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一、中文摘要

本研究提出一由波茲曼方程推倒出巨觀車流
模式之完整架構 , 波茲曼方程由 Prigogine 與
Herman [1]引用於描述動態車流行為, 調整行為與
互動行為之模式構建. 由 Prigogine 與 Herman 所發
展之車流波茲曼方程僅考慮了隨時間與空間變化
的相空間速度機率分佈, 但忽略了加速度的影響 , 
Paveri-Fontana [2]修正其模式, 而 Helbing [3,4]與
Hoogendoorn 及 Bovy [5,6]等人則進一步延伸其方
法堆導出一系列之巨觀動態車流模式. 然而其所引
用之二街動差函數並無交通上之意義, 引此本研究
以個別速度變異為動差函數代入模式推導巨觀車
流模式, 並以描述車輛互動之交通場描述多車道行
為, 在系統趨於均衡狀態假設下構建自洽系統方
程. 

關鍵詞：波茲曼方程; 泊松方程; 巨觀車流模式;  
多車道車流模式.

Abstract

In this study, we present a systematic 
self-consistent multiclass multilane traffic model 
derived from the vehicular Boltzmann equation and 
the traffic dispersion model. The multilane domain is 
considered as a two-dimensional space and the 
interaction among vehicles in the domain is described 
by a dispersion model. The dispersion model, which is 
a nonlinear Poisson equation, is derived from the 
car-following theory and the equilibrium assumption. 
In addition, the dynamic evolution of the traffic flow is 
determined by the systematic gas-kinetic model 
derived from the Boltzmann equation. Multiplying 
Boltzmann equation by the zeroth, first and second 
order moment functions, integrating both side of the 
equation and using chain rules, we can derive 
continuity, motion and variance equation respectively. 
However, the second order moment function, which is 
the square of the individual velocity, is employed by 
previous researches does not have physical meaning in 
traffic flow. The velocity variance equation we 
propose is derived from multiplying Boltzmann 
equation by the individual velocity variance. It 

modifies the previous model and presents a new 
gas-kinetic traffic flow model. By coupling the 
gas-kinetic model and the dispersion model, a 
self-consistent system is presented.

Keywords: Boltzmann equation; Poisson equation; 
Macroscopic traffic equations; 
Multilane traffic flow

二、緣由與目的

During the recent five decades by developing 
kinetic traffic flow model, it is possible to model more 
realistic traffic phenomena for traffic scientists in 
laboratories. Kinetic traffic flow models describe and 
forecast the time variant traffic variables, such as 
density, traffic volume and velocity. In addition, the 
performance of the traffic-control alternatives and the 
network design can be evaluated by traffic simulation. 

Since Lighthill, Whitham [7] and Richards [8] 
firstly proposed their kinetic model, the related 
subjects are broadly researched and debated. The 
LWR model was extended to second order model, 
which includes the continuity equation and a 
phenomenological velocity equation. The second order 
model was named PW model [9, 10]. However, this 
kind of models has a lot of arguments, so families of 
gas-kinematic models [3-6] are presented. The 
development of gas-kinetic models includes the 
discussion of multilane, multiclass users and 
overtaking, lane-changing, relaxation and interaction 
maneuvers. As the review of Boltzmann equation, 
Boltzmann equation is a phase-plane distribution. The 
macroscopic quantities are derived as follows. The 
first step is multiplying Boltzmann equation by the 
moment functions. The second step is integrating both 
sides of the equations and using the chain rules. At last, 
the macroscopic quantities are obtained. Therefore, the 
resulting macroscopic quantity and the moment 
function must have physical meanings. From the 
previous researches, the second order moment 
function multiplied to Boltzmann equation is the 
square of individual velocity [3-6]. Nevertheless, the 
square of individual velocity, which denotes the 
individual kinetic energy in physics, is meaningless in 
traffic. Although the second order expansion results in 
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the velocity variance equation, additional terms may 
be generated. For this reason, we multiply Boltzmann 
equation by the individual velocity variance in order to
modify the derivation of velocity variance equation 
herein. 

A complete dynamic system should include 
motion equations and state equations. The state 
equation considered in this study is the vehicular 
dispersion model [11]. The model is derived from the 
car-following theory and the equilibrium assumption. 
Under a specific macroscopic situation, the most 
possible microscopic combination is defined as the 
equilibrium state. And the system is assumed to tend 
toward the equilibrium state. According to the 
dispersion model, density is distributed on the road. 
By coupling the dispersion model to the kinetic system, 
a self-consistent system is obtained. Furthermore, we 
consider the multilane model in a two-dimensional 
space because the driving behavior of road users may 
not be restricted to drive one by one, especially 
motorcyclists.

三、Results and Discussion
  

Since macroscopic models derived from 
Boltzmann equation can aggregate the microscopic 
behavior to be group behavior, this study proposes a 
Boltzmann equation and derives it to macroscopic 
models. There are three main differences between this 
study and previous studies. The first one is that a 
multilane road is considered as a two-dimensional 
domain. The second one is that the acceleration effect 
of Boltzmann equation is considered as the influence 
of traffic field. The last one is that the second order 
moment function considered herein is individual 
velocity variance. Traffic field is derived from 
car-following theory, which describes the interaction 
between vehicles. The detail of derivation of traffic 
field is illustrated in section 3.2. The concept of traffic 
field not only describes the interaction between 
vehicles, but also makes the macroscopic system 
consistent. Before introducing traffic field, definitions 
of variables and the relations among variables should 
be mentioned first.
3.1 Definitions

By reason of some driving behavior of road 
users cannot be restricted in one lane or even they 
derive in one lane they still not be restricted to drive 
one after one, such as, driving behavior of motorcycles. 
Therefore, a multilane highway is regarded as a 
two-dimensional space in this study. We assume that 
there exists a phase-plane distribution function 

( )tf ,, vx  at a given time and at a given point, where 
( )yx,=x  denotes position, ( )yx vv ,=v  denotes 

individual velocity and t  denotes time. Since v
denotes individual velocity, it is impossible to restrict 
a specific velocity at a specific time and place. 

In addition, vx =dtd  and Ev edtd = , where 
E  denotes traffic field and is going to derive in detail 
in section 3.2. By Taylor’s expansion or total 
derivative of f, the changing of f is shown by
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where f is defined on Ω  and Ω∂  is the boundary of 
Ω . vΩ∂  is the boundary of individual velocity. Since 
f is a distribution function, it is reasonable to assume 
that f is equal to 0 at the extreme value (i.e. boundary 

vΩ∂ ). Thus, density is given by

( ) ( ) vvxx
v∫= dtftk ,,,                       (3)

and flow density, which is defined by Cho and Lo [41], 
is given by 
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where ( )t,xu  denotes average velocity (or so-called 
group velocity), which is defined as 
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Next, three kinds of velocity variance are defined. 
The first one is total velocity variance, which is 
velocity variance between individual velocity and 
equilibrium velocity. Total velocity variance is defined 
by 
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The second one is individual velocity variance, 
which is the velocity variance between individual 
velocity and group velocity. Furthermore, equilibrium 
average velocity and equilibrium average variance are 
denoted by ( )Θ,,uu ke  and ( )ΘΘ ,,uke , respectively. 
An equilibrium state is defined as the most possible 
microscopic state under a specific macroscopic state. 
Since eu  depends upon k, u and Θ  only, 0=∇ eux , 

0=⋅∇ eux , 0=∂∂ teu . Another variable, which 
appears in the derivation, is skewness. It is defined by

( )
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which is the bias of the distribution. From the 
empirical study by Helbing [3, 4], ( ) 0xÃ ≈t, . Since 
the influences of the third or higher order moment 
functions are negligible, we do not have to expand the 
higher order conservation laws. The basic variables k, 
Q, Θ are scalar and q, u, ( )t,xÃ  are vectors.

The basic idea of deriving macroscopic models 
from Boltzmann equation is the same as finding the 
expectation of a random variable. Therefore, finding 
the individual variables that are meaningful and 
multiplying them to distribution f will obtain 
macroscopic variables (average or group quantities). 
The individual variables are named as moment 
functions and denoted as ( )t,, vxχ . The moment 
functions chosen by related researches are 1, v , and 

2v . However, 2v  doesn’t have physical meaning in 
traffic. For this reason, the moment functions chosen 
herein are 1, v , and 2

euv − , where 2
euv −  is 

individual velocity variance. Thus, multiplying Eq.(1) 
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by ( )t,, vxχ  and integrating the function, we have 
The integration form of Eq.(1) is illustrated as 
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By substituting 1, v , and 2

euv −  for 

( )t,, vxχ  in Eq.(8), the macroscopic system will be 
obtained. The derivation is shown from section 3.3 to 
3.5. Before deriving the macroscopic model from 
Boltzmann equation, the concept of traffic field [11] 
should be mentioned in brief first.
3.2 Traffic field 
Traffic field is employed to describe the traffic 
pressure and the accelerated effect in this study. Since 
the traffic field distributes density on a road, the 
relation between the traffic field and the density is 
named as the dispersion model. The derivation of the 
dispersion model starts with the discussion of the 
interaction between a single vehicle and other vehicles 
by car-following theory. Two assumptions are made. 
The first one is that the influence of cars in the same 
lane is M times larger than that in the adjacent lanes, 
where M is a scalar. The second one is that the traffic 
field is independent of velocity. For the sake of safety, 
one vehicle on a road adjusts its velocity and spacing 
according to the relative position between other 
vehicles so as to avoid the accident. It is assumed that 
each vehicle has its own field. Vehicles exclude each 
other by their own field. Thus, the interaction (in terms 
of traffic force or traffic pressure, which is denoted by 
F), which is produced by the traffic field (E~ ), among 
vehicles is a resistance. To simplify the complication 
of the problem, E~  is assumed to depend on spacing 
and to satisfy the inverse-square law (the gravity 
model), which means the influence of other vehicles is 
larger when the spacing is smaller. In the continuous 
space, the traffic field is represented as

( )( ) Ω−= ∫Ω
dkk

å
e

s
2XE ,                   (9)

where e denotes the passanger car equivalent and ε
denotes the interacting parameter, if vehicles and 
driving behavior on the road are the same. k  is the 
actual density and sk  is the unrestrained density that 
is the density which vehicles do not interfere with each 
other. The transformed traffic field is a conservative 
field. Then, a potential function φ  exists by the 

potential theory. The potential function φ  satisfies 
φxE −∇= . Thus, the magnitude of traffic field is 

illustrated as 
( ) as Kkkediv +−=∆−= εφE ,              (10)

where divE denotes the magnitude of traffic field, 
( )xaa KK = , which depends on the position x , is the 

adjust term of the road condition if the road condition 
is ideal 

0=aK
. 

3.3 Continuity Equation 
After introducing traffic field and Poisson 

equation, derivation from Boltzmann equation to the 
macroscopic system is presented. Firstly, let 1=χ , so 
we have the conversation of vehicle numbers:
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3.4 Motion Equation 
The motion equation is derived by substituting 

the first order moment function, v , for χ  in Eq. (8). 
Then the expectation function of velocity is illustrated 
as
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3.5 Variance Equation (Conservation of Energy)
The last equation considered herein is the 

variance equation, which is obtained by substituting 
the second moment function, 2

euv − , for χ  in 

Eq.(8). Then the expectation function of velocity 
variance is illustrated as

( ) ( ) ( )[ ] ( )
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e
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kk
ekkk

t
k
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∂
Θ∂
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is obtained. 
The system equations developed above includes 

three conservation laws derived from Boltzmann 
equation. These three equations are transient equations, 
which describe the changing of variables. However, a 
complete dynamic system not only needs transient 
equations, but also needs state equations, which 
describe the state of variables. A state equation is 
needed so as to make the system self-consistent. In this 
study, the dynamic system is assumed to become the 
equilibrium state gradually. Therefore, the equilibrium 
distribution

( )( )eeeKk Θ−= φψexp0
,                (14)

is employed to be the state equation in the system. 
0K  is the essential density, eΘ  is the equilibrium 

velocity variance, ψ  is the potential equivalent of the 
velocity variance threshold. ψ  is named as the 
potential barrier here. By coupling Eqs (10) and (14), 
the nonlinear dispersion model is obtained. If a set of 
boundary conditions of the traffic potential is applied, 
vehicles are forced to drive through the road according 
to the path, which has the least resistance. Therefore, 
vehicles on the two-dimensional research domain will 
not move forward and backward or circle round. They 
will try to pass through the road as soon as possible.
3.7 Closure Relations 

The system presented herein also needs closure 
relations so as to determine the equilibrium velocity 

( )Θ,,uu ke , equilibrium variance ( )ΘΘ ,,uke , and 

relaxation time mτ  and eτ  in Eqs (12) and (13). 
There are a variety of possible closure relations, which 
could be adopted from previous studies. [3-6, 12-14]. 
The eu  and eΘ  proposed in study are represented 
by 

( ) ( ) Θ−=Θ kkk bme puuu τ0,,
                (15)

and
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( ) ( ) upu Θ⋅=ΘΘ kkk pee τ,, ,                 (16)

respectively. 0u  is the average desired velocity, 

( ) [ ]1,0∈kbp  is the braking probability vector, and 

( ) [ ]1,0∈kpp  is the passing probability vector. The 

explicit forms are obtained by specifying expressions 
for ( )kbp  and ( )kpp . Equation (15) means that the 

equilibrium velocity decreases as ( )kbp  increases. 
On the other hand, the equilibrium variance increases 
as ( )kpp  increases. Since ( )keu  and ( )u,keΘ  are 

equilibrium equations, the functions suggested in this 
study are
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respectively. ef  denotes the steady state 
homogeneous solution of Boltzmann equation. The 
relaxation time mτ  and eτ  are shown as

( ) ( )kg
T

k m
m =τ    and   ( ) ( )kg

T
k e

e =τ ,         (19)

which are modified from the suggestion of Helbing 
[3-4]. g(k) is the proportion of freely moving vehicles, 

mT  is the reaction time of velocity and eT  is the 
reaction time of variance. As ef , g(k), mT  and eT
are determined, the closure relations are expressed 
specifically. Then, the self-consistent system is 
complete. 

四、結論與建議

In this paper we have derived a macroscopic 
multilane traffic model for multiple classes users. The 
system is a self-consistent system; it can be solved 
with proper initial conditions and boundary conditions. 
Our consideration is based on the following 
assumptions:(a) a multilane road is considered as a 
two-dimensional domain. (b) the whole system will 
tend toward equilibrium. (c) the individual velocity 
variance is employed as the second moment function. 

Considering a multilane road as a 
two-dimensional domain allows us to handle the 
driving behaviors, which are not restricted to drive one 
by one in a single lane. Another advantage of this 
consideration is to avoid modeling complicated 
lane-changing behavior. Lane-changing behavior is 
controlled by the nonlinear Poisson equation. If the 
research area is only a single lane road, the system can 
be reduced to a one-dimensional model. 

This study derives a dynamic macroscopic 
traffic flow system from Boltzmann equation. 
Boltzmann equation employed herein includes 
accelerated effect, which is controlled by Poisson 
equation. This study modifies the second moment 
function as 2

euv − , which is individual velocity 

variance, and reformulates velocity variance equation 
to be more reasonable. This study exposes three 
moment functions. If there still exists the other 
meaningful moment, it should be considered as its 
influence is significant.

The system equations can be simplified to adapt 
different traffic condition because not all variables are 
significant in each traffic condition. For example, in 
uniform and equilibrium traffic flow, the influence of 
velocity variance equation may be ignored. The 
simplification is needed because computation of the 
whole system takes a lot of time. According to 
different traffic conditions, simplification should be 
discussed and validated further. Also, numerical 
methods should be developed to solve the system.。

五、計劃自評

In this study, we have derived a macroscopic multilane 
traffic model from the microscopic traffic flow 
model-Boltzmann equation successfully. The system is 
a self-consistent system; it can be solved with proper 
initial conditions and boundary conditions. The result 
is accepted by the Physica A, “Modeling of 
self-consistent multi-class dynamic traffic flow 
model”.
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