9/0.71
$ls~"~~; $method="momentum";
$alpha="0.9"; # for momentum method
$epsilon="O.l"; # for step size
&doNetO ;
$epsilon="0.3"; # for step size
&doNetO ;
$alpha="0.7"; # for momentum method
$epsilon="O.l"; # for step size
&doNetO ;
$epsilon="0.3"; # for step size
&doNetO ;

Conguate Gradient method
$cg=*@cg81; $method=""; # only one can be non-null string
&doNetO ;

Rudi's Conguate Gradient method
$cg="cg8@; $method=""; # only one can be non-null string
$cg=l*cgrudi";
&doNetO ;

$cg='tcgRestart";
&doNetO;
system("$RMBIN -f StagFile");

1049

APPENDIX 3
Sample trace. fmt

currentNet .group[3l.unit[Ol.target \
currentNet.group[3l.unit[1l.target \
currentNet.group[31.unit[21 .target \
currentNet.group~3l.unit~3l.target \
currentNet.group[3].unit[4l.target \
currentNet.group[31.unit[Sl.target \
currentNet.group[31.unit[6l.target \
currentNet.group[3] .unit[7].target
currentNet.group[31 .unit[l].output \

\"\n\" currentNet.group[3l.unitIOl.output \

currentNet.group13l.unit[2l.output \
currentNet.group[3l.unit[3l.output \
currentNet.group[31 .unit[Ql.output \
currentNet.group[3l.unit[Sl.output \
currentNet.groupL3l.unitL61 .output \
currentNet.group[31 .unit[7].output \
\"\n\"\

