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The Study of Derivation M acr oscopic Traffic Flow Model from
the Microscopic Boltzmann Vehicular Traffic Flow M odel
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Abstract

In this study, we present a systematic
self-consistent multiclass multilane traffic model
derived from the vehicular Boltzmann equation and
the traffic dispersion model. The multilane domain is
considered as a two-dimensional space and the
interaction among vehicles in the domain is described
by a dispersion model. The dispersion model, which is
a nonlinear Poisson equation, is derived from the
car-following theory and the equilibrium assumption.
In addition, the dynamic evolution of the traffic flow is
determined by the systematic gaskinetic model
derived from the Boltzmann equation. Multiplying
Boltzmann equation by the zeroth, first and second
order moment functions, integrating both side of the
equation and using chain rules, we can derive
continuity, motion and variance equation respectively.
However, the second order moment function, which is
the square of the individual velocity, is employed by
previous researches does not have physical meaning in
traffic flow. The velocity variance equation we
propose is derived from multiplying Boltzmann
equation by the individua velocity variance. It

modifies the previous model and presents a new
gas-kinetic traffic flow model. By coupling the
gas-kinetic model and the disperson model, a

self-consistent system is presented.

Keywords. Boltzmann equation; Poisson equation;
Macroscopic traffic equations;
Multilane traffic flow
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During the recent five decades by developing
kinetic traffic flow model, it is possible to model more
realistic traffic phenomena for traffic scientists in
laboratories. Kinetic traffic flow models describe and
forecast the time variant traffic variables, such as
density, traffic volume and velocity. In addition, the
performance of the traffic-control alternatives and the
network design can be evaluated by traffic simulation.

Since Lighthill, Whitham [7] and Richards [8]
firstly proposed their kinetic model, the related
subjects are broadly researched and debated. The
LWR model was extended to second order model,
which includes the continuity equation and a
phenomenological velocity equation. The second order
model was named PW model [9, 10]. However, this
kind of models has a lot of arguments, so families of
gas-kinematic models [3-6] are presented. The
development of gaskinetic models includes the
discusson of multilane, multiclass users and
overtaking, lane-changing, relaxation and interaction
maneuvers. As the review of Boltzmann eguation,
Boltzmann eguation is a phase-plane distribution. The
macroscopic quantities are derived as follows. The
first step is multiplying Boltzmann equation by the
moment functions. The second step is integrating both
sides of the equations and using the chain rules. At last,
the macroscopic quantities are obtained. Therefore, the
resulting macroscopic quantity and the moment
function must have physical meanings. From the
previous researches, the second order moment
function multiplied to Boltzmann equation is the
square of individual velocity [3-6]. Nevertheless, the
square of individual velocity, which denotes the
individual kinetic energy in physics, is meaningless in
traffic. Although the second order expansion results in



the velocity variance equation, additional terms may
be generated. For this reason, we multiply Boltzmann
equation by the individual velocity variance in order to
modify the derivation of velocity variance equation
herein.

A complete dynamic system should include
motion equations and state equations. The state
equation considered in this study is the vehicular
dispersion model [11]. The model is derived from the
car-following theory and the equilibrium assumption.
Under a specific macroscopic situation, the most
possible microscopic combination is defined as the
equilibrium state. And the system is assumed to tend
toward the equilibrium state. According to the
dispersion model, density is distributed on the road.
By coupling the dispersion model to the kinetic system,
a self-consistent system is obtained. Furthermore, we
consider the multilane model in a two-dimensional
space because the driving behavior of road users may
not be redtricted to drive one by one, especially
motorcyclists.

= -~ Resultsand Discussion

Since macroscopic  models derived  from
Boltzmann equation can aggregate the microscopic
behavior to be group behavior, this study proposes a
Boltzmann equation and derives it to macroscopic
models. There are three main differences between this
study and previous studies. The first one is that a
multilane road is considered as a two-dimensional
domain. The second one is that the acceleration effect
of Boltzmann equation is considered as the influence
of traffic field. The last one is that the second order
moment function considered herein is individua
velocity variance. Traffic field is derived from
car-following theory, which describes the interaction
between vehicles. The detail of derivation of traffic
fieldisillustrated in section 3.2. The concept of traffic
field not only describes the interaction between
vehicles, but also makes the macroscopic system
consistent. Before introducing traffic field, definitions
of variables and the relations among variables should
be mentioned first.

3.1 Definitions

By reason of some driving behavior of road
users cannot be restricted in one lane or even they
derive in one lane they still not be restricted to drive
one after one, such as, driving behavior of motorcycles.
Therefore, a multilane highway is regarded as a
two-dimensional space in this study. We assume that
there exists a phase-plane distribution function
f(x,v,t) at a given time and at a given point, where
x=(x y) denotes postion, v = (Vx’Vy) denotes

individual velocity and f denotes time. Since v
denotes individual velocity, it is impossible to restrict
a specific velocity at a specific time and place.

In addition, dk/dt=v and av/adt= e, where
E denotestraffic field and is going to derive in detail
in section 3.2. By Taylor's expansion or total
derivative of f, the changing of fis shown by

dx,v, ) = 1#bxv.) +vll F(x,v, )+ e, F(x,v, 1) :g-j[f(x,v,t)g ! (1)
at it e Tt aw

Fx, v, ), =0 @
where fis defined on W and W is the boundary of
W. qw, istheboundary of individual velocity. Since

fis a distribution function, it is reasonable to assume
that fis equal to O at the extreme value (i.e. boundary

W, ). Thus, density is given by
Kx.1)= ¢ f(x,v, t)av (©)
and flow density, which is defined by Cho and Lo [41],
isgiven by
alx.2) = Qufx,v. t)av = kx, u(x, ) 4
where u(x, ) denotes average velocity (or so-called
group velocity), which is defined as
AOVF(x, v, t)av
=2 (v, f)av . (5)
O F(x, v, t)av
Next, three kinds of velocity variance are defined.
The first one is total velocity variance, which is

velocity variance between individual velocity and
equilibrium velocity. Total velocity variance is defined

by

AV - U fo,v,td\/
B )= Olv-ul” fxv.f)av (6)
O flx.v.1)

The second one is individual velocity variance,
which is the velocity variance between individual
velocity and group velocity. Furthermore, equilibrium
average velocity and equilibrium average variance are
denoted by u,(k,u,Q) and Q,(k,u,Q). respectively.
An equilibrium state is defined as the most possible
microscopic state under a specific macroscopic state.
Since u, dependsupon k uand Q only, N u,=0,
N,xu,=0, fu,/Tt=0. Another variable, which
appearsin the derivation, is skewness. It is defined by

AV - ulk v-uszx,v,tdv
A O SO o @)
(‘)f(x,v,z‘)
which is the bias of the distribution. From the
empirical study by Helbing [3, 4], A(x,)»0. Since
the influences of the third or higher order moment
functions are negligible, we do not have to expand the
higher order conservation laws. The basic variables k;
O, Qarescalarandq, u, A(x,) arevectors.

The basic idea of deriving macroscopic models
from Boltzmann equation is the same as finding the
expectation of a random variable. Therefore, finding
the individual variables that are meaningful and
multiplying them to distribution f will obtain
macroscopic variables (average or group quantities).
The individual variables are named as moment
functions and denoted as c(x, v, t) . The moment
functions chosen by related researches are 1, v, and
v®. However, v? doesn’'t have physical meaning in
traffic. For this reason, the moment functions chosen
herein are 1, v, and |v- u |’ where |v- u,|* is

individual velocity variance. Thus, multiplying Eq.(1)



by c(x, v, t) and integrating the function, we have
The integration form of Eq.(1) isillustrated as

3.3 Continuity Equation
After introducing traffic field and Poisson

Laf(x,v.1) clov, e equation, derivation from Boltzmann equation to the
O o Y macroscopic system is presented. Firstly, let ¢ =1, so
- QL (>fﬂt" ) of,v, s + v, v dle(x v, v + GeE N, flx,v, flclx, v, ddrwe have the conversation of vehicle numbers:
) Tkix,t) | « _n- 11
= \ff()'(ﬂ’tv’[)i e, v, fou %’r N, xq(x,6)=0 (11)
3.4 Motion Equation

)

By substituting 1, v, and |v-u,|* for
c(x,v, t) in Eq.(8), the macroscopic system will be
obtained. The derivation is shown from section 3.3 to
3.5. Before deriving the macroscopic model from
Boltzmann equation, the concept of traffic field [11]
should be mentioned in brief first.
3.2 Traffic field
Traffic field is employed to describe the traffic
pressure and the accelerated effect in this study. Since
the traffic field distributes density on a road, the
relation between the traffic field and the density is
named as the dispersion model. The derivation of the
dispersion model starts with the discussion of the
interaction between a single vehicle and other vehicles
by car-following theory. Two assumptions are made.
The first one is that the influence of cars in the same
lane is M times larger than that in the adjacent lanes,
where M is a scalar. The second one is that the traffic
field is independent of velocity. For the sake of safety,
one vehicle on a road adjusts its velocity and spacing
according to the relative position between other
vehicles so as to avoid the accident. It is assumed that
each vehicle has its own field. Vehicles exclude each
other by their own field. Thus, the interaction (in terms
of traffic force or traffic pressure, which is denoted by
F), which is produced by the traffic field (E), among
vehicles is a resistance. To simplify the complication
of the problem, E is assumed to depend on spacing
and to satisfy the inverse-square law (the gravity
model), which means the influence of other vehiclesis
larger when the spacing is smaller. In the continuous
space, thetraffic field is represented as

£= 2ok k)l ©)

where e denotes the passanger car equivalent and €
denotes the interacting parameter, if vehicles and
driving behavior on the road are the same. K is the

actual density and K is the unrestrained density that

is the density which vehicles do not interfere with each
other. The transformed traffic field is a conservative

field. Then, a potential function f exists by the
potential theory. The potential function f satisfies
E=-N,f . Thus, the magnitude of traffic field is
illustrated as

divE =-Df =dk- k,)/e+K,» (10)
where divE denotes the magnitude of traffic field,
K, = K,(x), Which depends on the position X, is the
adjust term of the road condition if the road condition
isideal

1% n

The motion eguation is derived by substituting
the first order moment function, v, for ¢ inEq. (8).

Then the expectation function of velocity is illustrated
as

L(ﬂk;’) +R, (ke , + kuu) = ekE
3.5 Variance Equation (Conservation of Energy)

The last equation considered herein is the

variance equation, which is obtained by substituting
the second moment function, ||v ue||2, for € in

- (12)

Eq.(8). Then the expectation function of velocity
varianceisillustrated as

%Hﬂx {(kQu)+2Ku- u @ ] =- 26 E4{u- u,)- %(13)
is obtained. e

The system equations developed above includes
three conservation laws derived from Boltzmann
equation. These three equations are transient equations,
which describe the changing of variables. However, a
complete dynamic system not only needs transient
equations, but also needs state equations, which
describe the state of variables. A state equation is
needed so as to make the system self-consistent. In this
study, the dynamic system is assumed to become the
equilibrium state gradually. Therefore, the equilibrium
distribution

k=Kyexp((ey - ef)/Q,). (14)
is employed to be the state equation in the system.

K, is the essential density, Q, is the equilibrium
velocity variance, y isthe potential equivalent of the
velocity variance threshold. y is named as the
potential barrier here. By coupling Eqgs (10) and (14),
the nonlinear dispersion model is obtained. If a set of
boundary conditions of the traffic potential is applied,
vehicles are forced to drive through the road according
to the path, which has the least resistance. Therefore,
vehicles on the two-dimensional research domain will
not move forward and backward or circle round. They
will try to pass through the road as soon as possible.
3.7 Closure Relations

The system presented herein also needs closure
relations so as to determine the equilibrium velocity
u,(ku,Q), equilibrium variance Q,(k,u,Q). and
relaxation time ¢, and f_ in Egs (12) and (13).
There are avariety of possible closure relations, which
could be adopted from previous studies. [3-6, 12-14].
The u, and Q_ proposed in study are represented
by

(15)
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Q.(ku.Q) =t p,(K)¥Qu- (16)
respectively. u, is the average desired velocity,
p,(K)T [01] is the braking probability vector, and
p, (k)T [04] is the passing probability vector. The

explicit forms are obtained by specifying expressions
for p,(k) and p (k). Equation (15) means that the

equilibrium velocity decreases as pb(k) increases.

On the other hand, the equilibrium variance increases
as pp(k) increases. Since u, (k) and Q,(ku) are

equilibrium eguations, the functions suggested in this
study are

o ()= c‘)vfe(x,v,z‘)ov (17)
OfLev.t)av
and
V- u|’ £(xv, ) 18
Q=0 a
Qfe(x,v,t)ov
respectively. f, denotes the deady date

homogeneous solution of Boltzmann equation. The
relaxationtime ¢ and ¢t areshownas

Tn -,

=g =
which are modified from the suggestion of Helbing
[3-4]. g(k) is the proportion of freely moving vehicles,
T, is the reaction time of velocity and T, is the

and (19)

reaction time of variance. As f,, g(k), T,, and T,

are determined, the closure relations are expressed
specifically. Then, the self-consistent system is
complete.

R

In this paper we have derived a macroscopic
multilane traffic model for multiple classes users. The
system is a self-consistent system; it can be solved
with proper initial conditions and boundary conditions.
Our consideration is based on the following
assumptions:(d) a multilane road is considered as a
two-dimensional domain. (b) the whole system will
tend toward equilibrium. (c) the individua velocity
variance is employed as the second moment function.

Considering a multilane road as a
two-dimensional domain alows us to handle the
driving behaviors, which are not restricted to drive one
by one in a single lane. Another advantage of this
consideration is to avoid modeling complicated
lane-changing behavior. Lane-changing behavior is
controlled by the nonlinear Poisson equation. If the
research areais only a single lane road, the system can
be reduced to a one-dimensional model.

This study derives a dynamic macroscopic
traffic flow system from Boltzmann equation.
Boltzmann equation employed herein includes
accelerated effect, which is controlled by Poisson
equation. This study modifies the second moment

function as |v - ue||2, which is individual velocity

variance, and reformulates velocity variance equation
to be more reasonable. This study exposes three
moment functions. If there dill exists the other
meaningful moment, it should be considered as its
influenceis significant.

The system equations can be simplified to adapt
different traffic condition because not all variables are
significant in each traffic condition. For example, in
uniform and equilibrium traffic flow, the influence of
velocity variance equation may be ignored. The
simplification is needed because computation of the
whole system takes a lot of time. According to
different traffic conditions, simplification should be
discussed and validated further. Also, numerical
methods should be developed to solve the system. -

= R

In this study, we have derived a macroscopic multilane
traffic model from the microscopic traffic flow
model-Boltzmann equation successfully. The systemis
a self-consistent system; it can be solved with proper
initial conditions and boundary conditions. The result

is accepted by the Physica A, “Modeling of
self-consistent multi-class dynamic traffic  flow
model”.
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