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Antireflective gate structures of polycrystalline silicon �poly-Si� and silicon dioxide films enable
postimplantation green continuous-wave laser annealing of all Si regions of green laser-crystallized
panel Si transistors. About 40% of the incident laser-energy penetrates to the channels, owing to
antireflective gate structures with the absorptive gate poly-Si, while 65% of the incident laser-energy
enters the source/drain regions because of Fresnel reflections at the air/source �drain� interfaces.
Such inverted laser-energy profiles and ascendant defect distributions along the channels/junctions/
contact regions, yielded continuous, improved epilike Si microstructures over the entire active layer.
The electron mobility of the transistors, 620 cm2 /V s, approaches that of integrated-circuits
transistors. © 2008 American Institute of Physics. �DOI: 10.1063/1.2842417�

High-performance polycrystalline silicon thin-film tran-
sistors �poly-Si TFTs� on glass substrates increasingly influ-
ence prophetical circuits1 and current drivers. A high-speed
and reliable transistor must have a thin channel. The increase
in the parasitic source/drain �S/D� resistance by shrinkage of
the channel layer is normally reduced by the introduction of
SiGe-raised S/D �Ref. 2� structures or by applying advanced
activation techniques. Temperature constrains the activation
of S/D junctions in several transistors, including panel
transistors3 and integrated-circuit transistors with Ge chan-
nels and high-� gate dielectrics4 or shallow junctions.5

Hence, thermal annealing technologies must continue to ad-
vance. Dopant activation by ultraviolet5 �UV�, green,6 and
near-infrared7 laser-irradiation of S/D regions has been dem-
onstrated in the fabrication of transistors. However, laser ac-
tivation, unlike laser crystallization, generates
discontinuities8 and/or residual damage9 in microstructures
across junctions because of variations in the laser energy that
is scanned over the device bodies, which are formed from the
gate �G� structures.

With reference to panel applications, in backside laser
activation, the percentage of laser energy that was scanned
into the channels equaled that scanned into the S/D regions
and junctions. Although the numbers of defects varied
among the channels, junctions, and contact regions, forma-
tion of improved channel microstructures over the entire
channel/junction demonstrated and explained the enhanced
mobility and reliability of the panel epilike silicon transistors
using backside green laser activation.6 The fact that the ab-
sorbed fraction of light energy in irradiated poly-Si layers
substantially declines as the laser wavelength increases10

supports the claim that gate structures of poly-Si and dielec-
tric SiO2 films as double-layer antireflectors11 promote the
transmission of front-side green laser irradiation to channels
by as much as 40%, while 65% of the incident laser energy
enters the S/D regions because of air/S �D� poly-Si Fresnel

reflection. Such inverted laser-energy profiles together with
ascendant defect distributions along channels/junctions/
contact region form continuous improved epilike Si micro-
structures over the entire channel/junction and low parasitic
source/drain resistance.

This study explores antireflective gate structures to en-
hance front-side green continuous-wave �cw� laser activation
�CLA� in panel transistors on green cw laser-crystallized epi-
like Si layers.

Poly-Si channels on quartz substrates were formed by
the green cw laser crystallization �CLC� �laser energy of
�4.2 W� of amorphous silicon islands with thickness of
100 nm, which were deposited by plasma-enhanced chemi-
cal vapor deposition �PECVD�. Gate dielectrics of PECVD
SiO2, with a thickness of 115 nm together with thermally
deposited poly-Si gates with a thickness of 250 nm, are ap-
plied to form self-aligned transistors. Poly-Si gates and S/D
regions were doped with PH3 �5.0�1015 cm−2 and 25 keV�
and activated by furnace thermal annealing �FA� for 12 h at
580 °C or green cw laser irradiation at 2.2–2.8 W. The para-
sitic S/D resistance of laser �FA�-activated TFTs was deter-
mined from the relationship between the channel-width
�W=10 �m�-normalized on resistance �Ron� �Ref. 12� and
the length of the channel �L=5–15 �m�. The grain trap-state
densities nGT of TFTs were examined using the field-effect
conductance method.13

Figure 1�a� plots the simulated transmittance spectrum
of incident light across the gate structures of poly-Si /SiO2
toward the channels. The visible �450–800 nm� transmit-
tance spectrum exhibits a pattern of interference fringes with
transmittance that fluctuates between 10% and 60% because
of the gate structures and the considerably long penetration
depth of visible light in poly-Si gates.10 In front-side green
laser irradiation, up to 40% of the incident laser energy en-
ters the channels, enough to recrystallize a few small grains
in the channels, as indicated by the nGT of the green laser-
activated devices between the tail and the middle energetic
levels �E� that were far from the Fermi level �EF�, such that,
�E=E-EF=0.5–0.35 eV, which decreases markedly as the
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laser-activation energy increases �Fig. 1�b��. Moreover, the
tail-state density of grain traps measured in green laser-
activated devices, which was closely related to channel
crystallinity,14,15 nGT at �E=E-EF=0.56–0.5 eV, was inde-
pendent of laser-activation energy and identical to that mea-
sured in FA-activated devices �Fig. 1�b��.

Fresnel reflection at air/S �D� interfaces causes 65% of
the incident green laser-activation energy to enter the S/D
region, which sufficed to repair these regions that were amor-
phized by implantation.16 Parasitic S/D resistance that was
determined by merging numerous curves of Ron �Vg� against
L �Ref. 12� for green laser-activated TFTs gradually fall and
saturate at 1.9 k� as the incident laser energy increases to
2.8 W �Figs. 2�a�–2�c��. This value is close to the value
1.8 k� for FA-activated TFTs �Fig. 2�d��. Gate antireflectors
ensure that the laser energy penetrates into channels and im-
proves the channel microstructures with fewer grain defects
�Fig. 1�b��. Furthermore, postimplantation thermal annealing
hardly improves channel microstructures even though it re-

duces parasitic S/D resistance to a very low value. Therefore,
the contribution of Ron from parasitic S/D resistance and
channel resistance, for green laser-activated TFTs decrease
as the laser energy increases and was significantly lower than
that of FA-activated TFTs �Fig. 2�.

As laser-activation energy increases, the field-effect mo-
bility ��FE� of green laser-activated TFTs increases markedly
from 380 to 620 cm2 /V s, which is about double of the FA-
activated TFTs, as revealed by the linear transconductance
�Gm� curves, which are plotted in Fig. 3�a�. The enhancement
in the output drive current �Fig. 3�b�� at grain voltage
Vd=8 V and gate voltage Vg=10 V was by as much as a
factor of 1.3. Under front-side green laser irradiation for
transistors with antireflective gate structures, when the laser
beam was scanned over the gate structures and the air/S �D�
interfaces, inverted laser-energy profiles along channels/
junctions/contact regions intrinsically generate and mediate
ascendant defect distributions in the microstructures in the
S/D regions, across the junctions, toward the channels, gen-
erating continuous epilike Si microstructures with fewer
grain defects across junctions, as revealed by the cross-
sectional transmission electron microscopic image in Fig.
1�c�, in response to the enhancement of �FE.6 Additionally,
FA-activated TFTs exhibited the lowest parasitic S/D resis-
tance and the smallest �FE among the present laser �FA�-
activated devices such that, in such microchannel TFTs,
channel/junction microstructures rather than parasitic S/D re-
sistance dominate electron mobility.

On such an epilike poly-Si, interface trap-state densities
�at �E�0 eV�, which are related to channel roughness, in-
fluence the subthreshold slope �S� �Refs. 6 and 17� of the
fabricated TFTs. Few extra interface defects are generated
because the enhancement of the surface roughness by 40%
incident laser-activation energy in the channels is negligible
and so, increasing the laser-activation energy slowly reduced
S to as low as 130 mV /decade �Fig. 4�a��, which is a better
value than 145 mV /decade for FA-activated devices. How-
ever, increasing the laser-activation energy initially reduces
threshold voltage �Vth� to as low as −0.51 V and then in-
creases it to 0.34 V �Fig. 4�a��. Moreover, a reversal in the
deep states of the grain traps at a �E of below 0.28 eV for
devices was also observed as laser-activation energy was in-
creased to over 2.5 W �Fig. 1�b��. Hence, the reversal in Vth

FIG. 1. �Color online� �a� Simulated transmittance spectrum for incident
light through gate structures to channels. �b� Energy distribution associated
with grain trap-state densities in TFTs that were made on CLC poly-Si and
activated by FA and front-side green laser irradiation at 2.5–2.8 W. �c�
Cross-sectional transmission electron microscopic image of representative
laser-activated TFT.

FIG. 2. �Color online� Channel width-normalized on resistance of TFTs that
were made on CLC poly-Si and activated by front-side green laser irradia-
tion at �a� 2.4 W, �b� 2.6 W, and �c� 2.8 W, as well as by �d� FA vs channel
length.

FIG. 3. �Color online� �a� Transfer characteristics �taken at Vd=5 and 0.1 V�
and transconductance curves �taken at Vd=0.1 V�; also, Ig-Vg curves �taken
at Vd=0.1 V� of TFTs that were activated by front-side green laser irradia-
tion at 2.5 and 2.8 W. �b� Output characteristics of TFTs that were made on
CLC poly-Si and activated by FA and front-side green laser irradiation at
2.4–2.8 W.
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could not easily be attributed to the increase in the number of
interface traps produced by laser activation.

Figure 4�b� plots the Vth shift ��Vth� against the stressing
time �t� for laser-activated TFTs during hot-carrier stressing
�HCS� �Vg=7 V and Vd=14 V�.17 After HCS for 3 h, very
small changes in Vth of 42 �35� mV were observed in the
TFTs that were activated at a laser-activation power of 2.8
�2.5� W �Fig. 4�b��.18 In TFTs with antireflective gate struc-
tures, front-side green laser activation forms continuous im-
proved epilike Si microstructures with fewer grain defects
and with a barely increased number of very few extra inter-
face defects over the entire channel/junction, which mark-
edly inhibited deep-state generation in laser-treated channels/
junctions by bias stressing, in response to excellent transistor
stability.6

Front-side green laser-irradiation likely induces the de-
hydrogenation of partial Si-rich oxide structures in PECVD
SiO2 to form few defects or Si nanostructures19 in gate di-
electrics and, thus, enhance carrier transportation and charge
trapping in gate dielectrics,20 as indicated by the slightly in-
creased gate currents �Ig� of TFTs that had been activated at
a high laser-activation energy of 2.8 W �inset of Fig. 3�a��.
The Vth degradation of TFTs that was activated at a laser
energy of 2.8 W due to HCS typically exhibits a logarithmic
time dependence, which reveals charge trapping in gate
dielectrics.14,21 In contrast, the power-law time dependence
of �Vth with exponents of 0.42 ��t0.42� for TFTs that were
activated at laser energy of 2.5 W due to HCS was observed
because the carrier-trapping effect is weaker when fewer de-

fects are formed in the dielectrics by lower laser-energy ir-
radiation such that �Vth and Ig are smaller �Fig. 4�b��.6,17

Hence, slightly worsened gate dielectrics due to front-side
laser irradiation enhance charge trapping in dielectrics in re-
sponse to the reversal in Vth.

Antireflective gate structures in self-aligned transistors
that were fabricated on green CLC epilike Si active layers
were introduced to generate a pertinent inverted laser-
irradiation energy profiles along channels/junctions/contact
regions. Continuous improved epilike Si microstructures
with fewer grain/interface defects over the entire channel/
junction and a low parasitic source/drain resistance thus
form. Such laser-activated panel transistors thus exhibit ex-
tremely high electron mobility and excellent device stability.

The authors would like to thank the National Science
Council of the Republic of China, Taiwan for partially sup-
porting this research.
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FIG. 4. �Color online� �a� Threshold voltage and subthreshold slope for
TFTs that were made on CLC poly-Si, activated by FA and front-side green
laser irradiation at 2.4–2.8 W. �b� Degradation of Vth of TFTs that were
made on CLC poly-Si and activated by front-side green laser irradiation at
2.5 and 2.8 W during HCS.
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