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Abstract-Neural network training with the back propagation algorithm is an important artificial 
intelligence technique for grid pattern recognition. The training is time-consuming however and generally 
requires a trial-and-error procedure to configure the network. A Per1 program executed with Xerion is 
presented to relieve the training burden. Statistical reports such as computation time, learning 
performance, and validation performance are generated automatically by the program. A case study 
applying the program for training networks to determine a drainage pattern from Digital Elevation Model 
data is demonstrated and discussed. Manually determining drainage patterns from topographical maps 
for a grid-based model is tedious and subjective. The neural network has a self-learning capability that 
can replace human judgment involved in the conventional approach. Copyright 0 1996 Elsevier Science 
Ltd 
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INTRODUCTION 

Human judgment to determine a grid pattern for a 
geographical feature from a topographical map, 
image, or aerial photograph, involves not only the 
attributes of a grid cell but also the spatial 
distribution of adjacent grid cells. Such a manual 
approach is time-consuming and generally subjective. 
A program in a conventional language (e.g. C or 
FORTRAN) or an expert system is used typically to 
replace such a manual determination. The spatial 
distribution and relationships among grid attributes, 
however, introduce complexity for a program or 
expert system to consider numerous variants of grid 
patterns. Such complexity may make the program or 
expert system inefficient compared to the conven- 
tional manual method. A neural network method 
thus is explored for its potential applicability. 

Several difficulties may occur during implemen- 
tation, even though the neural network method is 
now studied widely. Training a network to learn from 
a set of training data may require extensive 
computation before convergence to an optimum. 
Local optima instead of the global optimum may 
occur in determining a set of weights for network 
links during training. Another major difficulty is that 
no theory is available yet to construct an appropriate 
network configuration for a general problem, even 
though the optimum number of hidden nodes in the 
training cycle have been determined in previous 
research (e.g., Mirchandani and Cao, 1989). The 
optimal configuration of a neural network is still an 
important research issue. A trial-and-error procedure 
is employed generally by applying various learning 

methods and testing several different configurations. 
Such a process is however time-consuming and 
tedious. Preparation of training reports from 
numerous results obtained by applying different 
network training strategies and configurations are 
also cumbersome. 

This paper presents a program written in Per1 (Wall 
and Schwartz, 1992) to apply Xerion (Camp, Plate, 
and Hinton, 1993), a neural network package, for 
training neural networks with various methods and 
network configurations in a batch fashion. The user 
can leave the program as a background job and 
results are summarized automatically. Intermediate 
training progress is reported to the user through an 
electronic mailer. It is believed that a neural network 
study can be implemented effectively with the 
program. A case study applying the program to train 
and to find a neural network for determining a 
drainage pattern from Digital Elevation Model 
(DEM) data is demonstrated. 

OVERVIEW OF BACK PROPAGATION NEURAL 
NETWORKS AND XERION 

An artificial neural network is made up a number 
of layers of highly interconnected simple processors. 
A neural network generally is trained with a set of 
training patterns of which both input stimuli and 
corresponding output response are known. Once the 
network is trained completely, it is then applied as a 
transfer function to provide desired output patterns 
from given untrained external inputs. The advantages 
of a neural network include generalization, massive 
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parallel processing, self-organization, etc. A good 
network trained from a proper set of training cases 
is capable of giving the appropriate response to a 
given input pattern, even if a certain degree of noise 
exists within the input pattern. A well-trained 
network can make generalizations from learned 
training patterns similar to an unfamiliar input 
pattern to produce a desired output response without 

user intervention or supervision. These advantages 
make it attractive to build a neural network for grid 
pattern recognition. 

In this study, the popular three-layer network, as 

shown in Figure 1, with input, hidden, and output 
layers is used. Nodes are interconnected with 
numerous links whose strengths are expressed by 
numerical values named weights. Each node is 

activated from a function of the sum of the inputs 
received from other nodes through the weighted 
links. For a neural network to learn a set of training 
patterns involves modifying the weights via a learning 
algorithm. The back propagation approach applied 
frequently for this learning purpose was used in this 

study. 

As this approach is described in detail by 

Rumelhart and others (1989), only a brief description 
follows. The implementation includes two stages. In 
the first stage, the output vectors obtained from a 
neural network according to the input vectors of a 
given training set are determined based on an initial 
weight set. Comparison of output vectors with the 
desired output (“target”) vectors is made at the end 
of the first stage. A back propagation learning 
procedure, the second stage, is then initiated if 
differences (or “errors”) result from the comparison. 
The differences are used as error signals to propagate 

backward through the network to correct the weights. 
This two-stage procedure is repeated until all the 
given training patterns are learned correctly. 

The following summed square function is used to 

measure the error: 

E = CEp = C&p, - op.)’ 
P P I\ 1 

where p ranges over all input patterns, i ranges over 

output nodes, E,, is the error on pattern p, r,, is the 

DEM Data 

INPUT Units 

OUTPUT Units 

RESULT 

Figure 1. Neural network configuration and data processing flows. 
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target value of a node, and Opi is the output 
(activation) value of a node. A direct method such as 
steepest descent then can be applied to find the set of 
weights that minimizes this function. For example, 
the weight on each link (between nodes i and j) can 
be modified on the basis of the error signal and the 
output value, A, y, = $,o,, where 6 is the step size 
factor, p is the input pattern number, and 6 is the 
error. For an output node, 6 is computed with 
S,, = (r,, - o,,)J(ner,,), wherex(ner,,) is the derivative 
of an activation function, such as the logistic 
equation shown subsequently in this section. For a 
hidden node, however, there is no desired target, and 
the error signal is determined from 
hp, =_f~(net,,)Z&,~~~,, where 6, are the error signals of 
the nodes to which the hidden node directly connects 
and M’~, are the weights of the connections. This 
procedure is based on the method of steepest descent 
with a fixed step size. This method, however, may not 
perform well and other algorithms for nonlinear 
optimization such as the conjugate gradient method 
are applicable also. 

Xerion is a publicly accessible neural network 
package developed by Camp, Plate, and Hinton 
(1993). A collection of C libraries is provided to 
implement many neural network paradigms. Besides 
the back propagation network, the package provides 
also the Boltzmann machine, the mean-field-theory 
machine, hard and soft competitive learning, the 
Kohonen, cascade correlation, and recurrent back 
propagation networks. The user interface, which is 
built on X-windows, provides a friendly environment 
for either a novice or an experienced user to 
implement interactive training. The bp module of the 
Xerion (Camp, Plate, and Hinton, 1993) system 
implements the back propagation learning algorithm. 
Other than the steepest-descent method, the package 
also provides the methods of momentum descent, 
conjugate gradient, Rudi’s conjugate gradient, and 
others, described by Camp, Plate, and Hinton (1993); 
only a brief description follows. 

Momentum-descent method 

This method sets the direction to be the steepest 
descent with a momentum term. The momentum 
term is the previous direction multiplied by a decay 
factor, u, as shown in Equation (2). 

Aw,j(n + 1) = q(6,0,,) + aAw,(n). (2) 

This method is intended to decrease the amount of 
wandering in ravines of the error surface. 

Conjugate-gradient method 

This method, based on the method described by 
Press and others (1992), is expressed according to 
Equation (3): 

s 
“** 

= s (G,,. - Wk. _ G 

G.G “0”’ 3 (3) 

where S.,, is the new search direction, S is the 
previous search direction, G,,.. is the current gradient, 
and G is the previous gradient. 

Rudi’s conjugate-gradient method 

This method modified by Rudi Mathon (Camp, 
Plate, and Hinton, 1993) from the previous method 
is expected to provide rapid convergence. The search 
direction is expressed as: 

S.G.,,, 
” = (Gn,,, - ‘XG,,,, - G) 

(Cm - GWn,. 2SG>, 
‘* = (G,,.. - G).(G.,,, - G) - (G.,,. - G)S 

Sm,, = u,*(G.,, - Cl + u,*S - u,*G,,,, 

Step methods 

(4) 

Once the search direction is determined, the step 
size should then be determined. Two types of step 
methods were provided by Xerion: a fixed step and 
a line search. The former uses a fixed size of step. A 
line search method is intended to find the minimum 
value of a function along a given search direction. 
For example, if W is the current weight set (starting 
position) and S is the search direction vector, the line 
search should find q that minimizes the error function 
E(W+ f) S). 

THE PERL SCRIPT PROGRAM 

Per1 (Wall and Schwartz, 1992) is a freely available 
script language to manipulate text, files, and 
computational processes that were implemented 
previously with complex programming in C, AWK 
(Aho, Kerninghan, and Weinberger, 1988) or a shell 
script language. The script program is written in Per1 
to operate with Xerion in a batch fashion. Although 
the interactive display provided with Xerion is useful 
for learning and monitoring training strategies, it is 
tedious to manipulate inputs and reports for massive 
training strategies using various learning methods, 
network configurations, and numbers of nodes in 
each layer. The pseudocode listed in Table 1 describes 
the execution flow of the script program listed in the 
Appendices. The user must provide a file including all 
training cases and a validation file including all 
testing cases to verify the results obtained from a 
trained network. Two other files must be provided 
also by the user to specify formats for reporting the 
result and validation outputs, shown in Appendices 
2 and 3. The script program frequently is executed as 
a background job on a UNIX workstation. A typical 
command to run the script is listed next, although 
other commands such as crontab can be used also. 

nohup per1 doNet demRnet dem.train 
dem.velid > & /dev/null &where doNet is the 
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Table I. Pseudocode of Per1 script program, doNet 

Usage: doNet netName trainingFileName validationFileName [#_ofinput-nodes #_of_output_nodes] 
main program: 

Set user-defined variables (or use default values): #_of_hiddeuodes, email address, etc. 
Initialization for this run, netsame: 

create a directory named by netName for keeping information for this run. 
link files (use ‘In’ instead of ‘cp’ to save space). 

Disable the Xerion X-window display. 
If the user provides a user specified reporting file, ‘report. sub, include it into the script program. 
for each specified #_ofL_bidden_nodes do 
( 

l.set learning method and related parameters. 
2.call function doNet to implement a training and validation path. 
3. repeat 1. and 2. until all desired learning strategies are implemented. 

) 
Function doNet: 

Set a unique identification for current training and validation path. 
Set input and output file names. 
Create a tag for monitoring the training progress. 
If the user’s email address is provided, the tag is sent to the user. 
Implement the training stage: 
Write Xerion bp input command files by calling function writeNetIn. 
Implement the training by Xerion bp module in batch mode. 

Computation time is logged to a time report file. 
Implement the validation stage: 
Write Xerion bp input command files by calling function WriteNetIn. 
Implement the validation stage by Xerion bp module in batch mode with weights obtained in the training stage. Computation time 

is also logged to a time report file. 
Implement the user specified reporting function (reportsub) to generate statistical summary report. 

Function reportsub: 
General steps: 
Extract computation time summary from the time report file created by doNet. 
Extract the first iteration and last iteration information from Xerion bp output. 
Problem dependent steps for the case study: (implemented by function compare) 
Report the summary of validation result for the training set. 
Reoort the summarv of validation result for the validation set. 

script file name, demNnet is the name of the current 
run, dem. train is the name of a training file, and 
dem.valid is the name of a validation file. Several 
such commands can be executed simultaneously for 
separate training or validation sets. A tag file is sent 
automatically to the user’s e-mail address, if 
provided, to report training progress. Several files are 
created at each stage of training and validation 
including a summary report for CPU-time usage and 
learning performance. 

A CASE STUDY 

A case study to apply the program for training 
neural networks to determine drainage patterns from 
DEM data is described. The example is used 
primarily to demonstrate how the program works; for 
the complete results see Kao, 1992a. The drainage 
pattern of a watershed is an important parameter in 
non-point-source water quality modeling to deter- 
mine hydrological runoff paths within a watershed. 
Manual preparation of this pattern from topographic 
maps is tedious and subjective. DEM data are 
obtained normally from stereoscopic aerial photo- 
graphs, although a ground survey or radar scanning 
can provide alternative data sources. The altitude 
matrix (Burrough, 1986) of the point model is used 
in this research. The use of DEM data to determine 
micro-drainage patterns has been explored previously 
by other researchers (e.g. Band, 1986; O’Callaghan 
and Mark, 1984). These algorithms, although 

demonstrated successfully for generating a micro- 
drainage network from a set of DEM data, are 
unsuitable for generating drainage directions for a 
grid-based model such as AGNPS (a non-point 
source pollution model, described by Young and 
others, 1994), because approximating macro-scale 
trends from micro-variation data is difficult. For 
example, the DEM data used here have a pixel 
resolution 40 m x 40 m. Grid-based models, such as 
those used for water quality and regional planning, 
do not require such detailed topographical infor- 
mation. A typical cell size for AGNPS is 10 acres, 
which includes roughly 5 x 5 DEM pixels. The 
drainage direction of a grid cell is illustrated in 
Figure 2 is restricted to one of eight directions. Each 
direction points to an adjacent grid cell. The DEM 
data for micro-scale areas (pixels) are processed for 
approximating drainage trends of larger area, model 
grid cells. Unlike the research undertaken for a 
micro-scale drainage network, the micro-scale DEM 

(2* (0,-l) (k* 

Figure 2. Possible drainage directions. 
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Figure 3. Micro-scale variation vs. macro-scale trend (vectorial average method). 

data in this research are converted into macro 
approximations of drainage trends. An example of 
applying the vectorial average method (Kao, 1992b) 
is provided in Figure 3, in which a grid drainage 
direction was approximated from 25 pixel directions. 
Some difficulties may be encountered during such 
approximations. For example, Figure 4 shows two 
grid cells with the same vectorial average but with 
different spatial distributions of micro-scale pixel 
directions. The drainage directions of the two grid 
cells, if manually determined, obviously differ. 
Methods developed previously for determining 
micro-scale drainage network cannot be used directly 
for macro approximations because of such 
difficulties. The detail of micro-variation vs. macro- 
scale trend is discussed by Kao (1992a, and 1992b). 
Human judgment involved in determining the 
drainage directions from a topographic map is 
difficult to model mathematically or with a computer 
code. Therefore the neural network method with 
self-learning capability was explored. 

Six methods were developed by Kao (1992a, and 
1992b) to approximate a drainage pattern with a 
FORTRAN program. The drainage network method 
is demonstrated to be superior to other methods. The 
following discussion is focused therefore on compari- 
son of results obtained from the manual, drainage 
network and neural network methods. A subwater- 
shed within Chi-Mei Creek in North Taiwan serves 
as the test area. The area is divided into 1962 
200 m x 200 m grid cells. All DEM pixels within the 
test area are divided into groups of 5 x 5 pixels; each 
group represents a typical model grid cell used for 
AGNPS. 

Manual method 

A manual method for creating a drainage pattern 
from topographical maps based on visual inspection 
was first imnlemented before testing other methods. 

J 

(A) (B) 

Figure 4. Two grid cells with same vectorial average. 

The manual method was performed using two 
approaches. One was carried out by placing grid cell 
boundaries on the maps, and grid cells were examined 
sequentially so as to determine their drainage 
directions manually. This process was, however, time 
consuming. In the second method a three-dimen- 
sional display, a contour figure, and an elevation- 
based figure were provided, and for each grid cell the 
major drainage direction was determined from the 
local grid cells. Inherent bias exists during the 
application of this method (see discussion in Kao 
1992a, and 1992b). The drainage pattern so 
determined is illustrated in Figure 5. The darker area 
in the figure indicates lower ground, and vice versa. 
The three dark grid cells are outlets of the 
subwatershed. The subwatershed is encircled with a 
darkest line, which was digitized from topographical 
maps. 

Drainage-network method 

Each grid cell, in using this method, is treated as 
a small watershed. The first step is to determine the 
drainage direction of each DEM pixel. Allowing the 
drainage direction to drain towards the adjacent pixel 
with the lowest elevation is the simplest way to 
determine the pixel drainage direction. The outlet 
pixel is then determined on the basis of all pixel 
drainage directions within a composite grid cell. The 
drainage direction of the outlet pixel is then used as 
the drainage direction of the whole grid cell. If no 
outlet is found due to a depression pixel existing at 
a pixel within the grid cell, the pixel is then filled by 
re-setting its elevation to be slightly greater than that 
of the adjacent pixel with minimal elevation. This 
process is repeated until an outlet is found. This 
process was adopted from the Apparent Elevation 
method proposed by Yuan and Vanderpool (1986). 
The outlet pixel, however, may not be unique; having 
more than one outlet pixel within a grid cell is 
possible. If such a problem arises, the outlet pixel into 
which the greatest number of upstream pixels drain 
is chosen as the outlet. Discussion of the differences 
among the results obtained from this method and 
others are provided later. 

NEURAL NETWORK DEMONSTRATION BY THE 
PROGRAM 

Network configuration and hidden nodes 

The neural network configuration tested (Fig. 1) is 
constructed of three layers: 25 input nodes, several 
hidden nodes, and eight output nodes. Each input 
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Figure 5. Manually determined drainage pattern 

node is associated with a DEM pixel of a grid cell, 
and each output node is associated with one of eight 
drainage directions shown in Figure 2. Networks with 
2, 3, 5, 8, 10, 13, 15, 18, 20, 23, 26, 29, 32, 35, 38, 41, 
and 44 hidden nodes were tested, as defined by the 
Per1 array @hiddenSet in the program. 

Preparation of training sets 

The selection of an appropriate training set is 
important for learning convergence and neural 
network performance. Of 1959 manually determined 
grid patterns, 160 grid patterns (less than 10%) were 
selected as a training set for the network. Training 
patterns were prepared in two sets as follows: 

1. the entire grid cell set was divided into eight 
pools; the manually determined drainage direction of 
each grid cell in the same pool is the same; 

2. grid cells are deleted from each pool if their 
drainage directions determined according to the 
manual and drainage network methods are not the 
same; 

3. to form training set Dl, 20 grid cells were 
selected randomly from each pool; 

4. repeat step (3) to form training set D2. 

grid pattern. Other training sets such as those 
generated randomly from the entire grid cell set were 
tested also, but are not demonstrated here. 

Normalization of input patterns 

The normalization function shown in Equation (5) 
was used to compute the input value for each input 
node based on the associated DEM pixel elevation. 
Input values are between zero and unity. 

I, = n1 - nmm *0.9 + 0.1 
nmsr - nmin 

(5) 

where I, is the final input value to an input node, 

n, = (e, - e~,.)/(e~,, - eP,,,)*O.9 + 0.1, e, is the el- 
evation of the current DEM pixel, ef,, is the minimum 
elevation of all pixels within the tested area, einx is the 
maximum elevation of all pixels within the area, n;,, 
is the minimum of n, and nkpx is the maximum of q’s 

of the 25 pixels within the current grid cell. The 
network was sometimes not completely trained with 
the normalized value n,. Several obvious patterns, but 
with a small elevation, were observed to not be 
learned during many learning cycles. The magnitude 

The output node values lie between zero and unity. of the elevation appeared to be learned by the 
Only one output node of each training grid pattern network. The drainage pattern is governed primarily 
is set to unity; all others are set to zero. The node with by the pixel elevation variation rather than by the 
a nonzero output is associated with the drainage magnitude. The normalized function (Eq. 5) is thus 
direction assigned for the input pattern of the training proposed to enlarge the variation of a flat area. 
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Direction and step methods 

Direction and step methods in various combi- 
nations were tested (see the end of the program in 
Appendix 1 after START JOBS). The steepest 
descent method was tested for a step size equal to 0.1, 
0.3, or 0.5 and the momentum-descent method was 
tested with a step size 0.1, 0.3, or 0.5, and decay rate 
0.5, 0.7, or 0.9. In total 442 (2 training 
sets x 17 numbers of hidden nodes x 13) cases were 
tested according to steepest- and momentum-descent 
methods with fixed step sizes. Because these methods 
failed to learn the training set completely within 2000 
iterations, the results are not reported here. These 
two methods were not tested further, because finding 
a good fixed step size is arbitrary, requires an 
extensive iterative procedure, and because the 
optimal solution may be missed. Only the methods of 
steepest descent (SD), conjugate gradient (CG), and 
Rudi’s conjugate (RC) gradient with line search 
generated satisfactory results. 

Network training and results 

Each input value is computed by the normalized 
function (Eq. 5). All training grid patterns are fed 
through the network once, and the link weights are 
modified at the end of each epoch. The values of 

weights are not constrained. The network is trained 
in at most 2000 iterations (training stage). The 1959 
grid drainage patterns of the test area are then 
determined by the trained network (validation stage). 
The drainage direction of each grid cell is set to be 
that associated with the output node with the 
maximum output value. All neural network training 
for this study was implemented with Xerion on a Sun 
Spare workstation with the following two commands. 

nohup per1 doNet demNnet dem.trainDl 
dem.valid >& /dev/null&nohupperldoNet 
demNnet1 dem. trainD2 dem.valid > & /dev/ 
null & 
where dem. trainD1 and dem. trainD2 are names 
of files for the two sets of training cases, and 
dem.valid is the file name for the validation set. 
Several intermediate and summary files are created 
for each training and validation stage. The files 
include an input file to operate the Xerion bp module, 
a Xerion bp output file, a file to store link weight 
values, validation reporting files for training and 
validation sets, and a summary file. Table 2 shows an 
example of the Xerion bp input file created by the 
program for both training and validation stages. 
Table 3 shows a sample of the summary file for 
learning performance, validation performance, and 
CPU time usage. The summary file is created mainly 

Table 2. Sample Xerion bp input file created by program 

# sample input for demNnetDI_12_cg.in used for the training stage. 
addNet “demNnetD1” 
useNet “demNnetD1” 
addGroup -type INPUT input 25 
addGroup -type HIDDEN hidden 12 
addGroup -type OUTPUT output 8 
disconnectGroups “Bias” “input” 
ConnectGroups input hidden 
ConnectGroups hidden output 
addExamples -type TRAINING dem.trainDl 
seed 120 
randomize 1 
set currentNet.extension.zeroErrorRadius = 0 
minimize -tolerance l&e-IO -iter 5 -cg -epsilon 0.3 
saveweights wt/demNnetDl_llcg.wt 
exit 
# sample input for demNnetDl_lLcg.inV used for the validation stage. 
open demNnetD1 > validate/demNnetD1_1Icgvalidate 
format UnitRec.target “%7.4f’ 
format UnitRecoutput “%7.4f’ 
addTrace doExamples “print ” 
(trace.fmt listed in Appendix 3 is included here.) 
@demNnetDl” 
addNet “demNnetD1” 
useNet “demNnetD1” 
addGroup -type INPUT input 25 
addGroup -type HIDDEN hidden 12 
addGroup -type OUTPUT output 8 
disconnectGroups “Bias” “input” 
ConnectGroups input hidden 
ConnectGroups hidden output 
addExamples -type TRAINING dem.trainDl 
loadweights wt/demNnetD1_12_cg.w 
addExamples -type VALIDATION dem.test 
doExamples -t VALIDATION 
close demNnetDI 
deletestream -quiet demNnetD1 
open demNnetD1 r vaIidate/demNnetDl_ILcg.train 
doExamples -type TRAINING 
close demNnetD1 
exit 
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Table 3. Sample list of summary file created by program 

Report for demNnetDL02steepestRay on 941025232212 
TIME user = 188.3 = 2.3 real = 21 I .9 sys 
TIMEV user = 65.4 = 7.2 real = 78. I sys 
iter= OnFE= If= 380.65738u= 1.2e+02d= -1,33e+O4dr= 1 
iter = 2000 nFE = 2061 f = 65.805695 /g! = 0.77 d = - 0.741 dr = - 0.23 
TDiff 0:124 45:35 9O:l 135:O 180:0 - > 160 
VDiff 0:1032 45:785 90:106 135:32 180:4 _ > 1959...OK’?... 

Report for demNnetD1_02_cg_Ray on 941025232520 
TIME user = 82.2 = 0.8 real = 88.5 sys 
TIMEV user = 65.4 = 5.9 real = 79.5 sys 
iter= OnFE= 1 f= 380.65738u= 1.2e+02d= -1.33e+04dr= 1 
iter = 525 nFE = 893 f = 61.628765 u = 0.32 d = - 0.00542 dr = 1 
TDiff 0:122 45:35 90:3 135:0 180:0 - > 160 
VDiff 0:998 45:751 90:144 135:47 180:19 - > 1959...OK?... 

Report for demORG_OS_cgrudiRay on 941026000227 
TIME user = 99.4 = 1.4 real = 107.3 sys 
TIMEV user = 64.8 = 5.8 real = 77.5 sys 
iter= 0 nFE= 1 f= 315.37115 I@1= 1.3e+02 d = - 1.62e+04 dr= 1 
iter = 471 nFE = 689 f = 2.0000029 u = 3.5e - 05 d = - 9.3e - 07 dr = 1 
TDiff 0:158 45:2 90:0 135:0 180~0 - > 160 Hmmm...Try further... 
VDiff 0:1180 45:590 90~109 135:50 180:30 - > 1959...OK?... 

by a user provided function call reportsub. A 

sample of reportsub for the case study is listed in 

Appendix 2 and its pseudocode is shown at the end 
of Table 1. The function compare called by 
reportsub is a problem-dependent function and 
must be modified if the problem is altered. This 
function compares the result from the validation 
stage with the desired one based on a comparison 
method provided by the user. The function appears 
complicated for this example because comparison of 
the results is not straightforward and requires data 
conversion from a numeric value to an angular value 
(unit: degree). For most problems that require direct 
comparison of numeric values, the function can be 
simplified significantly. 

In total 102 (2 training sets x 3 methods (SD, CG, 
and RC) x 17 numbers of hidden nodes) cases, were 
trained. Table 4 shows all completely trained cases 
for each training set and method. A completely 
trained case is one that learns all the given training 
patterns within 2000 iterations. Cases with 2, 3, or 5 
hidden nodes were unable to learn any of the tested 
training sets completely, consistent with the concept 
that more hidden nodes are required in learning a 
complex problem. The computation time and final 
errors for training the completely trained cases are 
summarized in Table 4. Comparisons are made on 
the basis of the difference between the computed and 
manual results reported according to the difference in 
the number of grid directions matching or 45“, 90’, 
135”, or 180”. 1293 grid cells exactly match the 
manually determined ones, 573 grid cells have a 45’ 
difference, 73 grid cells have a 90” difference, 40 grid 
cells have a 135” difference, and sixteen grid cells have 
a 180” difference. Grid cells at a 45’ difference from 
the manually determined results may arise because 
during the manual process one or two alternative 
adjacent directions are observed frequently. Grid cells 

with a 45” difference from manual ones therefore are 
considered acceptable. There are 36 cases in which 
the computed and manual methods were different. 
However, this number was reduced greatly if 
directions off by 45” were considered acceptable. 

CONCLUSION 

Researchers seek automated methods for imple- 

menting conventional modeling tasks. A neural 
network with self-learning and self-organization 
capability is a promising technique to replace tasks 
that involve human judgment. The Per1 program 
developed in this work is intended to relieve the 
burden on an analyst from implementing the 
conventional iterative neural network training pro- 
cedure and research result reporting. A complex test 
such as the study demonstrated here can be 
implemented with a small number of nohup 
commands. 

The result obtained from the neural network 

method applied to a case study is satisfactory in 
comparison to the manually determined drainage 
pattern, and is superior to other previously developed 
numerical methods. The selection of appropriately 
balanced training sets, sufficient hidden nodes, a 
suitable normalization method, and the best direction 
methods are the major factors in building an efficient 
neural network. These factors are explored readily 
with the program which can be executed in a 
background mode. With slight modification the 
program can be applied to explore neural network 
research of other types. All programs, including 
several data and report processing scripts developed 
in this work are available for public accesses. 
Information for obtaining them can be requested by 
e-mail addressed to environ@ev004.ev.nctu.edu.tw., 
or by anonymous FTP from IAMG.ORG. 
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Table 4. Completely trained cases 

Training set # of hidden units Direction method CPU time # of iterations SSE # of different grids Good 
Difference in degrees 

0 45 90 135 180 

For pattern determined by the drainage network method * 
- 

DI 
DI 
Dl 
DI 
Dl 
DI 
DI 
Dl 
DI 
Dl 
Dl 
Dl 
DI 
DI 
Dl 
DI 
DI 
DI 
Dl 
DI 
Dl 
DI 
Dl 
DI 
Dl 
Dl 
Dl 
Dl 
DI 
Dl 
Dl 
DI 
Dl 
DI 
D2 
D2 
D2 
D2 
D2 
D2 
D2 
D2 
D2 
D2 
D2 
D2 
D2 
D2 
D2 
D2 
D2 
D2 
D2 
D2 
D2 

8 CG 
IO SD 
IO CG 
IO RC 
I3 SD 
I3 CC 
13 RC 
18 SD 
I8 CG 
18 RC 
20 SD 
20 CG 
20 RC 
23 SD 
23 CG 
23 RC 
26 SD 
26 CG 
26 RC 
29 SD 
29 CG 
29 RC 
32 CG 
32 RC 
35 SD 
35 RC 
38 SD 
38 RC 
41 SD 
41 CG 
41 RC 
44 SD 
44 CG 
44 RC 
8 SD 
10 CG 
13 RC 
I8 CG 
23 CG 
26 SD 
26 CG 
26 RC 
29 CG 
29 RC 
32 CG 
32 RC 
35 SD 
35 RC 
38 SD 
38 RC 
41 SD 
41 CG 
41 RC 
44 SD 
44 CG 

I 
3.1 
0.9 
1.3 
4 

1.7 
I.1 
4.5 
I.2 
0.8 
7.6 
4.1 
2.2 
2.3 
1.1 
0.9 
3.1 
0.9 
0.6 
3.2 
1.1 
0.7 
2 
1 

2.1 
0.8 
2.5 
0.8 
2.2 
1.1 
0.7 
2.8 
1.1 
I.4 
4.1 
1.5 
1.4 
2.4 
0.9 
2.8 
1.1 
1.2 
3.5 
1.9 
2.5 
1.5 
6.1 
1.4 
6 

1.4 
5.8 
2.8 
1.7 
7.8 
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APPENDIX 1 
Program doNet 

#!/usr/local/bin/perl 
Script name: doNet 
Purpose : Implement batch Neural Network trainings using Xerion/bp. 

Computation time is computed by Unix command ‘time.’ 
Tested successfully on SunOS4.l.x and HPUX 9.02. 

Author: Jebng-Jung Kao jjkao@green.ev.nctu.edu.tw 
ftp site: ftp.edu.tw:/misc/environment/NCTU_HV/nnet/doNet 

evOOs.ev.nctu.edu.tw:/nnet/doNet 
Last updated on 03/10/1995. 

Variable sets to be predefined by the user. 
~hiddenSet~("02~~,"05","08","11","14","17" 

# number of nodes in the hidden layer. ’ 
"20*~ 88231t "2508, 182g8$, "328:. 0035<*, ";*w,) ; 

’ 
$email_address=~~jjkao@evOOl.ev.nctu.edu.tw"; 

Default values for optional user-specified variables. 
$traceFMTfile="trace.fmt"; 
$reportsub=flreport.sub'Q. # user defined subroutine for producing reports 
$reportFile="report/Summary"; 

Default values for problem dependent variables. 
$inUnitNum=49; 
$outUnitNum=S; 
# $rep="l"; # if you need information for every $rep iterations. 
$iter="2000"; 

# Problem independent variables(well! you can change them also.) 
$seed=llO; 
$randomize=l.O; 
#$weightCost=$l; #if set, minimize error with network cost errors 
$zeroErrorRadius=O; 
$doExamples="VALIDATION"; 
$doMinimize="yes"; 

# Command path which may be system-dependent; 
$MVBIN="/bin/mv" 
$MKDIRBIN=*1/bin/mkdir80; 
$TIMEBIN="time". 
SXBRION_BPBIN=~~~~~~; 
$MAILCMD="/usr/ucb/Mail"; 

# for hpux, $MAILcMD=q8/usr/bin/mailx"; 
$RMBIN="/bin/rm"; 
$LNBIN="/bin/ln"; 

# Tag character for validation path. 
$validateTAG='QV't; 

$usage="Usage: donet netName trainFile validateFile (in# out#l"; 
if($#ARGV != 2 && $#ARGV != 4) { print "$usage\n"; exit;} 
$netName=$ARGV[O]; 
$trainFile=$ARGV(l]; 
$validateFile=$ARGV(2]; 
if ($#ARGV == 4) { 

$inUnitNum=$ARGV[3]; 
$outUnitNum=$ARGV(4] ; 

) 

# Check file and directory existence. 
if (! -s StrainFile) { 

print "Error: Training Set file StrainFile does not exiSt.\n$USage\n"; 
exit; 

\ 



if (! -s 
print 
exit; 

1 

if (! -d 
print 
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$validateFile) ( 
"Error: Validation Set file $validateFile does not exist.\n$usage\n"; 

$netName) ( 
"Creating directory SnetName/ . ..\n". ~~~~. 

system("$MEDIRBIN SnetName") ; 
} 

chdir($netName) ; 

if(! -s "$trainFile") { 
print "Linking StrainFile to SnetName/ . ..\n". 
system("$LNBIN -s ../$trainFile StrainFile"); 

J 

if(! -s 08$validateFile") ( 
print "Linking $validateFile to SnetName/ . ..\n". 
system("$LNBIN -s ../$validateFile SvalidateFile") ; 

1 

if(! -s U ../$traceFMTfile") ( 
$traceFMTfile=""; 
print "Warning: no trace format file. No trace done.\n"; 

) elsif (! -s "$traceFMTfile")( 
print "Linking $traceFMTfile to SnetName/ . ..\n". 
system("$LXBIN -s ../$traceFMTfile StraceFMTfile"); 

1 

user-provided reporting file. 
if(-s U ../$reportsub")( 

# if you want to keep different version of the report file, pls. 
# uncomment the following 5 lines. 
# if(-s $reportFile) { 

: 
$thistime=‘date +%y%m%d%?i%MtS‘; 
chop($thistime); 

# 
# 1 

system("$MVBIN $reportFile $reportFile.$thistime"); 

if(! -s "$reportsub") { 
print "Linking Sreportsub to SnetName/ . ..\nl'. 

\ 
system("$LNBIN -s ../$reportsub Sreportsub"); 

I donot want to see display in batch training, 
# but it is useful for interactive training. 
$ERV(*DISPLAY')="/dev/null~; 

Create a TAG file for which run is being implemented. 
$home=$ENV{'HOME'}; 
$hostname=‘hostname‘; chop($hostname); 
if ( ! -d "$home/tmp" ) ( system("$MRDIRBIN $home/tmp"); ) 
$tagFile="$home/tmp/donet$user$netName$hostname"; 

create required directories. 
@needDirs=("in","wt","validate","out","report"); 
foreach $d (@needDirs)( 

if (! -d Sd) { 
system("mkdir $d") ; 

1 
1 
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if(-s $reportsub) ( require Sreportsub;} 

# This function execute a training and validation process. 



1044 J.-J. Kao 

sub doNet( 
# set name=$netName ShiddenUnitNum ($cg($method}[_$epsilon[_$alphall I_$lsl 

SthisRunName=VS(netNameJ ShiddenUniENum": 
if($method eq A;) { # non~momentum and non-steepest-decent method 

$thisRunName="$(thisRunWame)_$cg"; 
} else ( 

$thisRunName="$(thisRunWame} Smethod"; 
if($epsilon ne "") ( $thigRunName=" $(thisRunName}_$epsilon"; } 
if($alpha ne "") ( $thisRunName="$(thisRunName)_$alpha"; ) 

if($ls ne ~~ )($thisRunName="$(thisRunName)_$ls"); 

# set input/output file names. 
$weightFile="wt/$thisRunName.wt"; # weight 
$loadWeights=$weightFile; # re-load weight 
$validateOutputFile="validate/$thisRunName.validate"; # validation 
$trainOutputFile="validate/$thisRunName.train"; # training 
$bpInFile="in/$thisRunName.in"; # bp input 
$bpOutputFile=~80ut/$thisRunName.bp"; # bp output 
$timeReportFile=@lreport/$thisRunName.time'D; # time report 

# create a TAG to keep track where it is, when running background. 
system("echo I am doing this case:$thisRunName now. >$tagFile"); 

# notify the user; NOTE: you may receive too many message. 
# if you want to reduce, you may move this line after dolet. 
system("$MAILCMD -s \O'$thisRunName$hostname\'V $email_address <StagFile"); 

# training 
$validateIt=OV"; 
&writeNetIn($bpInFile,""J ; 
system("$TIMEBIN $XERION BPBIN c$bpInFile$validateIt l>$bpOutputFileSvalidateIt 

2>$timeReportFile$validateIt7); 

# validation 
$validateIt=$validateTAG; 
&writeNetIn($bpInFile,$validateIt); 
system( 

8V$~~~~~~ BPBIN <$bpInFile$validateIt i>$bpOutputFileSvalidateIt Z>/dev/null") 
# In most case, validation is quick and no need to report. 
# system("$TIMEBIN $XERION_BPBIN <$bpInFile$validateIt 1~SbpOutputFileSvalidateIt 

2>$timeReportFile$validateIt"); 

# execute user-specified reporting, if provided 
if(-s Sreportsub) ( 

&reportsub($thisRunName,$bpOutputFile,$timeReportFile,$trainOutputFile.$validateOut 
putFile,$reportFile) ; 

# This function write a XERION input file. You may consult XERION manual to 
# modify it to meet your needs. 
sub writeNetIn{ 

local($netInFile,$validateIt)=@_; 
#print "Writing $netInFile, please wait...\n"; 
open(NETIN,">$netInFile$validateIt') 1 ) 

die "Error:canot open $netInFile$validateIt $!\n"; 

if($validateIt eq $validateTAG) ( # validation phase 
if($validateOutputFile ne "") {print NETIN 

"open $netName > $validateOutputFile\n';J 
if($UnitRectarget ne "I') (print NETIN 

"format UnitRec.target \"$UnitRectarget\"\n";) 
if($UnitRecoutput ne 'I") {print NETIN 

"format UnitRec.output \"$UnitRecoutput\"\n";} 
if($traceFMTfile ne "") { 



A neural network for grid pattern recognition 

$count{$diffDegree}++; 

) 

$test_validEntry=cTEST_VALID>; # ignore blank lines 

close(TEST VALID); 
# report t&al # of cases, if desired. should be = $matchcount 
# print "TOtal=$totalcount\n"; 
$matchcount=o; 
foreach $d (@degreeList){ Smatchcount += $count($d}; } 

# set flag for success 
$success=~'~8; 

# best result; 
if($count{'O'} == $totalcount){$success== Yu...Hoo...";} 

# for training set, < 5 untrained case; marginally trained. 
elsif(($totalcount-$count('0'j) < 5) ($success=fl Hmmm...Try further...";} 

# for validation set, 0+45 > 1350 cases is acceptable. 
elsif(($count('O')+$count('45')) > 1350)($success=" . ..OK?...".) 

# report the summary. 
print REPORT 8 TDiff\tO:Scount('O') 45:$count{145') 90:$count{190*) 

135:$count('135') IBO:$count('l80~) -> $matchcount$success\n"; 
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close(REPORT); 
if($success eq "") ( return "0";) # bad case 
return #'II; 

1 

# This function extract time information from Unix time command output. 
sub timeOSdep ( 

local($OSNAME,$timeReportFile)=@ ; 
local($systime,$realtime.Suserti~e); 
open(TIME,"$timeReportFile'); 

# SunOS's and HP-UX's 'time' 
while (<TIME>) ( 

commands produce slightly different output. 

if ($oSNAME eq "SunOS") ( 

if(/^[ \t]+([\w.]*) [ \tl+realI \tl+(I\w.l*) [ \tl+user[ \tl+([\w.l*) 1 \tl+sYs/) I 
$realtime=$l; 
$usertime=$2; 
$systime=$3; 

) 
) elsif ($OSNAME eq "HP-UX") ( 

if(/^sys[ \tl+([\w.l*) [ \tl*/) ($systime=Sl) 
if(/^real[ \tl+([\w.l*) [ \tl*/) 
if(/^user[ \tl+([\w.l*) [ \tl*/) 

1 
I 
$realtime=$l 
$usertime=Sl I 

else { 
print "Hmmm... I donot know your OS: SOSNAME\n"; 
return (-1,-1,-I); 

1 
\ 

# YOU may add other OS dependent code here, if applicable 

system("$RMBIN -f $timeReport"); #NOTE SRMBIN is defined in doNet 

) 

return ($systime,$realtime,$usertime); 

# Function called by doNet for user-specified reporting. 
sub reportsub( 

# get OS name for 'time' command output format. 
if ($uname eq "")( 
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$uname=‘uname -a‘; chop($uname); 

1 
if ($uname =-/^([\w-I*) [ \tl+/) { $thisOS=Sl) 

0~633 (REPORT, ">>$reportFile"); 

# get system date/time. 
$thistime='date +%y%m%d%H%M%S‘; chop($thistime); 
print REPORT "Report for SentryName on $thistime\n*; 

# if $timeReport file exists, extract time and add it into the summary. 
if(-s "$timeReport") ( 

($systime,$realtime,$usertime~=&timeOSdep~$thisOS,$timeReport~; 
print REPORT 'I TIME\tuser=$usertime\tsys=$systime\treal=$realtime\n~~; 

I 

# if time report file for validation phase exists, summary it also. 
#In most case, validation is quick, and no need to report it. see doNet. 
#NOTE: $validateTAG is defined in doNet. 

if(-s "$timeReport$validateTAG") ( 
($systime,$realtime,$usertime)=&timeOSdep~$thisOS,"$timeReport$validateTAG"~; 
print REPORT " TIMEV\tuser=$usertime\tsys=$systime\treal=$realtime\n~1; 

) 

# try to get 1st and last Iter lines. 
# YOU may edit function getIter for this purpose. 

if( -s $bpOut) { 
&getIter($entryName,$bpOut) ; 

$firstIter='head -1 $bpOut'; 
if($firstIter ne "") ( print REPORT ' $firstIter";} 
$lastIter=‘tail -1 $bpOut‘; 
if($lastIter ne "") ( print REPORT ' $lastIter";} 
system("$RMEIN -f $bpOut"); #NOTE: $RMBIN is defined in doNet. 
system("$RMBIN -f $bpOut$validateTAG"); 

I 

# ________-_------Specific steps for DEM case _--__--__--__ 
# check training results. 
# if the Nnet configuration produce acceptable result, return ""; 

# otherwise $lastFlag will return "D" 
$lastFlag=hcompare($trainOut,$reportFile) ; 
$lastFlagl="D"; # kill all files, anyway, to save space 
if($lastFlag == "DW) { 

system("$RMBIN -f $trainOut"); 
system('$RMBIN -f in/$entryName.in"); 
system("$RMBIN -f in/$entryName.in$validateTAG"); 
system(19$RMBIN -f wt/$entryName.wt"); 

I 
# check validation results. 
# if the Nnet configuration produce acceptable result, return ""; 

# otherwise $lastFlag will return "D" 
$lastFlagl=&compare($validateOut,$reportFile) ; 
$lastFlagl="D"; # kill all files 
if($lastFlagl == "D'@) ( 

I anyway. to save space 

system(81$RMBIN -f $validateOut"); 
if( $lastFlag eq "") { 

system(3'$RMBIN -f $trainOut") ; 
system("$RMBIN -f in/$entryName.in"); 
system("$RMBIN -f in/$entryName.in$validateTAG"); 

1 
system("$RMBIN -f wt/$entryName.wtt8); 

I 

---------- END of report.sub included (use require) into doNet----------- 
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APPENDIX 2 
Sample report. sub 

# ----------- START of report.sub included by doNet----------- 
# This is a sample file for report.sub for running doNet. 
# Case description: DEM Drainage Network training. 
# Author: Jehng-Jung Kao jjkao@evOOl.ev.nctu.edu.tw 
# ftp site: ftp.edu.tw:/misc/environment/NCTU_EV/nnet/donet 
# Last updated on 03/10/95. 

# This function keep only lines with ^iter= from Sthefile, XERION/bp output. 
sub getIter( 

local($entryName,$thefile)=@_; 
local($tmpfile)="/tmp/junk$entryName"; 
open(THEFILE,"$thefile"); 
open(TMPFILE,">$tmpfile"); 
while (<THEFILE>) { if (/^iter= /) {print TMPFILE $_;)} 
close(TMPFILE); close(THEFILE); 
system("$MVBIN $tmpfile $thefile"); #NOTE SMVBIN is defined in doNet 

IO47 

# List of degrees to be reported for differences. 
@degreeList=('O','45','90','135','180'); 

# This function compare training or validating DEM drainage pattern results 
sub compare{ 

local($test_validOutFile,$reportFile)=@_; 
if(! -6 $test_validOutFile) (return;) 

# Initialization. 
open(R~P0~~, ">>$reportFile"); 
open(TEST_VALID,$test_validOutFile); 
$totalcount=O; # count total # of cases. 
foreach $d (@degreeList){ $count($d)=O; } 

# Do comparison for reporting difference. 
while (<TEST-VALID>) ( 

$totalcount++; 
# delete leading blanks 
$test_validEntry=$_; chop($test_validEntry) ; $test_validEntry =_ s/* [ \tl*//; 

# split into a List 
@targetList=split(/[ \tl+/,$test_validEntry); 

# find the target direction, with maximal value. 
Smax=O.O: _---- , 
for($i=O; $i < 8; $i++){ 

if ($targetList [$il > $max) (Smax=$targetList [Sil ; 

\ 
$targetDir=$i+l;) 

.$targetDegree=($targetDir-1)*45; 

# find the Nnet determined direction, with maximal value. 
$test_validEntry=cTEST VALID>; chop($test_validEntry); 
$test_validEntry =- s/~[ \tl*//; # delete leading blanks. 
@test_validList=split(/[ \tl+/,$test_validEntry); 
$max=O.O; 
for($i=O; $i < 8; $i++){ 

if($test_validList[$il > $max) {$max=$test_validList[$il ; 

1 

$test_validDir=$i+l;} 

$test_validDegree=($test_validDir-1)*45; 

# compute the difference and count 
$diffDegree=$targetDegree-$test_validDegree; 
if($diffDegree < 0) ($diffDegree=-SdiffDegree;} 
if($diffDegree > 180) ($diffDegree=360-$diffDegree;-) 
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if (! -s $traceFMTfile) {print "Error: $traceFMTfile is empty.\n";exit;) 
print NETIN "addTrace doExamples \"print \I\"'; 
open(TRACEFMTFILE,"$traCeFMTfile"); 
while (cTRAcEFMTFILE>) (print NETIN "\t$_";) 
close(TRACEFMTFILE); 
print NETIN "@$netName\"\n"; 

1 
I 
print NETIN "addNet \"$netName\"\n"; 
print NBTIN "useNet \"$netName\"\n"; 
if($inUnitNum eq "") ( print "Error: no inUnitNum.\n"; exit} 
print NETIN "addGroup -type INPUT input $inUnitNum\n"; 
if($hiddenUnitNum eq "") ( print "Error: no hiddenUnitNum.\n"; exit] 
print NETIN "addGroup -type HIDDEN hidden $hiddenUnitNum\n"; 
if($outUnitNum eq "I') { print "Error: no outUnitNum.\n"; exit) 
print NETIN "addGroup -type OUTPUT output $outUnitNum\n"; 
print NETIN "disconnectGroUpS \"Bias\" \"input\"\n"; 
print NETIN flconnectGroups input hidden\n"; 
print NETIN "coMectGrOUpS hidden OutpUt\n"; 
if($trainFile ne 'I") (print NETIN "addExamples -type TRAINING $trainFile\n";) 

fi && $validateIt ne $validateTAG) { # training phase 
~:~~~~!$i~?~f)eq "g?nt NETIN "seed $seed\n";} 
if($randomize ne ""1 ( print NETIN "randomize $randomize\n";} 
if($weightCost ne @'") ( print NETIN "set currentNet.weightCost = $weightCost\n";} 
if($zeroErrorRadius ne "") { print NETIN 

"set currentNet.extension.zeroErrorRadius = $zeroErrorRadius\n";} 
print NETIN "minimize -tolerance l.Oe-10"; 
if($rep ne 18t0) ( print NETIN I' -rep $rep";} 
if($iter ne "I*) ( print NETIN II -iter $iter";) 
if($method ne "") ( print NETIN 'I -$method"; 

if($method eq "quickprop" && $1~ eq "")(print NETIN ' -qpEpsilon 0.1";) 

1 
if($cg ne "") ( print NBTIN 'I -$cg";) 
if($epsilon ne "") ( print NETIN 'I -epsilon $epSilOn”;} 

if($alpha ne 8t") ( print NETIN " -alpha $alpha";) 
if($ls ne "") ( print NETIN I( -ls$ls";} 
print NETIN *'\n"; 
if($weightFile ne "") ( print NETIN "saveweights $weightFile\n";} 

1 
if($validateIt eq SvalidateTAG) ( 

if($loadWeights ne "") ( print NETIN "loadweights $loadWeights\n";} 
if($validateFile ne "") (print NETIN 

"addExamples -type VALIDATION $validateFile\n";} 
if($doExamples ne 'I") (print NETIN "doExamples -t $doExamples\n";} 
print NBTIN 10close $netName\n"; 
print NETIN "deleteStream - 
if($trainOutputFile ne "") print NBTIN 7" 

iet $netName\n"; 
"open $netName > $trainOutputFile\n";) 

if($trainFile ne I"*) (print NETIN "doExamples -type TRAINING \n";} 
print NBTIN tOclose $netName\n"; 

I 
print NETIN "exit\n"; 
close (NETIN); 

I 

#___________ST~T JOBS_______________________________ 

foreach Sh (@hiddenSet) ( 
# repeat for number of hidden nodes = Sh. 
$hiddenUnitNum=$h; 
# START OF USER SPECIFIED TRAINING STRATEGIES 

# steepest method -epsilon [0.310.5] and -1sRay 
$ls=""; # line search method 
$cg= 1’ ” ; 

$method="steepest". 
$epsilon="0.3"; ’ 

# only one can be non-null string 
# for step size 0 

&doNetO; 
$epsilon=*0.5"; 
&doNetO ; 

# for step size 0 
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$epsilon=""; # for step size 0 
$ls=OURayU. 
&doNetO ;’ 

# momentum method -epsilon [0.110.3] -alpha [0.9/0.71 
$ls~"~~; $method="momentum"; 
$alpha="0.9"; # for momentum method 
$epsilon="O.l"; # for step size 
&doNetO ; 
$epsilon="0.3"; # for step size 
&doNetO ; 
$alpha="0.7"; # for momentum method 
$epsilon="O.l"; # for step size 
&doNetO ; 
$epsilon="0.3"; # for step size 
&doNetO ; 

# Conguate Gradient method 
$cg=*@cg81; $method=""; # only one can be non-null string 
&doNetO ; 

# Rudi's Conguate Gradient method 
$cg="cg8@; $method=""; # only one can be non-null string 
$cg=l*cgrudi"; 
&doNetO ; 

$cg='tcgRestart"; 
&doNetO; 
system("$RMBIN -f StagFile"); 
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APPENDIX 3 
Sample trace. fmt 

currentNet .group[3l.unit[Ol.target \ 
currentNet.group[3l.unit[1l.target \ 
currentNet.group[31.unit[21 .target \ 
currentNet.group~3l.unit~3l.target \ 
currentNet.group[3].unit[4l.target \ 
currentNet.group[31.unit[Sl.target \ 
currentNet.group[31.unit[6l.target \ 
currentNet.group[3] .unit[7].target 
currentNet.group[31 .unit[l].output \ 

\"\n\" currentNet.group[3l.unitIOl.output \ 

currentNet.group13l.unit[2l.output \ 
currentNet.group[3l.unit[3l.output \ 
currentNet.group[31 .unit[Ql.output \ 
currentNet.group[3l.unit[Sl.output \ 
currentNet.groupL3l.unitL61 .output \ 
currentNet.group[31 .unit[7].output \ 
\"\n\"\ 


