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Abstract

An eigenfunction expansion solution is first developed for determining the stress singularities of bimaterial bodies of revolution by
directly solving the equilibrium equations of three-dimensional elasticity in terms of displacement functions. The characteristic equations
are explicitly given for determining the stress singularities in the vicinity of the interface corner of two intersecting bodies of revolution
having a sharp corner with free boundary conditions along the corner. The characteristic equations are found to be equivalent to a com-
bination of the characteristic equations for plane elasticity problems and St. Venant torsion problems. The strength of stress singularities
varying with the interface angles is also investigated. The first known asymptotic solutions for the displacement and stress fields are also
explicitly shown for some interface angles. The present results will be useful not only for understanding the singularity behaviors of stres-
ses in the vicinity of a revolution interface corner, but also for developing accurate numerical solutions with fast convergence for stress or

vibration analysis of a body of revolution having an interface corner.
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1. Introduction

Stress singularities mean that stresses go to infinity at
some points of the problem domain under consideration.
Although stress singularities cannot be real in a practical
problem, because of material limitations, they do yield a
useful mathematical model for a practical problem. The
stress singularities have to be taken into account if the
analysis is to be of real use. Williams [1,2] first showed
the stress singularities in the sharp corner of a thin plate
under extension or bending with various boundary condi-
tions along the intersecting edges.

It is well known that stress singularity behavior has to be
properly considered to have a convergent and accurate
numerical solution. The stress singularities have been taken
into account in different numerical approaches with various
ways. The knowledge of stress singularity orders is found
to be very important to have correct r* type singular ele-
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ments in a finite element approach for solving a crack prob-
lem (i.e. [3]). The asymptotic solutions for the stress
singularities were introduced into an element free Galerkin
method by Belytschko et al. [4] and Fleming et al. [5] to
analyze crack problems of plane elasticity. The asymptotic
solutions (also called corner functions) based on thin plate
theory and Mindlin plate theory [2,6] were introduced into
the Ritz method to obtain very accurate results for the
vibrations of cantilevered skew plates [7,8].

Based on three-dimensional -elasticity, an extensive
amount of research has been carried out for investigating
the singular stress field at a crack tip, which is very impor-
tant to fracture mechanics. Sih [9] provided a comprehen-
sive review on works before 1970 of singular stress at the
crack tip. Panasyuk et al. [10,11] reviewed more than 500
papers on the analysis of three-dimensional crack prob-
lems. In the last two decades, numerous papers were also
published on this topic. For example, Ting [12] provided
an explicit solution for the singularities at the interface
crack in anisotropic composites, while Barsoum and Chen
[13]and Ghahremani and Shih [14] investigated surface sin-
gularity of an interface crack via a finite element approach.
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Su and Sun [15] extended Gregory’s solution [16] to study
singular stress at the crack tip of a thick plate. Chaudhuri
and Xie [17] used the eigenfunction expansion method to
analyze three-dimensional crack problems of isotropic
and homogeneous plates.

Much less research has been conducted for studying the
geometrically-induced stress singularities at a three-dimen-
sional vertex, of which a crack problem is a special case.
Most of these works were based on numerical approaches.
One analysis of the stresses in the vicinity of boundary dis-
continuities was summarized by Zak [18] for the special case
of axisymmetric loading. Aksentian [19] analytically
obtained the characteristic equations for determining the
stress singularities at the vertex of a bi-material wedge
with various combinations of boundary conditions along
the radial faces. However, his solution did not consider the
boundary conditions on the surface with the normal of the
thickness direction. Bazant [20] and BaZant and Estenssoro
[21] provided a general numerical method to determine the
stress singularities in notched elastic solids. Kerr and Pari-
har [22] studied the stress singularities at the vertex of pyra-
midal notches with three equal angles by using a Green’s
function method. Extending BaZant’s approach, Somaratna
and Ting [23] and Ghahremani [24] used a finite element
approach to investigate stress singularities in anisotropic
materials and composites, and Picu and Gupta [25] investi-
gated the stress singularities at the tip of a grain triple
junction line intersecting the free surface. Using boundary
integral equations, Schmitz et al. [26] and Glushkov et al.
[27] computed the singularity field at a vertex and at the
top of an arbitrary polyhedral corner, respectively. Koguchi
and Takashi [28] applied a boundary element approach to
determine the order of stress singularity at the corner where
four free surfaces and the interfaces of the three-dimensional
joints meet. The asymptotic solution at the vertex cannot be
explicitly expressed in these numerical approaches.
Recently, Huang and Leissa [29] developed the asymptotic

Fig. 1. Bimaterial body of revolution with a sharp corner boundary
discontinuity.

Fig. 2. Cylindrical (r,z) and sharp corner (p, ¢) coordinates.

solution for the stress singularities at the vertex of a body
of revolution by using the eigenfunction expansion method.

In the aforementioned studies, none has considered the
geometrically-induced stress singularities in bimaterial
bodies of revolution based on three-dimensional elasticity.
Consequently, this paper extends the authors’ previous
work [29] to construct the first known asymptotic solu-
tions for the stress singularities along the interface circum-
ference on X-Y plane in Fig. 1, in which bodies of
revolution (D and Q) have different material properties.
The present work wuses the -eigenfunction expansion
method to asymptotically solve the equilibrium equations
in terms of displacements of the three-dimensional elastic-
ity theory. The characteristic equations determining the
stress singularity order are explicitly given and the effects
of material properties and interface angles (¢ and o in
Fig. 2) on the stress singularity orders are also discussed.

2. Analysis

Considering two isotropic and homogeneous bodies of
revolution with different elastic materials joined as shown
in Fig. 1, each body, subjected to no body forces, should
satisfy the following equilibrium equations in terms of dis-
placement components in the cylindrical coordinate system
(r,0,z) (see Fig. 1):

f 2(1 — U,’) f u(’) 1— 2[),' i
2(1— l)i)uf,,2,+fu_<r) —2(1— vl-)7+ " u(;6
W Lo _3=% o
+(1=20)ul+-v,y ———5—v, +w1=0, (la)
az Y ; ;
1 o 3—4v ¢ i o)
;I/l(y)g +r2<’/:(9) —+ (1 720,)U<’l+ (1 7201)7
oD 2(1—v) PO
,(1—2vl)7+r—zvfg)f,+(lfZUi)vfzg+;wfg)Z:O, (1b)
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u(i) v(()
J+= —+ Z+2(1—v,)
1—20,
+
.

+ (1 —2v,)wl

s 1=20 @
Wfr>+ 2 W,(()():O (1c)

where u), v and w() are displacement components of
each body i (i = 1 or 2) in the r, 6 and z directions, respec-
tively; v, is Poisson’s ratio for material i; and the subscripts
denote partial differentials with respect to the independent
variables r, 0 and z.

Since the problems under consideration here are for
bodies of revolution, the solutions of Egs. (la)—(lc) are
periodic in 0 and may be expressed in terms of Fourier
components in 6:

u? = Z UY(r,z) cos nb),
n=0,1
= Z V9(r,z)sinn0 and
n=12
= Z w9 (r,z) cos n0 (2)
n=0,1
The geometry of any plane with fixed 0 is as shown in
Fig. 2. Substituting Eq. (2) into Egs. (1a)—(1c), transform-
ing (r, z) coordinates to (p, ¢) coordinates as shown in
Fig. 2 through

0= (r—R)2 + z2,
e ()00
r—R=pcos(¢p—p), and z= —psin(¢p — p), (3)

and substituting

U ()= p""UL($)
m=0,1

o0

W P (4)

m=0,1

Vi p,d) =" p I (¢),
m=0,1

where A can be a complex number, into the resulting equa-
tions, one obtains the following equations for the least
power order of p:

[A(2 — 1) cos® ¢ + A2(1 — 2v;) + Asin’ ¢]UY)

—(A=1) sin2q?>Uff&¢ + (sin @+ 1 — 20U "

+singeos W, + (1= 2)cos 29 W ,

+ 42— 2)sindcospW) =0 (5a)
P04 200 o, (sb)
M2 = 2)singcos pULY + (1 — 2) cos 2Ty

+ sin ¢ cos &SU% s TAZ=1) 1)sin® ¢ + 22(1 — 2v;)

+ Acos® PV 4+ (4 — 1)sm2qu

+ (cos’p+ 1 — v,-)Wn0 o6 =0, (5¢)

where ¢ = ¢ — B, and f is the angle from a horizontal line
to the axis of ¢ = 0. Since stress singularities at p — 0 are

investigated, only the solutions corresponding to the least
power order of p are needed. More details of the above
derivation can be found in Huang and Leissa [29].

The solution of Eq. (5b) is simply

) cos A + 4\ sin 2¢, (6)

where A, and A2 are coefficients to be determined from
boundary conditions.

Equations (5a) and (5b) are a set of coupled differential
equations with variable coefficients. To find a closed form
solution, one can perform the following transformation:

Uya(¢) = cos $U,(¢) — sin $I (), (7a)
Vi0(®) = —sin $UL4 (¢) — cos pI7 (). (7b)
Applying Egs. (7a) and (7b) to Egs. (5a) and (5b) and

arranging the equations as Huang and Leissa [29] did,
one obtains the solution,

i) _
VnO -

U'(¢) = B sin(Z+ 1) — BY cos()x—i— )¢

+“/IB; sin(A —1)¢ — y,B cos(4 — 1), (8a)
W'(d) = B cos(2+ 1) + BY sin(Z + 1)¢p

+B§i) cos(A—1)¢ —|—Bff) sin(4 — 1)¢, (8b)
where y; = (=3 + 1 +4v;)/(3+ 2 — 4v)), andB (=1, 2, 3,

4) are coefficients to be determined from boundary
conditions.
As a brief summary, the solutions of Egs. (1) are

2(p,,0) ZP (cos(p — BTl (¢b)

—sin(¢ — B) Wi0($)) cosnd+O(p*), (9a)
V(p, ¢, 0) = Zp A cos A + AY sin i) sinnd + O(p**1), (9b)
2 (p, ,0) = Zp (—sin(¢ — BT (¢) —cos(d — BV 14 ())

cosnf 4+ O(p™), (9c)

where O(p**!) includes all the terms of order in p higher
than 4. Notably, the real part of 1 has to exceed unity to
meet the requirement of finite deformations. Using Egs.
(9), the strain—displacement relations, and stress—strain
relations, one obtains, after some manipulation, the stress
components expressed as

— ZGAp” Heos((Z— 1) + B)4Y) + sin((2 — 1)¢

+[3) }smn@—«—O( ), (10a)
= Z Gip M [sin((2 — 1) + B)4\” — cos((2—1)¢

+ B)AY] sin n0 4+ O(p?), (10b)
= Z —22G;p"Hcos((4 — 1) + 2)B

sin(( = 1)+ 288 + 3 - leos((4.— 3)9

+2ﬁ) +s1n(() - 3)¢+2[5) ]}cosné)+0(,r/‘)7 (10c)
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o) =" 24Gp* {sin((2 — 1) +2B)BY

1
3+ A — 4, [
(—2sin(2 — 1) + (4 — )sin((2 — 3)$ + 2p))BY’
+ (2cos(A—1)¢

—cos((2—1)¢ +2p)BY +

— (A= 1)cos((4—3)¢ + 2B))B\"]} cos n + O(p
ol =" 24G,p* {—sin((A— 1)¢ + 2p)B

4, (10d)

+cos((A— 1) +28)BY) — 3“%40 [(2sin(Z — 1)

+ (A —1)sin((4 —3)p 4 28))BY — (2cos(i — 1)¢

+ (2 = 1)cos((2 — 3)¢ + 2B8))B]} cosn0 + O(p*),  (10e)
=3 fﬁ”f 0 sin(( - D)
+ cos((4 — 1)(]5) "] cosn + O(p’), (10f)

where G, is the shear modulus for material i. The real part
of 1 is related to the singularity order of stresses, and its
imaginary part describes the oscillatory behavior of the
stresses. Obviously, when the real part of A4 is less than
one, stress singularities exist at p = 0.

3. Characteristic equations and corner functions

At corner A, considering free surfaces at ¢ =0 and
¢ = a (see Fig. 2), the traction free conditions yield

oM sin(—pB) + 7V cos(—pB;) =0,
T;,) sin(—f) + o'V cos(—f) = 0,

vy, sin(=p) + ;. cos(—p) = 0; (11a)
and

a@ sin(o — ) + 1% cos(a — f) =0,

1@ sin(a — ) + 0% cos(a — f) = 0,

oY sin(o — B) + ) cos(o — B) = 0. (11b)

The continuity conditions of displacements and tractions
along the interface must also be satisfied. Hence, at ¢ = o

WV =@ ) =@ ) =@
oV sin(o; — B) + 7! cos(oq B)
= o sin(o — B) + ¥ cos(ay — p)

—p)+ 0(1 cos(ax — f3)

—B) + ot cos(ocl B)

— B) + 7 cos(o — B)

— B) + ) cos(ay — ), (11¢)

Substituting Eqgs. (9) and (10) into Egs. (11) and consider-
ing the least power order of p in the resulting equations
yields, after some intensive manipulation,

(n)
x 1} sin(oy
— @ gj
= 7./ sin(o
(1) &
X 15, sin(o

— 2
= 1, sin(o

A—

1 : 1
COS/}B(I ) + smﬁBg ) +m

cos BBg1>

A+1 . (1)

L B\ — 0 12
35—, S (122)
/l—

. 1 1
—SlnﬁBg)‘i‘CosﬁB;)—m

sin ﬂBgl)

+ % cos ﬁBil) =0 (12b)
AV =0 (12¢)
cos(4x + B)BY + sin(ia + B)BY

+ 3++_402{[2 sin(a — ) sin((4 — Da) + (A — 1)

x cos((4 — 2)a+ B)]BY + [~2sin(o — B) cos((4 — 1))

+(A- 1)sin((/172)oc+ﬂ)} <2>} =0 (12d)
—sin(Za + B)BY + cos(ia + B)BY

+ ﬁ{—pcos(a = p)sin((A— Da)+ (A —1)

x sin((4 — 2)a + B))BY + [2cos(a — B) cos((4 — 1)a)

+ (A= 1)cos((4—2)a+ B)BP} =0 (12¢)
sin(4a)4'? — cos(Ax)4Y =0 (12f)
sin((4 4 1)ay)BS" — cos((4 + 1)a;)BY

+ 1 sin((2 — Dan)BS) =y, cos((4 — 1)an) By

= sin((4 + 1)oy)BY — cos((4+ 1)oy)BY

+y,sin((4— Dan)BS =y, cos((2— Do)BY  (12g)
cos(/locl)A<11> + s1n(/Loc1)A§1)

= cos(4a;)A\” + sin(Ao; )4 (12h)
cos((4 + 1)o)BY + sin((4 + 1) )B

+ cos((4 — 1)oy)BY 4 sin((2 — 1)a;)BY"

= cos((4 + 1)oy)B® + sin((4 + 1)oy)BY

+ cos((4 — 1)oy)BY 4 sin((2 — 1)a;)BY (12i)
] ilvl {— cos(Aa; + B)B(ll) — sin(Joy + ﬁ)Bgl)

—ﬁ [(2sin(ay — f) sin((A — D)oy)+(2 — 1)

x cos((A —2)oy + ﬁ))Bgl) +
—(A—=1)sin((A —2)oyq + /3))34(11)]}
1 izv {_COS(ﬂm + ﬁ)Biz> — sin(Zoy + B)Bf)

2
1

T34 4n,

+(4—1)cos((A

x cos((A — Dy

(2sin(oy

— B)cos((4— o)

[(2sin(o — f)sin((4 — Day)
= 2)ou+ ))BY — (2sin(z — )

) = (2= Dsin((2 = 2 + BB} (12i)
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E
l+l)1

{— sin( Aoy + [3) )+ cos(Aoy + ﬁ)

—i—m [—(2cos(a; — ) sin((A — 1)oy)

+(A=1)sin((4 —2)o; + /3)) + (2cos(a; — p)
x cos((4— 1)oy) + (A — 1) cos((A — 2)ay + ﬁ))Bg”]}

=1 izvz {— sin(ioy + B)BYY + cos(Aay + f)BY
+3++42[—(2cos(oc1 — B)sin((A — Day)+(A—1)
x sin((4 — 2)ay + B))BY + (2cos(a — B) cos((2 — 1)ay)
. l)cos((/l— o + ) )32>} (12K)
Gl{sm(}ocl) cos()ocl) 5 b
= G2{51n()toc1) - cos(Aocl)Agz)} (121)

To have nontrivial solutions for A,(("), Eqgs. (12f), (12h), and
(121) yield a third order determinant equal to zero, and thus
A has to satisfy

—(1 4+ G,)sin o+ (1 — G,) sin(A(o — 201)) = 0, (13a)
where G, = G,/G. Slmllarly, to obtain nontrivial solutions
for B , Egs. (12) involving B yield an eight order determi-
nant equal to zero, and 4 has to satisfy
0o + 01 €08 20 + 05 cos 2Aa + d;3 cos 2(o — 20)

+ d4cos 2A(o0 — 2011) + 05 cos 2(Aa — (1 + A)oyy)

+ 0gcos 2(oe — o) + 0708 2A(o — oy ) + Jg cos 2a

+ 09 cos 20 + dypcos2(o + (A — 1)oy)

+ ds5co82(Ao — (A — 1)oy)

+ d1pcos2(o — (1 + A)oy) =0, (13b)
where
do = —2(—1 4+ )5+ 22 + G*(—=5+ 2> + 120, — 8v?)

+ 120y — 803 = 2G,.(—1 + 22 4 20; + 205 — 4vy10)]

01 = =[P+ G =262 = 8(=1+v)(=1+1))],
0y = —[-1+ G,(=3+4v))](3 + G, — 4v,),
0y =i} -14G,)%,
04 = —(—=14+G,)[3+ G.(=3+4v)) — 4vy],
8s =22 (=14 G,)(3+ G, —4n),
06 = 227 [~ 1+ 22+ GH(=5+ A7 + 120 — 817)
2G, (=3 + 22 4 20 + 4v, — dv0y)],
97 = —2[G*(=5+ 27 + 120, — 8v?)
—2G, (1422 = 201) (=1 4 20y) + (=1 + A7) (=3 + 4v,)],
O = 22°[=5 + 12 4+ GA(—1 + 2%) + 120, — 802
2G. (=3 + 12 4 4v; 4 20, — 4v1y)],
09 = —2[=5+ 12 4+ GA(—=1 + 2*)(=3 + 4v)
—2G. (=14 20))(1 4 7> = 20y) + 120, — 803,
S10 = (=1 4+ G)[~1 + G.(=3 +4v))].

The coefficients §; are independent of the boundary angles
oy and o.

Eq. (13a) is the characteristic equation of / in the solu-
tion for v'”, and determines the order of stress singularity
for 7,0 and 7y,. Eq. (13b) is for the solution of u and
w?, and determines stress singularities of the other stress
components.

Having the characteristic equations, the eigenvalues A
can be determined from them. Substituting these eigen-
values into Egs. (12), one can find the relations among

coefficients A,(f) and Bj(-i), then obtains the corresponding
asymptotic solutions (corner functions) by substituting
the relations back into Egs. (9). It is easy to find the asymp-
totic solutions for v'”. Eq. (12¢), (12f), (12h), and (12I)
result in

D_o
)

A7 = AP an(io), A" = A7 (1+ tan’ (G ) ). (14)

4. Discussion of the solutions

The explicit general expressions of the corner functions
for ' and w'” are very complicated and lengthy, and will
not be presented here. However, it is still desirable to have
the expressions for some special combinations of «; and «
(see Fig. 2) that are commonly found in practical problems.
For =0 and (v, o) = (n/2,3n/2),(n,3n/2), or (m,2m)
the relations among B are expressed as

B(l) _ ﬁB(Z) B(l) 12 B( B(l) 3 B
! Al 4 2 Al 3 Al

B X4 g p) _ X5 B B2 _ % B and
4 Al 40 ! A] 2 A]
2 21 p2

B(3 )= A_le(t )7

where 4, and y; (i =1,2,...7) are listed in Table 1. These
asymptotic solutions are shown here in the literature for
the first time.

Carefully investigating the characteristic equations given
in Egs. (13), one will find they are equivalent to those pub-
lished for plane elasticity and torsional problems. Through
the use of trigonometric identities, Eq. (13a) is found to be
equivalent to that given by Rao [30] for the St. Venant tor-
sion of a bimaterial bar, and Eq. (13b) is equivalent to that
given by Bogy [31] and Dempsey and Sinclair [32] for the
plain strain problem of a bimaterial wedge with free bound-
ary conditions along two radial edges.

Some numerical results for A from Egs. (13a) and (13b)
were shown in Rao [30], Bogy [31], Hein and Erdogan [33],
and Gdoutos and Theocaris [34]. Rao [30] plotted the
results of 4 obtained from Eq. (13a) on a Ao, — Aa, plane
with G, =1/2, 1, 3/2, 2, and 3, and also plotted the var-
iation of 1 from Eq. (13b) with «; for the case of o = 2¢;.
The contour lines of 1 from Eq. (13b) were often plotted
on a o — f plane, where & = giﬁ;g’g; p=4 mél’jﬁg;f::' =2)

and m; =4(1 —v;) and m; =4/(1 +v;) for plane strain
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Expressions for and y;, (i =1,2,...7)

231

o

Ayand p; (i=1,2,...7)

n/2

3n/2

Ay =14 G(3—4v;) +4(; —02) +8A(—=1 +02) (A —=2(=14vy)) + [1 + 427 —8i(—1 +v;) — 420, — vy)
+ G.(T — 477 =200 + 16v7)] cos(in) + [—1 — 43> + 8A(—1 + v)) + dv; — G,.(7 — 43> — 200, + 1607)]
x cos(24n) + [—1 + G.(—3 + 4v;)] cos(34n)

2 =202—1)tan(An/2) /(3 + A —4v){—(1+ 2)(5 — 1205 + 803) + G,[-3 +2(v; +v2) + A(=3 +4v,)]
+4G,(—1+v2)(24+ 2 —201) cos(Am) + [(1 + A) (=3 +4v,) — G.(5+ A — 6(v1 +v2) + 8v1v;y)] cos(24m) }

12 =214+ 2)/(3+ 2 —40){2G, (v — v1) + 4[5+ G.(3 — 4v3) + 4v2(20; — 3)] + 4G, (—1 + ) (1 + 1 — 2vy)
X cos(An) + [A(3 — 4vy) + G.(4 + 4 — 6(v; + v2) + 8vvy)] cos(24n)}

1=—nB+i—40)/(A-1)
ta= =10+ A—4v0)/(1+7)

xs = tan(An/2) /(3 4+ 1 — 4v){—1 4+ G.(1 + 2)(=3 + 4v;) + AT — 4(v; + v2)] + 822 (=1 + vy) (4 — (1
+202)) 4 [=3 =427 + 4o + G (1 + 2) (=13 + 43> 4+ 28v; — 1607) + 47>(1 + 20, — 4vy) + A(=7 + 8v)
X (=3 4+ 4vy)| cos(Am) + [=3 — 427 + G.(1 + A) (=13 + 427 + 28v; — 16v3) + 427 (1 + 2v0; — 4v,) + 4v,
+ A(21 = 200, — 320, 4 3201v;)] cos(2Am) — [(—=3 +4v,) (=3 +4v, — G, (1 + 1)) + 4] cos(34n)}

2o = 1/(3+ 7 —40)){9 — 160, — G.(1 4 2)(=3 + 4v;) — 8va(1 — 20) + +873(—1 + 02) (A — (=1 + 2v,))
+ (17 = 200, + 4vy (=3 + 4vy)) + [ 154+ 427 + 280, — G.(1 + 2) (=7 + 43> 4 200, — 160?) — 42%(1
+ 20, — 40y) + 1605(1 — 201) + A(—=23 + 16v; + 36V, — 320;,)] cos(An) + [—42° + G, (1 + A) (=7
+ 477 4200, — 1607) +423(1 + 201 — 4vy) + (=5 4 8v1)(=3 + 4vy) + A(23 — 200, — 320, + 32011,)]
x €08(2/m) + [—A+ (=3 +4v))(G.(1 + 2) — (=3 + 4vy)) cos(3in)}

27 = tan(An/2){(G, + 3 — 40,))(3 — 4v;) — 8A(=1 4+ v2) (A = 2(=1 +v})) + [3 + 42> — 4, — 8A(—1 + 1))
+ G, (13 — 427 — 280; + 16v7)] cos(An) + [(1 +24)(3 + 24 — 4v)) + G.(13 — 4> — 28v; + 1617)]
x cos(24n) + [1 + G,(3 — 4vy)] cos(34n)}

Ay = (=14+G)(=3+4v) + [3— 40y +2(=3 +4v)) — G(—1 +22)(13 — 28v; + 16v])] cos(in) — 2[1
— 201 + G.(5 — 120; + 8v})] cos(24m) + [—3 + 4vy + 24(3 — 4v;) + G, (=1 + 24)(=3 + 4v;)] cos(3/n)
+ [-1 + G,(—3 + 4v;)] cos(44n)

2= 44— 1)sin(An) /(3 + 4 — 40)){24% — 54 1207 — 802 — G.(—1 + 20)(1 — 20y + 4A(—1 + vy) + 2/7)
+ [-3 440+ G,(—=54 6vy + 20, (3 — 4v,))] cos(An)

(continued on next page)
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Table 1 (Continued)

o o Ayand y; (i=1,2,...7)

1o =4G.(1+2)/(3+ 2 —4v){—(03 — v1) + 2(=1 +0)(1 = 20, + 44(=1 + 1) 4+ 24%) cos(An) + (2 — 3v,
+ v1(—3 4 4v,)) cos(24n) }

B=—nB+i—4v)/(A-1)

Yo = —0B+A—40)/(1+7)

n 3n/2
25 = 2sin(An) /(3 + 4 — dv){ =1+ G (1 + A —22)(5 — 120; + 8v3) — A(=3 +4v;)(=3 + 4v,) + 22 + [-3
+4vy — A(=3 +4v)) + G.(—=1 + 2)(13 = 28v; + 16v3)] cos(An) + [—3 + 4v; + A(—3 + 4v,) +22%(3
— ;) + G(=3 +4v1) (=1 — A+ 247 cos(24m) — [(—=3 + 4v)) (=3 +4vy) — A+ G (=1 4 1)(-3
+ 4v;)] cos(34m)}
Ze=1/(3+ 1 —40:){3 —dv, — G.(—1 4+ 1) (=3 +4v) + A(=3 +4v) + [3 — 4v, — A(=3 +4v,) +22%(=3
+40)) — Go(—1 = 2+ 2%)(13 = 28v; + 16v3)] cos(An) + 2[G.(—1 4 A)(5 — 120; + 8v3) — (=1 + 2v))
X (34 A — 40y)] cos(24m) + [=3 4+ dv; 4+ A(=3 + 40y) + 247(3 — 4v)) 4+ G(=3 +4v)) (=1 — 2 +21%)]
x cos(3An) — [(=3 4+ 4v))(=3 +4vy) — 2+ G.(—1 + 1)(—=3 + 4v;)] cos(44n)
77 = 2sin(Am){(=3 4+ 4v2) (=3 +4v;) — 22+ G.(=1 +22)(5 — 120 + 8v]) + [3 — 4v; + G,(13 — 28,
+ 16v3)] cos(Am) + [3 — 4vy + 22(=3 + 4v;) — G, (=1 + 22)(=3 + 4v;)] cos(24n) + [1 + G.(3 — 4v,)]
x cos(34An)}
Ay = 4sin(22m){3 — 2(v; + vy) + G.(8v} — 120; + 5) + [1 + G.(3 — 4v;)] cos(2n)}
2= —40—1)/(3+ A —40){5— 120, + 803 + G.[3 = 2(v; + v2)] + [3 — 403 + G.(5 — 6(v; + v2) + 8v1vy)]
x cos(24An)}
1, =—8G.(1+2)/(3+ 2 —40y)[2 — 30y + v;(—3 + 4v,)] sin(24n)
1=—nB+i-4v)/(A-1)
T 2n

Ya=—12(3+A—4v)/(1+7)

15 =2/(3+ 2 —40){-1+A=3+4v))(-34+40) — G.(=1 + A)(=3 +4v1) + 2(=1 + 1)[3 = 2(v; + v2)
+ G,(5 — 12v0; + 8v7)] cos(24m) — [(—=3 +4v;) (=3 + 4vy) — 2+ G.(—1 + 2)(—3 + 4v;)] cos(4/m)}
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Table 1 (Continued)

oy o Avand y; (i=1,2,...7)

16 = —4sin(22m) /(3 + 4 — 40){(—1 + A)[3 = 2(v1 + 1) + G (5 — 1201 + 803)] — [(—3 + 4vy) (=3 + 4vy)

— 2+ G (=14 2)(=3 +4vy)] cos(24n)}

27 =2{—(=3+4v))(3 =40+ G,) +2[3 = 2(v; +v2) + G.(5 — 120; + 8v?)] cos(24n) + [1 + G.(3 — 4v})]

X cos(44n)}

and plane stress problems, respectively. Bogy [31] consid-
ered op = 50°, 75°,90°, 120°, 160°, 180° with o = 20y;
o =20°, 45°, 60° with o =7; o =45°, 90°, 135° with
o =2m; and oy = © with o = 31/2. Gdoutos and Theocaris
[34] studied the cases of o =mn with o= 240°,
300°and 330°. Hein and Erdogan [33] investigated the val-
ues of the real part of 4 varying with Young’s modulus
ratio and having Poisson’s ratios equal to 0.2 and consider-
ing a=mn with o =5° 30° 45° 60°, 75°, 90°; and
op = 5°, 30°, 45°,  60°, 75°, 90°,105°, 120°, 135°,150°,
165°, 180° with o = 180° + «;. However, no corner func-
tion was shown for these torsion or plane problems in these
previous works.

The aforementioned published results showing the con-
tour lines of 4 on & — f planes for sparsely discrete o, and a
are useful for studying the variation of A with material
properties, but do not clearly show the variation of 4 with
oy or o, (equal to o — o). Hence, the present work will
emphasize studies for the minimum real part of A varying
with o or as.

Fig. 3 shows the variations of A with o; for o =2=n
and E,(=E,/E;)=0.01, 0.1, 0.5, and 1. Since Egs.
(13a) and (13b) are independent and yield different
asymptotic solutions, two sets of curves are shown in
Fig. 3. One set, arising from Eq. (13a), can apply to
the torsion problem. The other set, generated by Eq.
(13b), can apply to plane strain problems. In a general
three dimensional elasticity problem of a biomaterial
body of revolution, the singularity orders of different
stress components are determined by one of these
two equations.

Similarly, Fig. 4 shows the variation of the minimum
real part of 1 with a, (equal to o — ;) for o =n and
E,=0.1, 0.5, 1, 2, 10, while Fig. 5 shows the results for
oy = /2. Finally, Fig. 6 displays the effects of Poisson’s
ratios on the minimum real part of A, where curves 1 and
2 are obtained from Eq. (13a), and curves 3 and 4 are from
Eq. (13b).

Notably, the data shown in Figs. 3-5 were obtained by
setting Poisson’s ratios equal to 0.3. The cusps in the curves
in Figs. 3-6 are due to the transition between real and com-
plex values of /.
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Fig. 3. Variation of minimum Re(4) with o; for « = 360°: (a) obtained
from Egs. (13a); (b) obtained from Eq. (13b).
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When o = 2n, which is like an interface crack, the value
of A for (G,,ay,a) equal to (k, 9, 9,) is identical to that for
(G,,01,a) equal to (1/x,3¥,,9,) if two materials have the
same Poisson’s ratio. Fig. 3 shows that the stress singular-
ities for oy > m are less severe than those for o < 7 if
E, < 1. When E, < 1, smaller E, results in stronger stress
singularities when a; < w, and the opposite trend is found
for oy > n. When oy = m, although minimum Re(1) is equal
to 0.5 and independent on E,, A obtained from Eq. (13b) is
complex for E, # 1.

When «; = mt, which represents a truncated cone bonded
to a cylinder of other material, Fig. 4a depicts how the

a —————
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2
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0 20 40 60 80 100 120 140 160 180
Angle «, (degrees)

Curve No. E,/E,
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<
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Q

o~

g

=)

80 100
Angle «, (degrees)

Fig. 4. Variation of minimum Re(/) with a, for o«; = 180°: (a) obtained
from Eq. (13a); (b) obtained from Eq. (13b).

strength of the stress singularities of 7,y and t,. increases
with increasing o, and the stress singularities become more
severe for larger E,/E;. However, Fig. 4b shows that the
strength of the stress singularities of 7., ,,, 6.., and gy
increases as o, increases from zero to a curtain angle
depending on E,/E;, and when o, continues to increase,
the strength of the stress singularities decreases somewhat,
then increases further. Notably, the real part of 1 is never
smaller than 0.5.

When oy = n/2, Fig. 5a shows no stress singularities
exist for 7,9 and 75 when o, < 90°, and the strength of
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Fig. 5. Variation of minimum Re(1) with a, for o« = 90°: (a) obtained
from Eq. (13a); (b) obtained from Eq. (13b).
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min . Re(L)

(Er,V,, V,) Eq.No. )]
(0.5, 0,05  (13a)
(0.5,05, 0) (13a)
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Fig. 6. The effect of Poisson’s ratios on the minimum real part of 1.

the stress singularities increases with the increase of o, or
the decrease of E,/E,. Fig. 5b displays there are no stress
singularities for 7,., g,., .., and gy when o, < 60° and
0.1 < E»/E; < 10. Generally speaking, the stress singulari-
ties become more severe as o, increases.

Fig. 6 demonstrates the effects of Poisson’s ratios on the
stress singularities, depending on o;, when o« =2n and
E.(=E,/E,) =0.5. The Poisson ratios are set equal to
extreme values 0 or 0.5. It can be observed that (vy,v,)
changing from (0, 0.5) to (0.5, 0) may result in stronger
stress singularities of 7,4 and 74, and weaker stress singular-
ities for the other stress components when o < wt, while the
opposite trend is found for «; > n. The changes in the
strength of stress singularities are less than 20%.

5. Concluding remarks

This study has developed the asymptotic displacement
and singular stress fields in the vicinity of the interface cor-
ner of a bimaterial body of revolution with free boundary
conditions along the corner, based on three-dimensional
elasticity. The characteristic equations for determining
the stress singularity orders are explicitly given. The
asymptotic analysis was accomplished by using the eigen-
function expansion approach to solve the equilibrium
equations in terms of displacement functions.

The asymptotic displacement and stress fields presented
are the first known to appear in the literature, while the
characteristic equations are found equivalent to a combina-
tion of the characteristic equations for plane strain prob-
lems and St. Venant torsion problems. To fill the gap of
the published numerical results from the characteristic
equations, the variations of stress singularity orders with
angles a and o4 in Fig. 2 were plotted for various material

properties. These results are very useful for numerical anal-
yses of static and dynamic stress and deformation of a
body having a V-notch at the interface of two bodies of
revolution with different material properties.

Notably, one may start the derivation by changing Eq.
(2) to

u? = Z UY(r,z) sinno,
n=1,2
o = Z V9 (r,z) cosnf and w' =

n=0,1 n=1,2

w9 (r, z) sin no.

Nevertheless, no new results will be obtained because the
results shown here are independent of n.

Although this paper only investigated the free boundary
conditions along the revolution interface corner, the solu-
tion would be straightforward to consider other combina-
tions of boundary conditions (e.g. fixed-free, fixed-fixed,
or sliding). The characteristic equations for these types of
boundary conditions are expected to be also the combina-
tions of the characteristic equations of plane elasticity and
St. Venant torsion problems.
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