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Multiple Time-Delay Large-Scale Systems via
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Feng-Hsiag Hsiao, Sheng-Dong Xu, Chia-Yen Lin, and Zhi-Ren Tsai

Abstract—The stabilization problem is considered in this correspon-
dence for a nonlinear multiple time-delay large-scale system. First, the
neural-network (NN) model is employed to approximate each subsystem.
Then, a linear differential inclusion (LDI) state-space representation is
established for the dynamics of each NN model. According to the LDI
state-space representation, a robustness design of fuzzy control is proposed
to overcome the effect of modeling errors between subsystems and NN
models. Next, in terms of Lyapunov’s direct method, a delay-dependent
stability criterion is derived to guarantee the asymptotic stability of
nonlinear multiple time-delay large-scale systems. Finally, based on this
criterion and the decentralized control scheme, a set of fuzzy controllers
is synthesized to stabilize the nonlinear multiple time-delay large-scale
system.

Index Terms—Delay-dependent stability criterion, large-scale systems,
modeling error, neural network (NN).

I. INTRODUCTION

In the past few years, neural-network (NN)-based modeling has
become an active research field because of its unique merits in
solving complex nonlinear system identification and control problems
(see [3]–[5] and the references therein). NNs are composed of simple
elements operating in parallel. These elements are inspired by biolog-
ical nervous systems. As a result, we can train an NN to represent a
particular function by adjusting the weights between elements. Hence,
the nonlinear system is approximated as close as desired by the NN
models via repetitive training. Recently, many reports on the success
of NN applications in control systems have appeared in the literature
(see [6]–[11]). For instance, Limanond et al. [7] applied NNs to
optimal etch time control design for a reactive ion etching process.
Enns and Si [10] advanced an NN-based approximate dynamic pro-
gramming control mechanism to helicopter flight control. Despite
several promising empirical results and the nonlinear mapping approx-
imation property, the rigorous closed-loop stability results for systems
using NN-based controllers are still difficult to establish. Therefore,
an LDI state-space representation was also introduced to deal with the
stability analysis of NN models (for example, see [4] and [5]).
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During the last decade, fuzzy control has been successfully applied
to the control design of nonlinear systems (see [1], [2], [12]–[25]).
In these papers, a so-called Takagi–Sugeno (T–S) fuzzy model was
employed to approximate a nonlinear plant; then, a model-based fuzzy
controller was designed to stabilize the T–S fuzzy model. All of them,
however, neglect the modeling error between the nonlinear system and
the fuzzy model. In fact, existence of modeling error may be a potential
source of instability for control designs that have been based on the
assumption that the fuzzy model exactly matches the nonlinear plant
[26]. Recently, Kiriakidis [26], Chen et al. [27], Cao and Frank [28],
and Cao and Lin [29] highlighted the importance of modeling error
for the stability analysis of nonlinear systems. However, a literature
search indicates that the effect of modeling errors between nonlinear
multiple time-delay large-scale systems and NN models has not been
discussed yet. A robustness design of T–S fuzzy control for nonlinear
multiple time-delay large-scale systems is hence proposed in this
correspondence to overcome the influence of modeling error via NN-
based approach.

This correspondence is organized as follows. The system descrip-
tion is presented in Section II. In Section III, a robustness design of
T–S fuzzy control and stability analysis of the nonlinear multiple time-
delay large-scale systems are proposed. Finally, the conclusions are
drawn in Section IV.

II. SYSTEM DESCRIPTION

Consider a nonlinear multiple time-delay large-scale system N
composed of J interconnected subsystems Nj , j = 1, 2, . . . , J . The
jth subsystem Nj is described as follows:

Ẋj(t) = fj (Xj(t), Uj(t))

+

Lj∑
k=1

J∑
n=1

ρknj (Xn(t− τknj)) +

J∑
n=1
n �=j

bnj (Xn(t)) (2.1)

where fj(·) and ρknj(·) are the nonlinear vector-valued functions,
Xj(t) denotes the state vector, Uj(t) is the input vector, bnj(·)
is the nonlinear interconnections between the nth and jth subsys-
tems, τkjj(k = 1, 2, . . . , Lj) are the time delays in the jth subsys-
tems, and τknj(n = 1, 2, . . . , J, n �= j) are the time delays in the
interconnections.

In the following, each subsystem is approximated by an NN model.
Then, the dynamics of the NN models are converted into linear
differential inclusion (LDI) state-space representations. Subsequently,
a set of model-based fuzzy controllers is designed to stabilize the
nonlinear multiple time-delay large-scale system N .

A. NN Model

The jth subsystem of N is approximated by an NN model, which,
as shown in Fig. 1, has Sj(j = 1, 2, . . . , J) layers with Rσ

j (σ =
1, 2, . . . , Sj)

1 neurons for each layer, in which x1n(t) ∼ xδnn(t)
(n �= j) are the interconnected state variables and u1j(t) ∼ umjj(t)

1For simplicity of notation, we use S instead of Sj in the remainder of this
correspondence.
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Fig. 1. The jth NN model.

are the input variables. In order to distinguish among these layers, the
superscripts are used for identifying the layers. Specifically, we append
the number of the layer as a superscript to the names for each of these
variables. Thus, the weight matrix for the σth layer is written as Wσ

j .
Moreover, it is assumed that v(t) is the net input and T (v(t)) is the
transfer function of the neuron. Subsequently, the transfer function
vector of the σth (σ = 1, 2, . . . , S) layer is defined as

Ψσ
j (v(t)) ≡

[
T (vσ

1 (t))T (vσ
2 (t)) · · ·T

(
vσ

Rσ
j
(t)
)]T

(2.2)

where T (vσ
ς (t))(ς = 1, 2, . . . , Rσ

j ) is the transfer function of the ςth
neuron. Then, the final output of the jth NN model can be inferred
as follows:

Ẋj(t) = ΨS
j

(
WS

j ΨS−1
j

(
WS−1

j ΨS−2
j(

· · ·Ψ2
j

(
W2

jΨ
1
j

(
W1

jΛj(t)
))

· · ·
)))

(2.3)

where

ΛT
j (t) =

[
· · ·XT

n (t− τ1nj)X
T
n (t− τ2nj) · · ·XT

n (t− τknj)

· · ·XT
n (t− τLjnj) · · ·XT

j (t)UT
j (t) XT

1 (t)XT
2 (t)

· · ·XT
n (t) · · ·XT

J (t)
]

with

XT
n (t− τknj) =

[
x1n(t− τknj) x2n(t− τknj) · · ·xδnn(t− τknj)

]
for n = 1, 2, . . . , J ; k = 1, 2, . . . , Lj

XT
j (t) =

[
x1j(t) x2j(t) · · · xδjj(t)

]
UT

j (t) =
[
u1j(t) u2j(t) · · · umjj(t)

]
XT

n (t) = [x1n(t) x2n(t) · · · xδnn(t)] , n �= j.
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Remark 1: In NNs, neurons may use whatever differentiable trans-
fer functions to generate their output, so we have many choices about
choosing or determining the transfer function, such as the sigmoid
function and the hyperbolic tangent function. The selection of transfer
functions T (v(t)) in this correspondence is just one of the feasible
choices.

Next, in order to deal with the stability problem of the nonlinear
multiple time-delay large-scale system N , an LDI state-space repre-
sentation is established for [30]

Ẏ (t) =A (a(t))Y (t)

A (a(t)) =

φ∑
i=1

hi (a(t))Ai (2.4)

where φ is a positive integer, a(t) is a vector signifying the dependence
of hi(·) on its elements, Ai(i = 1, 2, . . . , φ) are constant matrices,
and Y (t) = [y1(t) y2(t) · · · yΞ(t)]T . Furthermore, it is assumed that
hi(a(t)) ≥ 0,

∑φ

i=1
hi(a(t)) = 1.

From the properties of LDI, without loss of generality, we can use
hi(t) instead of hi(a(t)). In the following, we present a procedure to
represent the dynamics of the jth NN model (2.3) by LDI state-space
representation [5].

To begin with, notice that the output T (vσ
ς (t)) satisfies

gσ
ς1v

σ
ς (t) ≤ T

(
vσ

ς (t)
)
≤ gσ

ς2v
σ
ς (t), vσ

ς (t) ≥ 0

gσ
ς2v

σ
ς (t) ≤ T

(
vσ

ς (t)
)
≤ gσ

ς1v
σ
ς (t), vσ

ς (t) < 0

where gσ
ς1 and gσ

ς2 are the minimum and the maximum of the derivative
of T (vσ

ς (t)), respectively, and they are given in the following:

gσ
ςϕ =




min
v

dT(vσ
ς (t))

dvσ
ς (t)

, when ϕ = 1

max
v

dT(vσ
ς (t))

dvσ
ς (t)

, when ϕ = 2.
(2.5)

Subsequently, the min–max matrix Gσ of the σth layer is defined as
follows:

Gσ ≡ diag
[
gσ

ςϕ

]
=




gσ
1ϕ1

0 0 · · · 0

0 gσ
2ϕ2

0
. . . 0

0 0 gσ
3ϕ3

0
...

...
. . . 0

. . . 0
0 0 · · · 0 gσ

Rσ
j

ϕR



.

(2.6a)

Moreover, based on the interpolation method, the transfer function
T (vσ

ς (t)) can be represented as follows [5], [12]:

T
(
vσ

ς (t)
)

=
(
hσ

ς1(t)g
σ
ς1 + hσ

ς2(t)g
σ
ς2

)
vσ

ς (t)

=

(
2∑

ϕ=1

hσ
ςϕ(t)gσ

ςϕ

)
vσ

ς (t) (2.6b)

where interpolation coefficients hσ
ςϕ(t)∈ [0, 1] and

∑2

ϕ=1
hσ

ςϕ(t)=1.
From (2.2) and (2.6b), we have

Ψσ (v(t)) ≡
[
T (vσ

1 (t)) T (vσ
2 (t)) · · · T (vσ

Rσ (t))
]T

=

[
2∑

ϕ1=1

hσ
1ϕ1

(t)gσ
1ϕ1
vσ
1 (t)

2∑
ϕ2=1

hσ
2ϕ2

(t)gσ
2ϕ2
vσ
2 (t)

· · ·
2∑

ϕR=1

hσ
RσϕR

(t)gσ
RσϕR

vσ
Rσ (t)

]T

. (2.6c)

Therefore, the final output of the NN model (2.3) can be reformulated
as follows:

Ẋj(t)=

2∑
p=1

hS
ςp(t)G

SWS
j

×

[
· · ·

[
2∑

m=1

h2
ςm(t)G2

(
W 2

j

[ 2∑
r=1

h1
ςr(t)G

1W 1
j Λj(t)

])]
· · ·

]

=

2∑
p=1

· · ·
2∑

m=1

2∑
r=1

hS
ςp(t) · · ·hS

ςm(t)hS
ςr(t)G

SWS
j

· · ·G2W 2
j G

1W 1
j Λj(t)

=
∑
Ω

hσ
ςΩ(t)Eσ

ΩΛj(t) (2.7)

where

2∑
r=1

h1
ςr(t) ≡

2∑
r1=1

h1
1r1

(t)

2∑
r2=1

h1
2r2

(t) · · ·
2∑

rR=1

h1
R1

j
rR

(t)

2∑
m=1

h2
ςm(t) ≡

2∑
m1=1

h2
1m1

(t)

2∑
m2=1

h2
2m2

(t) · · ·
2∑

mR=1

h2
R2

j
mR

(t)

...
2∑

p=1

hS
ςp(t) ≡

2∑
p1=1

hS
1p1

(t)

2∑
p2=1

hS
2p2

(t) · · ·
2∑

pR=1

hS
RS

j
pR

(t)

∑
Ω

hσ
ςΩ(t) ≡

2∑
p=1

· · ·
2∑

m=1

2∑
r=1

hS
ςp(t) · · ·h2

ςm(t)h1
ςr(t),

ς = 1, 2 . . . , Rσ
Ω; Eσ

Ω ≡ GSWS
j · · ·G2W2

jG
1W1

j and rς , mς , and
pς(ς = 1, 2, . . . , R) represent the variables ϕ of the ςth neuron of the
first, second, and Sth layer, respectively. Finally, according to (2.4), the
dynamics of the jth (j = 1, 2, . . . , J) NN model (2.7) can be rewritten
as the following LDI state-space representation:

Ẋj(t) =

φj∑
i=1

hij(t)EijΛj(t) (2.8)

where hij(t) ≥ 0,
∑φj

i=1
hij(t) = 1, φj is a positive integer, and Eij

is a constant matrix with appropriate dimension associated with Eσ
Ω.
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The LDI state-space representation (2.8) can be further rearranged
as follows:

Ẋj(t) =

φj∑
i=1

hij(t)


AijXj(t) +BijUj(t)

+

Lj∑
k=1

J∑
n=1

AiknjXn(t− τknj) +

J∑
n=1
n �=j

ÂinjXn(t)


 (2.9)

where Aiknj ,Aij ,Bij , and Âinj are the partitions of Eij correspond-
ing to the partition ΛT

j (t).
Remark 2: For simplicity of NN model construction, the NNs for

all subsystems in this correspondence are assumed to have the same
forms with respect to the numbers of layers and neurons. Therefore,
we have

φ1 = φ2 = · · · = φJ . (2.10)

B. T–S Fuzzy Control

On the basis of the decentralized control scheme, a set of T–S fuzzy
controllers is synthesized to stabilize the nonlinear multiple time-delay
large-scale system N . The jth fuzzy controller takes the following
form:

Rule β : IF x1j(t) isMβ1j and . . . and xδjj(t) isMβδjj

THEN Uj(t) = −CβjXj(t)

β = 1, 2, . . . , µj , and µj is the number of IF–THEN rules of the fuzzy
controller and Mβθj(θ = 1, 2, . . . , δj) are the fuzzy sets. Hence, the
final output of this fuzzy controller is inferred as follows:

Uj(t) = −

µj∑
β=1

wβj(t)CβjXj(t)

µj∑
β=1

wβj(t)

= −
µj∑

β=1

hβj(t)CβjXj(t) (2.11)

with

wβj(t) ≡
δj∏

θ=1

Mβθj (xθj(t)) hβj(t) ≡
wβj(t)

µj∑
β=1

wβj(t)

in which Mβθj(xθj(t)) is the grade of membership of xθj(t) in
Mβθj . In this correspondence, it is also assumed that wβj(t) ≥ 0,
β = 1, 2, . . . , µj ; j = 1, 2, . . . , J and

∑µj

β=1
wβj(t) > 0 for all t.

Therefore, hβj(t) ≥ 0 and
∑µj

β=1
hβj(t) = 1 for all t.

III. ROBUSTNESS DESIGN OF FUZZY CONTROL

AND STABILITY ANALYSIS

In this section, the stability of the nonlinear multiple time-delay
large-scale system N is examined under the influence of modeling
error.

A. Modeling Error

Substituting (2.11) into (2.1) and (2.9) yields the jth closed-loop
subsystem N j as follows:

Ẋj(t) =

φj∑
i=1

µj∑
β=1

hij(t)hβj(t)

×

[
(Aij −BijCβj)Xj(t) +

Lj∑
k=1

J∑
n=1

ĀiknjXn

× (t− τknj) +

J∑
n=1
n �=j

ÂinjXn(t)

]
+ Γj (Xj(t))

+

Lj∑
k=1

J∑
n=1

ρknj (Xn(t− τknj)) +

J∑
n=1
n �=j

bnj (Xn(t))

−
φj∑
i=1

µj∑
β=1

hij(t)hβj(t)

×

[
(Aij −BijCβj)Xj(t) +

Lj∑
k=1

J∑
n=1

ĀiknjXn

× (t− τknj) +

J∑
n=1
n �=j

ÂinjXn(t)

]

=

φj∑
i=1

µj∑
β=1

hij(t)hβj(t)

×

[
(Aij −BijCβj)Xj(t) +

Lj∑
k=1

J∑
n=1

ĀiknjXn

× (t− τknj)+

J∑
n=1
n �=j

ÂinjXn(t)

]
+∆Φj(t) (3.1)

where fj(Xj(t), Uj(t)) ≡ Γj(Xj(t)) with

Uj(t) = −
µj∑

β=1

hβj(t)CβjXj(t)

∆Φj(t) ≡ ej(t) +

Lj∑
k=1

J∑
n=1

eknj(t− τknj) +

J∑
n=1
n �=j

ênj(t)

with

ej(t) ≡
[
Γj (Xj(t)) −

φj∑
i=1

µj∑
β=1

hij(t)hβj(t)

× (Aij −BijCβj)Xj(t)

]
(3.2)
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eknj(t− τknj)≡
[
ρknj (Xn(t− τknj))

−
φj∑
i=1

µj∑
β=1

hij(t)hβj(t)AiknjXn(t− τknj)

]

=

[
ρknj (Xn(t− τknj))

−
φj∑
i=1

hij(t)AiknjXn(t− τknj)

]
(3.3)

ênj(t)≡
[
bnj (Xn(t))−

φj∑
i=1

µj∑
β=1

hij(t)hβj(t)ÂinjXn(t)

]

=

[
bnj (Xn(t))−

φj∑
i=1

hij(t)ÂinjXn(t)

]
(3.4)

and ∆Φj(t) denotes the modeling error between the jth closed-
loop nonlinear subsystem (3.1) and the closed-loop NN model
[(2.8) + (2.9)].

Suppose that there exists bounding matrix ∆Hiβj such that

‖∆Φj(t)‖ ≤

∥∥∥∥∥
φj∑
i=1

µj∑
β=1

hij(t)hβj(t)∆HiβjXj(t)

∥∥∥∥∥ (3.5)

for trajectoryXj(t), and the bounding matrix ∆Hiβj can be described
as follows:

∆Hiβj = εiβjHj (3.6)

where Hj is the specified structured bounding matrix and ‖εiβj‖ ≤
1 for i = 1, 2, . . . , φj ; β = 1, 2, . . . , µj ; and j = 1, 2, . . . , J . From
(3.5) and (3.6), we have

∆ΦT
j (t)∆Φj(t) ≤

[
φj∑
i=1

µj∑
β=1

hij(t)hβj(t)∆HiβjXj(t)

]T

×

[
φj∑
i=1

µj∑
β=1

hij(t)hβj(t)∆HiβjXj(t)

]

≤
φj∑
i=1

µj∑
β=1

hij(t)hβj(t) ‖HjXj(t)‖ ‖εiβj‖

×
φj∑
i=1

µj∑
β=1

hij(t)hβj(t)‖εiβj‖ ‖HjXj(t)‖

≤ [HjXj(t)]
T [HjXj(t)] . (3.7)

That is, the modeling error ∆Φj(t) is bounded by the specified
structured bounding matrixHj .

Remark 3 [18]: The procedures for determining εiβj and Hj are
described by the following simple example. Assume that the possible
bounds for all elements in ∆Hiβj are

∆Hiβj =

[
∆h11

iβj ∆h12
iβj

∆h21
iβj ∆h22

iβj

]

where −γrs
j ≤ ∆hrs

iβj ≤ γrs
j for some γrs

iβj , with r, s = 1, 2;
i = 1, 2, . . . , φj ; β = 1, 2, . . . , µj ; and j = 1, 2, . . . , J .

One possible description for the bounding matrix ∆Hiβj is

∆Hiβj =

[
ε11iβj 0

0 ε22iβj

][
γ11

j γ12
j

γ21
j γ22

j

]
= εiβjHj

where −1 ≤ εrr
iβj ≤ 1 for r = 1, 2. It is noticed that εiβj can be chosen

by other forms as long as ‖εiβj‖ ≤ 1. Then, we check the validity of
(3.5); if it is not satisfied, we can expand the bounds for all elements
in ∆Hiβj and repeat the design procedures until (3.5) holds.

B. Stability in the Presence of Modeling Error

In the following, a stability criterion is proposed to guarantee the
asymptotic stability of the closed-loop nonlinear multiple time-delay
large-scale system N , which consists of J closed-loop subsystems
described in (3.1). Prior to examination of the asymptotic stability of
N , a useful concept is given here.

Lemma 1 [31]: For real matrices A and B with appropriate dimen-
sions, we have

ATB +BTA ≤ λ̄ATA+ λ̄−1BTB

where λ̄ is a positive constant.
Theorem 1: The closed-loop nonlinear multiple time-delay large-

scale system N is asymptotically stable if there exist symmetric
positive definite matrices Pj , ψknj and positive constants αj , zj , and
ηj(j = 1, 2, . . . , J), and feedback gains Cβjs, as shown in (2.11), are
chosen such that the following inequalities hold:

Qiβnj ≡
Lj∑

k=1

τknjξiβkj +>inj < 0

for i = 1, 2, . . . , φj , β = 1, 2, . . . , µj ; n, j = 1, 2, . . . , J

(3.8a)

∇iknj ≡α−1
j LjA

T

iknjAiknj − ψknj < 0

for i = 1, 2, . . . , φj , k = 1, 2, . . . , Lj ; n, j = 1, 2, . . . , J

(3.8b)

where

ξiβkj =(Aij −BijCβj)
TPj + Pj(Aij −BijCβj) + zjτknjH

T
j Hj

(3.9a)

>inj =αjLj

Lj∑
k=1

τ2
knjP

2
j + Ljz

−1
j P 2

j +

Lj∑
k=1

ψkjn

+ η−1
j

Lj∑
k=1

τ2
knjPjÂinjÂ

T
injPj + κinjLnI (3.9b)

with κinj = (hin(t)/hij(t))ηn.
Proof: See the Appendix.

Remark 4: In physical conditions, it is not an easy task to divide
the large-scale system into many obviously different subsystems based
on the concept of theory. In this correspondence, the high similar-
ities among all the subsystems are assumed. Therefore, (3.8a) with
time-dependent functions hin(t) and hij(t) can be solved by letting
(hin(t)/hij(t)) ≈ 1.
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Remark 5: Since the matrices >inj in (3.9b) are positive definite,
the matrices ξiβkjs must be chosen to be negative definite to meet the
stability condition (3.8a). Hence, based on (3.9a), we have that the
larger delay τknj will make Theorem 1 more difficult to be satisfied.

Remark 6: Based on (3.5), the modeling error ∆Φj(t) is assumed
to be bounded by the specified structured bounding matrix Hj ; then,
the larger modeling error results in larger Hj . According to the same
corollary shown in Remark 5, the larger modeling error will make
Theorem 1 more difficult to be satisfied.

Remark 7: Equation (3.8b) is a linear matrix inequality (LMI), and
it can be rewritten as follows:[

ψkjn WjA
T

iknj

AiknjWj
αj

Lj
I

]
> 0

for i = 1, 2, . . . , φj ; n, j = 1, 2, . . . , J ; and k = 1, 2, . . . , Lj

(3.10)

where ψkjn =WjψkjnWj withWj = P−1
j . Moreover, (3.8a) can be

reformulated into LMI via the following procedure.
By introducing new variables Yβj = CβjWj and zj = z−1

j , (3.8a)
is rewritten as follows:

Lj∑
k=1

τknj

{
WjA

T
ij − (BijYβj)

T +AijWj −BijYβj

+ z−1
j τknjWjH

T
j HjWj

}
+ αjLj

Lj∑
k=1

τ2
knjI

+ LjzjI +

Lj∑
k=1

ψkjn + η−1
j

Lj∑
k=1

τ2
knjÂinjÂ

T
inj

+ κinjLnWjWj < 0 (3.11)

for i = 1, 2, . . . , φj ; β = 1, 2, . . . , µj ; and n, j = 1, 2, . . . , J .
Furthermore, based on Schur’s complement [2], [18], [23], [30], it is
easy to find that the matrix inequality in (3.11) is equivalent to the
following LMI:


Γ HjWj Wj

(HjWj)
T −

(
Lj∑

k=1

τ2
knjz

−1
j

)−1

I 0

Wj 0 −(κinjLn)−1I


 < 0

for i = 1, 2, . . . , φj ; β = 1, 2, . . . , µj ; n, j = 1, 2, . . . , J

(3.12)

where

Γ =

Lj∑
k=1

τknj

{
WjA

T
ij − (BijYβj)

T +AijWj −BijYβj

}

+ αjLj

Lj∑
k=1

τ2
knjI + LjzjI +

Lj∑
k=1

ψkjn + η−1
j

Lj∑
k=1

τ2
knjÂinjÂ

T
inj .

IV. CONCLUSION

A robustness design of fuzzy control via NN-based approach is
proposed to overcome the influence of modeling error. First, the
NN model is employed to approximate each subsystem. Then, the
dynamics of each NN model is converted into LDI representation.

Next, a delay-dependent stability criterion is derived from Lyapunov’s
direct method to ensure the asymptotic stability of nonlinear multiple
time-delay large-scale systems. According to this criterion and the
decentralized control scheme, a set of model-based fuzzy controllers
is synthesized to stabilize the nonlinear multiple time-delay large-scale
system.

APPENDIX

PROOF OF THEOREM 1

Let the Lyapunov function for N be defined as

V (t)=

J∑
j=1

Vj(t)

=

J∑
j=1




Lj∑
k=1

J∑
n=1

XT
j (t)τknjPjXj(t)

+

Lj∑
k=1

J∑
n=1

τknj∫
0

XT
n (t− π)ψknjXn(t− π)dπ


 (A1)

where the weighting matrices Pj = PT
j > 0 and ψknj = ψT

knj > 0.
We then evaluate the time derivative of V (t) on the trajectories of (3.1)
to get (A2) and (A3), shown on the next page. In (A2), based on the
concept of interconnection, matrix Âijj is set to be zero.

According to (3.7) and (A3), we have

V̇ (t) ≤
J∑

j=1

J∑
n=1

φj∑
i=1

µj∑
β=1

hij(t)hβj(t)X
T
j (t)

×

{
(Aij −BijCβj)

T

Lj∑
k=1

τknjPj

+ Pj

Lj∑
k=1

τknj(Aij −BijCβj) + αjLj

Lj∑
k=1

τ2
knjP

2
j

+ Ljz
−1
j P 2

j + zj

Lj∑
k=1

τ2
knjH

T
j Hj +

Lj∑
k=1

ψkjn

+ η−1
j

Lj∑
k=1

τ2
knjPjÂinjÂ

T
injPj + κinjLnI

}
Xj(t)

+

J∑
j=1

φj∑
i=1

Lj∑
k=1

J∑
n=1

hij(t)X
T
n (t− τknj)

×
{
α−1

j LjA
T

iknjAiknj − ψknj

}
Xn(t− τknj) (A4)

=

J∑
j=1

φj∑
i=1

µj∑
β=1

J∑
n=1

hij(t)hβj(t)X
T
j (t)QiβnjXj(t)

+

J∑
j=1

φj∑
i=1

Lj∑
k=1

J∑
n=1

hij(t)X
T
n (t− τknj)∇iknjXn(t−τknj).

(A5)

Based on (3.8a) and (3.8b), we have V̇ (t) < 0, and the proof is thereby
completed.
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V̇ (t)=

J∑
j=1

V̇j(t)=

J∑
j=1

Lj∑
k=1

J∑
n=1

[
τknj

(
ẊT

j (t)PjXj(t)+X
T
j (t)PjẊj(t)

)]
+

J∑
j=1

Lj∑
k=1

J∑
n=1

(
XT

n(t)ψknjXn(t)−XT
n(t−τknj)ψknjXn(t−τknj)

)

=

J∑
j=1

Lj∑
k=1

J∑
n=1

τknj

{[
φj∑
i=1

µj∑
β=1

hij(t)hβj(t)

(
(Aij −BijCβj)Xj(t) +

Lj∑
d=1

AidnjXn(t− τdnj) +

J∑
n=1

ÂinjXn(t)

)
+ ∆Φj(t)

]T

×PjXj(t) +XT
j (t)Pj

[
φj∑
i=1

µj∑
β=1

hij(t)hβj(t)

(
(Aij −BijCβj)Xj(t) +

Lj∑
d=1

J∑
n=1

AidnjXn(t− τdnj)

+

J∑
n=1

ÂinjXn(t)

)
+ ∆Φj(t)

]}

+

J∑
j=1

Lj∑
k=1

J∑
n=1

[
XT

n (t)ψknjXn(t) −XT
n (t− τknj)ψknjXn(t− τknj)

]

=

J∑
j=1

Lj∑
k=1

J∑
n=1

φj∑
i=1

µj∑
β=1

hij(t)hβj(t)X
T
j (t)

[
(Aij −BijCβj)

T τknjPj + Pjτknj(Aij −BijCβj)
]
Xj(t)

+

J∑
j=1

Lj∑
k=1

φj∑
i=1

Lj∑
d=1

J∑
n=1

hij(t)
[
XT

n (t− τdnj)A
T

idnjPjτknjXj(t) +XT
j (t)τknjPjAidnjXn(t− τdnj)

]

+

J∑
j=1

Lj∑
k=1

J∑
n=1

φj∑
i=1

hij(t)
[
XT

n (t)ÂT
injτknjPjXj(t) +XT

j (t)PjτknjÂinjXn(t)
]

+

J∑
j=1

Lj∑
k=1

J∑
n=1

[
∆ΦT

j (t)PjτknjXj(t) +XT
j (t)τknjPj∆Φj(t)

]

+

J∑
j=1

Lj∑
k=1

J∑
n=1

(
XT

n (t)ψknjXn(t) −XT
n (t− τknj)ψknjXn(t− τknj)

)

≤
J∑

j=1

Lj∑
k=1

φj∑
i=1

µj∑
β=1

J∑
n=1

hij(t)hβj(t)X
T
j (t)

[
(Aij −BijCβj)

T τknjPj + Pjτknj(Aij −BijCβj)
]
Xj(t)

+

J∑
j=1

Lj∑
k=1

φj∑
i=1

Lj∑
d=1

J∑
n=1

hij(t)
[
αjX

T
j (t)τ2

knjP
2
j Xj(t) + α−1

j XT
n (t− τdnj)A

T

idjAidjXn(t− τdnj)
]

+

J∑
j=1

Lj∑
k=1

J∑
n=1

φj∑
i=1

hij(t)
[
ηjX

T
n (t)Xn(t) + η−1

j τ2
knjX

T
j (t)PjÂinjÂ

T
injPjXj(t)

]

+

J∑
j=1

Lj∑
k=1

J∑
n=1

[
zj∆ΦT

j (t)τ2
knj∆Φj(t) + z−1

j XT
j (t)P 2

j Xj(t)
]

(by Lemma 1)

+

J∑
j=1

Lj∑
k=1

J∑
n=1

[
XT

n (t)ψknjXn(t) −XT
n (t− τknj)ψknjXn(t− τknj)

]
(A2)

=

J∑
j=1

φj∑
i=1

µj∑
β=1

J∑
n=1

hij(t)hβj(t)X
T
j (t)

[
(Aij −BijCβj)

T

Lj∑
k=1

τknjPj + Pj

Lj∑
k=1

τknj(Aij −BijCβj)

]
Xj(t)

+

J∑
j=1

φj∑
i=1

J∑
n=1

hij(t)

[
αjLjX

T
j (t)

Lj∑
k=1

τ2
knjP

2
j Xj(t) + α−1

j Lj

Lj∑
k=1

XT
n (t− τknj)A

T

iknjAiknjXn(t− τknj)

]

+

J∑
j=1

J∑
n=1

φj∑
i=1

hij(t)

[
hin(t)

hij(t)
ηnLnX

T
j (t)Xj(t) + η−1

j

Lj∑
k=1

τ2
knjX

T
j (t)PjÂinjÂ

T
injPjXj(t)

]
(by (2.10))

+

J∑
j=1

J∑
n=1

[
zj∆ΦT

j (t)

Lj∑
k=1

τ2
knj∆Φj(t) + z−1

j LjX
T
j (t)P 2

j Xj(t)

]
+

J∑
n=1

J∑
j=1

[
XT

j (t)

Lj∑
k=1

ψkjnXj(t)

]

−
J∑

j=1

J∑
n=1

[
Lj∑

k=1

XT
n (t− τknj)ψknjXn(t− τknj)

]
(A3)
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