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Mining Bridge and Brick Motifs From Complex
Biological Networks for Functionally and

Statistically Significant Discovery
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Abstract—A major task for postgenomic systems biology re-
searchers is to systematically catalogue molecules and their in-
teractions within living cells. Advancements in complex-network
theory are being made toward uncovering organizing principles
that govern cell formation and evolution, but we lack under-
standing of how molecules and their interactions determine how
complex systems function. Molecular bridge motifs include iso-
lated motifs that neither interact nor overlap with others, whereas
brick motifs act as network foundations that play a central role
in defining global topological organization. To emphasize their
structural organizing and evolutionary characteristics, we define
bridge motifs as consisting of weak links only and brick mo-
tifs as consisting of strong links only, then propose a method
for performing two tasks simultaneously, which are as follows:
1) detecting global statistical features and local connection struc-
tures in biological networks and 2) locating functionally and
statistically significant network motifs. To further understand
the role of biological networks in system contexts, we examine
functional and topological differences between bridge and brick
motifs for predicting biological network behaviors and functions.
After observing brick motif similarities between E. coli and
S. cerevisiae, we note that bridge motifs differentiate C. elegans
from Drosophila and sea urchin in three types of networks. Simi-
larities (differences) in bridge and brick motifs imply similar (dif-
ferent) key circuit elements in the three organisms. We suggest that
motif-content analyses can provide researchers with global and
local data for real biological networks and assist in the search for
either isolated or functionally and topologically overlapping motifs
when investigating and comparing biological system functions and
behaviors.

Index Terms—Complex biological systems, network motif,
network-oriented approach, strong/weak links.

I. INTRODUCTION

N ETWORK-ORIENTED approaches to complex biolog-
ical systems are receiving significant attention in com-

putational systems biology research. As a result, progress is
being made toward defining the organizing principles governing
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the formation and evolution of complex social, biological,
and technological networks. Statistical features in complex
networks have been identified and investigated in biological
systems, including the small-world property [2]–[6] of short
paths between any two nodes and local clustering by nodes
having multiple mutual neighbors [1], [3], [6]. The degree
distributions of nodes in these natural networks frequently
take on a long-tailed (power-law) shape—also referred to as
a scale-free property—in which most nodes have only a few
connections but a few have many connections [1], [7]–[9].

Hierarchical modularity [39] signatures that combine scale-
free and local-clustering properties have recently been observed
in metabolic, protein–protein interaction, and gene-regulatory
networks [38], [43]. Beyond these global statistical features,
a number of local structural motifs (building blocks) are pro-
viding insights to biological networks and revealing their own
statistically significant patterns [7], [12]. These motifs consist
of small subgraphs that occur in biological networks far more
often than in randomized networks [7], [8], [10]–[15]. Some are
thought to play important functional and information roles [7],
[11], [15], [16].

Predicting network behaviors and functions requires the
identification of functionally important and statistically signif-
icant motifs [1]–[3], [6]–[8], [15], [19], [20]. This is consid-
ered as a major challenge in computational biology. Instead
of analyzing motif functions according to their real network
topological features and effects [10], some researchers are
analyzing networks in terms of their theoretical structures [7],
[12], [15], [21], [22]. Using gene-transcription networks as
an example, the strength of a factor’s effect on a targeted
gene’s transcription rate is measured using an input func-
tion that is approximated via a logic [48] or Hill function
[49]. Other researchers are using genetic algorithms to build
complex networks in order to understand network functions
and evolutionary mechanisms [50], [51]. While helpful in un-
derstanding network dynamic behaviors and functions, these
simple frameworks seldom consider global-network features
and local structures simultaneously [61]. Furthermore, motifs
with statistical significance that are experimentally proven to
be unimportant to network functions have no utility for inves-
tigating network functions and behaviors [8]. In this paper, we
propose a method for locating functionally and statistically sig-
nificant network motifs while simultaneously identifying global
statistical features and local structural motifs in biological
networks.

1083-4419/$25.00 © 2007 IEEE
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Fig. 1. Three-point feedback motifs can be divided into three categories.
(Left) Feedback brick motif that is composed of three strong links. (Right)
Feedback bridge motif that is composed of three weak links. (Middle) Other
possible motifs were not considered because their topological properties are
not specific. Note that the bridge and brick motifs shown here were extracted
from a real complex network.

TABLE I
THIRTEEN THREE-NODE DIRECTED SUBGRAPHS

WITHOUT WEIGHTED VALUES

When considering the global statistical features and local
structural motifs of biological networks, it is worth noting
that link properties (weights) exert strong impacts on network
functions and dynamic behaviors [1], [17], [23], [24], [46].
Examples include the role of weak links in the “six degrees of
separation” (i.e., small world) effect of interpersonal networks
[23], [24] and the strength of predator–prey interactions that de-
termine the stability of ecological communities [17]. Network
researchers have reported that a weighted value representing
interaction strength can be assigned to each link (edge) in a
real network [1], [25]–[27]. Moreover, most genes and proteins
do not have independent functions; instead, their roles are
realized via complex interactions with other proteins, genes,
and biomolecules [29], [40], [42], [43], [46]. We therefore
considered network-motif-link strength [1], [25]–[27] in terms
of two categories: bridge (consisting of weak links only) and
brick motifs (consisting of strong links only) (Fig. 1, Table I).
Serving as network foundations, brick motifs play a central role
in defining global topological organization [42]; bridge motifs
include isolated motifs that neither interact nor overlap with
other motifs.

II. BACKGROUND

Most cellular functions are modular [34]–[36], with each
module consisting of nodes that are physically or functionally
connected in order to perform independent tasks. For example,
invariant protein–protein and protein–ribonucleic acid (RNA)
complexes (physical modules) at the core of many basic bio-
logical functions consist of temporally coregulated groups of
molecules that govern various cell cycle stages [34]. Several
methods in identifying topological and functional modules
have been proposed, including network topological descriptions
[25], [26], [39], [53], [59] and combining topologies with
functional genomic data [38]. However, different methods tend

to predict different boundaries between modules that are not
sharply separated. This ambiguity is both a limitation of clus-
tering methods and a consequence of a network’s hierarchical
modularity [38], [39].

It has been suggested that, in most situations, motifs serve
as basic modular elements in complex networks [7], [12], [18],
[37], [56]. Three additional pieces of evidence indicating that
motifs have direct biological relevance are evolutionary motif
conservation within yeast–protein interaction networks [38],
[60], convergent evolution toward similar motif types in the
transcriptional regulatory networks of various species [30],
[38], and specific motif types that aggregate into large clusters
in E. coli [42].

Milo et al.’s [7], [28] motif concept has served as the
jumping-off point for many studies. For example, based on the
notion that the number of distinct subgraphs (sets of nodes with
specific sets of connecting edges) grows exponentially with
the number of nodes, researchers have developed efficient and
scalable heuristics in detecting specific subgraphs and in de-
termining their frequencies in large networks [38], [52]. Some
motif-identification methods have been used with stochastic
networks containing intrinsic and/or experimental uncertainties
[54], and a topological relationship between the large-scale
attributes and local interaction patterns of complex networks
has been reported [10], [52], [54]. Other researchers have
focused on motif variations (including graphlets [55] consisting
of small nonisomorphic network subgraphs) and motifs derived
from families of similar (but not identical) patterns [14]. Note
that subgraphs are not called motifs until they reach a specific
statistical significance.

Attempts have been made to observe local network structures
in order to determine network motif functions, with simulated
dynamic systems being used to detect dynamic motif features
and behaviors [12], [33], [45]. However, some dynamics remain
undetected due to unknown and perhaps complex functional
dependences between nodes, lack of knowledge of the para-
meters defining specific instances of motifs in real networks,
or “unmodeled” interactions that may be absent from network
representation but are nevertheless relevant [33].

Others are studying the importance of links, also called
interactions [29], [42]. Individual research teams have reported
the following: 1) crosstalk (meaning module connectivity that
allows one function to influence another) is vital for cellular-
function coordination [36], [43] and 2) the higher the number
of internal connections in a motif, the more conserved the
motif across species during evolution [40]. Shortcut links in
small-world networks also play an important role, with some
forming clusters that are found in many biological networks
[29], [36], [40], [42]. As described in the following section,
we adopted an approach that combines statistically significant
building blocks with link properties to locate statistically and
functionally significant network motifs in biological networks.

III. BRIDGE AND BRICK MOTIF DETECTION METHODS

To ensure that the concepts and methods described in this
paper can be applied to any complex biological network, the
link-weighted value Link(ν, w) for any edge between nodes ν
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Fig. 2. Small-world model. Black signifies strong links and gray weak links
(network shortcuts).

and w is expressed as its hypergeometric coefficient Cν,w (1)
[41]. This value (frequently used to measure cluster enrichment
and cooccurrence significance) is expressed as

Link(ν, w)
= CV,W

= −log
min(|N(ν)|,|N(w)|)∑

i=|N(ν)∩N(w)|

(
|N(ν)|

i

)
×

(
T − |N(ν)|
|N(w)| − i

)
(

T
|N(w)|

)

(1)

where |N(x)| is the neighborhood size of node x, and T the
total number of nodes in the biological network of interest.
The summation in the hypergeometric coefficient Cν,w can
be represented as the probability in obtaining a number of
mutual neighbors between nodes ν and w at or above the
observed number when the neighborhoods are independent.
The hypergeometric coefficient Cν,w is consequently defined
as the negative log of this summation. Given the neighborhood
sizes of the ν and w nodes and the T total number of nodes in
the biological network, the higher the value of Cν,w, the higher
the number of overlapping neighbors between ν and w—an
indication that Link(ν, w) has a higher clustering coefficient.
Otherwise, it does not belong to any specific cluster (Fig. 2).

The threshold LinkAV G that determines the strength of any
link is the mean weighted value of all links in 1000 randomized
networks. Each node in a randomized network has the same
number of incoming edges (in-degrees) and outgoing edges
(out-degrees) as its corresponding node in a real network.
Furthermore, randomized networks preserve the same number
of appearances of all (n − 1) node subgraphs as in the real
(original) network [7]. When the weighted value Link(ν, w) of
a link between nodes ν and w in a randomized or real network
is smaller than the threshold LinkAV G minus two standard
deviations, the link is considered “weak”; all other links are
considered “strong.” Individual researchers can define criteria
for strong and weak links according to their specific needs.

We expanded Milo et al.’s methodology [7] for identifying
bridge and brick motifs in complex networks to include the
following steps.

1) Calculate the weighted value of each link in a network of
interest and an ensemble of random networks to calculate
the significance of n-node subgraphs (1).

2) Label all weighted links in the network of interest and
random network ensemble as strong or weak according

to a benchmark of two standard deviations from the
mean weighted value of all links in the ensemble. Links
with weighted values below the benchmark are labeled
as weak.

3) Identify all n-node bridge/brick subgraph types in the
network of interest and random network ensemble.

4) Mark all n-node bridge/brick subgraph types by calculat-
ing their numbers in the network of interest and random
network ensemble. An n-node bridge/brick subgraph type
is selected as a representative motif only if its frequency
in the network of interest far exceeds its frequency in the
ensemble.

Motif frequency can be used to measure levels of simi-
larity between two networks. Furthermore, it is possible to
calculate Zscore for all bridge and brick motifs and to estab-
lish significance profiles (SPs) in any network by expanding
Milo et al.’s [7], [28] methods. In (2), Zscore(Bridgei) repre-
sents the statistical significance of the ith kind of bridge motif
in a network

ZScore(Bridgei) =
Nreal(Bridgei) − 〈Nrandom(Bridgei)〉

STD (Nrandom(Bridgei))
(2)

where Nreal(Bridgei) represents the time of appearance of the
ith type of bridge motif in a network, and 〈Nrandom(Bridgei)〉
and STD(Nrandom(Bridgei)), respectively, represent the mean
and standard deviation of the time of appearance of the ith
type of bridge motif in a randomized network ensemble. In (3),
SP (Bridgei) is the vector of Zscore(Bridgei) normalized to a
length of one. The normalization emphasizes the relative rather
than the absolute significance of the ith type of bridge motif.
As shown in (4) and (5), Zscore(Bricki) and SP (Bricki) can be
derived in the same manner

SP (Bridgei) =
ZScore(Bridgei)

(
∑

ZScore(Bridgei)2)
1/2

(3)

ZScore(Bricki) =
Nreal(Bricki) − 〈Nrandom(Bricki)〉

STD (Nrandom(Bricki))
(4)

SP (Bricki) =
ZScore(Bricki)

(
∑

ZScore(Bricki)2)
1/2

. (5)

IV. EXPERIMENTAL RESULTS

We applied our proposed method to E. coli (bacteria) and
S. cerevisiae (yeast) transcriptional gene regulation networks
[28]. Network and source data are listed in Tables II and III.
Additional data are available at ftp://www.csie.cgu.edu.tw/.

In both networks, nodes represent operons (i.e., one or more
genes transcribed on the same mRNA [28]), and directed
links represent transcriptional regulatory relationships between
operons that encode transcription factors (TFs) and operons
regulated by TFs. In both E. coli and S. cerevisiae, we observed
many v-out and feedforward-loop (FFL) brick motifs (ID = 1
and 5, respectively) (Table III). The FFL (a three-gene sub-
graph) is composed of two input TFs, one regulating the other
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TABLE II
EDGE AND NODE DEFINITIONS, NETWORK SIZES, AND REFERENCES FOR FIVE GENE REGULATION NETWORKS

TABLE III
BRICK AND BRIDGE MOTIFS IN FIVE GENE REGULATION NETWORKS

and both jointly regulating a target gene [13]. The observation
that FFL bridge motifs do not exist in either network supports
previous findings indicating that most motifs do not function
in isolation but overlap with known biological functions [29],
[42], [44], [56]. Specifically, one FFL motif cluster overlaps
with the flagella-motor module, and another contains a sig-
nificant number of elements responsible for regulating the
E. coli aerobic/anaerobic switch [42]. We suggest that, since
most FFL motifs consist of strong links, many (if not all)
FFL motif interactions can be used as parts of other motifs
or modules (e.g., flagella motor, osmoregulated porin gene,
oxidative stress response, methionoine-biosynthesis modules)
in a manner that makes the most efficient use of each gene

or operon archive [42], [56]. Accordingly, FFL brick motifs
are viewed as having an optimal design in terms of convergent
evolution in transcriptional gene regulation networks [30].

The other motif type that is well represented in both networks
is the four-gene bifan pattern associated with bridge motifs
(Table III). The bifan consists of two input TFs, one never
regulating the other but both jointly regulating two target genes.
In E. coli, 208 of the 209 bifan motifs we observed combine to
create dual-motif clusters, in which most links are shared by
at least two adjacent motifs in addition to multiple nonadjacent
motifs [42]. We did not find any bifan brick motifs but noted
107 bifan bridge motifs that do not overlap with other motifs,
indicating that they function by themselves. From this, we
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Fig. 3. Comparisons of TSPs for our bridge and brick motifs and Milo et al.’s
[7], [28] E. coli motifs.

Fig. 4. Comparisons of TSPs for our bridge and brick motifs and Milo et al.’s
[7], [28] S. cerevisiae (yeast) motifs.

inferred a low coregulation ratio for two operons, in which one
regulates the other.

We will use the bifan bridge motif consisting of aroL,
mtr, TrpR, and TyrR as an example. The combination of the
TyrR protein and TrpR repressor are responsible for regulating
other aromatic amino acid transport genes [57]. The TyrR
protein plus either phenylalanine or tyrosine is responsible for
mtr-gene activation, while a combination of the TrpR repres-
sor plus tryptophan represses the mtr gene [58]. Both TyrR
and TrpR regulate the expression of the aroL gene-encoding
enzyme shikimate kinase II in E. coli [42]. We also found
51 brick motifs (ID = 206) consisting of combinations of FFL
and bifan motifs. As Dobrin [56] reports, these motifs form a
heterologous motif superstructure. Our results for S. cerevisiae
are similar to those for E. coli. After comparing our results with
Milo et al.’s results [28], we determined that v-out (ID = 1)
and FFL brick motifs (ID = 5) play important roles in both
networks (Figs. 3 and 4). Furthermore, the brick-motif ratio
profiles in the two gene regulation networks are very similar
(correlation coefficient c = 0.96) (Fig. 5), even though they
contain relatively few brick motifs [28].

We made an effort to learn more about the relationship
between coherent (incoherent) FFLs [12] and brick (bridge)
FFLs. Since each of the three FFL interactions can be either
activating or repressing, FFLs have eight possible structural
types [13], [42]. The four incoherent FFL types act as sign-

Fig. 5. Brick motif ratio profiles for two gene regulation networks: E. coli and
S. cerevisiae (yeast).

Fig. 6. Bridge motif ratio profiles for three gene regulation networks:
C. elegans, sea urchin, and Drosophila.

sensitive accelerators that shorten the response time of target-
gene expression following stimuli in one direction (e.g., off
to on) but not the other. The four coherent FFL types act
as sign-sensitive delays. E. coli contains 34 coherent FFLs,
eight incoherent FFLs [42], 29 brick-coherent FFLs, and six
brick-incoherent FFLs. Accordingly, the difference in coherent
(incoherent) FFL frequencies cannot be simply explained by the
relative abundances of brick and bridge motifs in a network.

Next, we applied our proposed method to transcription net-
works that guide development in Drosophila melanogaster
and sea urchin and synaptic wiring in Caenorhabditis elegans
(Table II). As in the two gene regulation networks, brick TSPs
were more significant than bridge TSPs in these three networks.
However, we also determined that four bridge motifs (ID = 5,
6, 11, and 12) in C. elegans are very significant (Table III),
indicating the greater presence of isolated motifs. We suggest
that these bridge motifs constitute the main difference between
the C. elegans network and the Drosophila and sea urchin
networks (Fig. 6). Similarities (differences) in bridge and brick
motifs imply similar (different) key circuit elements in each
organism.

To validate the respective roles of weak and strong links, we
removed equal percentages of each (as well as random links).
We found that in E. coli and S. cerevisiae, the greater the num-
ber of strong links removed, the lower the clustering coefficient
relative to the randomly removed links. In contrast, the greater
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Fig. 7. Relationships between clustering coefficients and different removal
ratios for three E. coli link types.

Fig. 8. Relationships between clustering coefficients and different removal
ratios for three S. cerevisiae (yeast) link types.

the number of weak links removed, the higher the clustering co-
efficient relative to the randomly removed links (Figs. 7 and 8).
Note that the average clustering coefficient increases when
weak links are removed—i.e., when the clustering coefficient
of a weak link’s end node is calculated, its neighbors do not
include the same link’s other end node. The average coefficient
increases after the weak links are removed, because the two end
nodes do not share a large number of common neighbors. We
did not compute the average degree of separation in the network
after removing links, because a network may become broken
and disconnected after a link is removed, and the definition of
average degree of separation is based on a connected network.
Note that our approach is insensitive to data errors; significant
network motif sets in the two gene regulation networks do
not change a great deal even when 40% of their edges are
removed (Figs. 9 and 10). All altered results (red curves) shown
in Figs. 9 and 10 represent average values for 30 runs. Our
sensitivity-analysis results confirmed great similarities between
the original and altered networks after randomly removing
40% of their links. According to the triad SP (TSP) of brick
motifs, the original and altered networks belong to the same
superfamily.

As shown in Fig. 11, the link weight distribution is ex-
tremely polarized (either zero or > 2), which supports our
criterion for distinguishing between strong and weak links
(i.e., mean weighted value LinkAV G = 0.9 and standard de-

Fig. 9. Comparison of (blue curve) original and (red curve) altered brick motif
ratio profiles for E. coli after randomly removing 40% of its links. Altered
results represent average values for 30 runs.

Fig. 10. Comparison of (blue curve) original and (red curve) altered brick
motif ratio profiles for S. cerevisiae (yeast) after randomly removing 40% of its
links. Altered results represent average values for 30 runs.

Fig. 11. Distribution of five link weights. Average mean and standard devia-
tion of link weights for randomized networks were calculated as 0.90 ± 0.04.

viation LinkSTD = 0.04 for all links in 1000 randomized net-
works). In most cases, random networks have many more weak
than strong links. At least one researcher has suggested that
high degree of clustering is a generic feature of biological
networks [38].

The link property is a good indicator of cellular function
robustness. The simplest strategy for protecting against the
failure of a specific component is to provide alternative ways
to perform that component’s function. At the molecular level,
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this backup strategy (or genetic buffering) [31] can be carried
out by duplicate genes with identical roles or by different genes
that constitute an alternate but functionally overlapping path
[36]. Researchers can use brick motifs to explore identical
genes that diverge functionally, reasons why the biological
networks of unreliable elements still perform reliably [33], and
the degeneracy phenomenon [32], [47].

V. CONCLUSION

According to our definitions of weighted links and network
motifs and the results of our validation experiments using
two gene transcription regulation networks, we conclude that
the presence of bridge and brick motifs in a biological net-
work is closely associated with network topological structures
(particularly local connections) but not with network size
(i.e., number of nodes). Bridge motifs can assist in the iden-
tification of isolated motifs, and brick motifs can be used to
locate motifs whose functions overlap. This combination of a
statistically significant motif and strong- or weak-link prop-
erties provides insight to the structural organizing principles
and functions of networks. It can also serve as a method for
analyzing biological system robustness.
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