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Abstract

In this paper, we introduce a simple version of the immersed interface method (IIM) for Stokes flows with singular forces along an
interface. The numerical method is based on applying the Taylor’s expansions along the normal direction and incorporating the solution
and its normal derivative jumps into the finite difference approximations. The fluid variables are solved in a staggered grid, and a new
accurate interpolating scheme for the non-smooth velocity has been developed. The numerical results show that the scheme is second-
order accurate.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The fluid problems with interfaces have many applica-
tions in science and engineering. For example, Peskin’s for-
mulation for the blood flow in the heart valve leaflet
(interface) involves exerting singular forces along the
leaflet into the blood (fluid) [19]. Another example is the
Hele-Shaw flow which can be formed by pumping a more
viscous fluid into a less viscous surrounding fluid in two
parallel thin plates. The shape of the interface is known
to exhibit a fingering phenomenon. The governing equa-
tions for the above problems involve solving elliptic partial
differential equations with possible discontinuous coeffi-
cients or with possible jump conditions for the unknown
and its derivative across the interface. Several classes of
practical finite difference methods have been developed in
the past three decades. Those methods provide different
treatments near the interface while keep the standard differ-
ence discretization away from the interface. We summarize
those different techniques as follows.

The immersed boundary (IB) method of Peskin [20] is
the first Cartesian grid method to provide a simple solution
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to the fluid problems interacting with complicated inter-
faces. The method is to treat the interface as a singular
force (source) generator along which the force can be trans-
mitted into the fluid smoothly. More precisely, the method
uses the Lagrangian markers to track the interface and
affects the fluid in Eulerian grid via a smooth version of dis-
crete delta function. Since the equations are solved on a
Cartesian grid, many fast fluid solvers can be applied
easily. For instance, the original IB method exploits Fast
Fourier Transform (FFT) in solving the Stokes equations
in rectangular domain. The method is easy to implement
but it is only first-order accurate. Besides, the solution is
smoothing out across the interface. Although there are dif-
ferent variants of formally second-order schemes recently
[9,7], the overall accuracy can be increased only for the suf-
ficiently smooth problems. Despite this first-order accuracy
issue, the IB method nowadays is getting more attention on
applying to the flow interacting with rigid boundaries
which has important applications in computational fluid
dynamics. The reason for that is quite simple since it does
not need to handle grid generations for unsteady problems
which can save the computational effort significantly.

Unlike the IB method to have numerical smearing near
the interface, the immersed interface method was invented
to capture the solution and its derivative jumps sharply.
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Fig. 1. The five-point Laplacian of the irregular point xi;j.
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The idea is to incorporate those jump conditions into the
finite difference discretization by modifying the difference
approximations near the interface. Mayo [18] used the idea
to solve the Poisson equation in an irregular domain based
on an integral equation. Later, LeVeque and Li applied the
similar idea to an elliptic interface problem with discontin-
uous coefficients and singular sources [13]. Since the prob-
lem is more difficult to solve than the Poisson problem,
they introduce the local coordinates and derive more inter-
face relations so that the finite difference scheme can match
up to all second-order partial derivatives. Their method
appears to be the first finite difference method that is sec-
ond-order accurate for the problem. Dumett and Keener
has extended the method to the anisotropic case of elliptic
interface problems [6]. There are other applications to the
fluid problems [12,16,15,23], just to name a few. We refer
the interested readers to Li’s recent review article [10] and
the newly published book [11].

There are several methods sharing the similar spirit as
IIM in literature. For example, the boundary condition
capturing method proposed by Liu et al. [17] can be imple-
mented to solve the elliptic interface problems dimension
by dimension. The method captures the solution and its
normal derivative jumps sharply while smoothing the tan-
gential derivative. The method is easy to implement; how-
ever, it is only first-order accurate. There are other variants
of IIM such as the explicit jump [24] and the decomposed
immersed interface method [4]. Beale and Lai [2] applied
the boundary integral method to compute the solution
for the Laplace problem near the interface and used it to
form the correction terms. This method has been further
extended to the Stokes problem with singular forces [3].

In this paper, we extend the immersed interface method
developed in [21] for Poisson problems to Stokes problems
with singular forces along an interface. The numerical
method is based on applying the Taylor’s expansions along
the normal direction and incorporating the solution and its
normal derivative jumps into the finite difference approxi-
mations. Unlike the traditional IIM, the present fluid vari-
ables are solved in a staggered grid [8] instead. Another
contribution of this work is to derive a new accurate inter-
polation scheme for the non-smooth velocity field. The
numerical results show that the scheme is indeed second-
order accurate.

The paper is organized as follows. In Section 2, we
review the immersed interface methods for Poisson prob-
lems with an interface and introduce a new interpolation
scheme from a grid function to the interface. Then the
numerical scheme for Stokes flows with singular forces is
discussed and the numerical results are shown in Section
3. Some conclusions are given in Section 4.

2. Poisson equations with jump discontinuities across the

interface

In this section, we consider the Poisson problem on a
computational domain X ¼ ½a; b� � ½c; d� with an immersed
interface C ¼ fXðsÞ ¼ ðX ðsÞ; Y ðsÞÞ; 0 6 s < Lg, where s is
the arc-length parameter and Xð0Þ ¼ XðLÞ. The interface
C divides the domain X into two regions,; namely inside
(X�) and outside (Xþ) the interface. Across C, the solution
and its normal derivative exhibit jump discontinuities. The
Poisson problem can be written as

Du ¼ f in X; ð2:1Þ

½u�ðsÞ ¼ gðsÞ; ou
on

� �
ðsÞ ¼ hðsÞ on C; ð2:2Þ

u ¼ ub on oX; ð2:3Þ

where the right-hand side function f could be discontinuous
across the interface C. The jumps ½u�ðsÞ ¼ uþ � u� and
ou
on

� �
ðsÞ ¼ ouþ

on
� ou�

on
are defined as the difference of the limit-

ing values from two different sides of the interface. Here,
we also assume the interface parametrization XðsÞ and
the jump discontinuity functions g(s) and h(s) are fairly
smooth (say C2ðC)) on the interface.

2.1. An IIM to incorporate the jumps in the normal direction

In this subsection, we review the scheme developed in
[21] to solve Eqs. (2.1)–(2.3). Before we proceed, let us
lay out a uniform Cartesian grid in X with mesh width
h ¼ Dx ¼ Dy, and let the discretized solution at the grid
point xi;j ¼ ðxi; yjÞ ¼ ðaþ iDx; cþ jDyÞ be denoted by ui;j.
As in [18], we classify the grid point as either a regular
or irregular point. For a regular grid point, we mean that
the interface does not cut through the standard five-point
Laplacian of that point. On the other hand, if the five-
point Laplacian of a grid point involves using the grid
points inside and outside the interface simultaneously,
then we call such point as an irregular point. Since the
solution is smooth either inside or outside the interface,
the five-point Laplacian of a regular point does not need
to modify in order to have the second-order accuracy.
However, it has to be modified at an irregular point since
the solution is not smooth across the interface, and the
modification depends on the jumps [u] and ou

on

� �
. We

explain how to modify the discrete Laplacian in the
following.

Let xi;j be an irregular grid point in X� as shown in
Fig. 1. The five-point Laplacian at xi;j can be written as
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Dhuðxi;jÞ ¼
ui�1;j � 2ui;j þ uiþ1;j

h2
þ ui;jþ1 � 2ui;j þ ui;j�1

h2

¼
uþi�1;j � 2u�i;j þ u�iþ1;j

h2
þ

uþi;jþ1 � 2u�i;j þ u�i;j�1

h2

¼
u�i�1;j � 2u�i;j þ u�iþ1;j

h2
þ

u�i;jþ1 � 2u�i;j þ u�i;j�1

h2

þ
uþi�1;j � u�i�1;j

h2
þ

uþi;jþ1 � u�i;jþ1

h2

¼ uxxðxi;jÞ þ uyyðxi;jÞ þ Oðh2Þ þ
uc

i�1;j

h2
þ

uc
i;jþ1

h2

¼ fi;j þ
1

h2
uc

i�1;j þ uc
i;jþ1

� �
þ Oðh2Þ: ð2:4Þ

To derive the correction term uc
i�1;j, we need to find the

orthogonal projection of xi�1;j at the interface (say X� ¼
Xðs�Þ in Fig. 1), and then apply the Taylor’s expansions
along the normal direction at X�. (Note that, there
are two different techniques of finding the orthogonal
projection of a grid point on the interface based on the
interface representation; namely, the arc-length parametri-
zation and the level set representation. We refer the inter-
ested readers to the review article [10].) So we have

uc
i�1;j ¼ uþi�1;j � u�i�1;j

¼ uþ� þ d
ouþ�
on
þ d2

2

o
2uþ�
on2
þ Oðh3Þ

� 	

� u�� þ d
ou��
on
þ d2

2

o
2u��
on2
þ Oðh3Þ

� 	

¼ ½u�X� þ d
ou
on

� �
X�

þ d2

2

o
2u

on2

� �
X�

þ Oðh3Þ: ð2:5Þ

The value d is the signed distance between the grid point
xi�1;j and the orthogonal projection X�. Notice that, if
the grid point xi�1;j is inside the interface, then d must be
negative.

In Eq. (2.5), the jumps ½u�X� and ou
on

� �
X�

are simply given
from Eq. (2.2); however, the second normal derivative

jump o2u
on2

h i
X�

is not known. To find the second normal

derivative jump, one can first rewrite the Laplace operator
in Eq. (2.1) on the interface as in [22]

o2u
on2
ðXðsÞÞ þ jðXðsÞÞ ou

on
ðXðsÞÞ þ o2u

os2
ðXðsÞÞ ¼ f ðXðsÞÞ;

ð2:6Þ

where the value jðXðsÞÞ is the local curvature of the inter-
face. Then, we can easily compute the second normal deriv-
ative jump at X� by

o2u
on2

� �
X�

¼ ½f �X� � jX�

ou
on

� �
X�

� o2

os2
½u�X� : ð2:7Þ
Finally, the correction term can be approximated by

uc
i�1;j ¼ ½u�X� þ d

ou
on

� �
X�

þ d2

2

o
2u

on2

� �
X�

¼ ½u�X� þ d
ou
on

� �
X�

þ d2

2
½f �X� � jX�

ou
on

� �
X�

� o2

os2
½u�X�

 !
:

ð2:8Þ
The correction term uc

i;jþ1 can be evaluated in a similar way.
It is worth mentioning that the correction term uc

i�1;j

must be computed up to third-order accurate since it
appears in the discrete Laplacian term, that is, a term of
Oð1=h2Þ. Thus, the local truncation error at an irregular
point is OðhÞ. It has been proved by different authors
[3,11] that despite the fact of the first-order truncation
errors at those irregular points (but second-order accurate
at regular points), the overall accuracy is still second-order.
Since the correction terms are only involved some modifica-
tions in the right-hand side of the finite difference equations,
the resultant linear system (2.4) can be efficiently solved by a
fast Poisson solver such as Fishpack [1]. The computational
cost spent on the modifications at irregular grid points is
just a small portion of that for a fast Poisson solver.

2.2. An interpolation scheme from a grid function to the
interface

In the Stokes problems, once we have obtained the veloc-
ity field on the grid, we need to find the velocity on the inter-
face. Thus, a comparably accurate interpolation formula
from a grid function to the interface markers needs to be
developed. When the velocity field is smooth, the standard
bi-linear interpolation can be used to achieve the second-
order accuracy. However, if the velocity is not smooth
across the interface (½u� ¼ 0; ou

on

� �
6¼ 0, as in the next section),

the bi-linear formula needs to be modified in order to have
second-order accurate interpolations. In the following, we
derive such modification for the case that even the jump
of u is not zero. Notice that, this new scheme differs from
the one used in [14] where the authors used a linear combi-
nation of the three nearby grid values with a correction term
that consists of the function jump and the partial derivative
jumps in both x- and y-directions at the interpolated mar-
ker. Here, however, we simply modify the standard bi-linear
interpolation formula (involving four neighboring grid val-
ues) with the incorporation of the function and its normal
derivative jumps which are given directly from the problem.
The detail can be explained as follows.

Suppose we want to interpolate the value of u�I at a mar-
ker XI ¼ ðX I; Y IÞ ¼ ðxi;j þ ah; yi;j þ bhÞ from the inside of
the interface using surrounding values ui;j; uiþ1;j; ui;jþ1 and
uiþ1;jþ1 as illustrated in Fig. 2. Let C�I be the interpolating
correction term that should be added to the standard bi-lin-
ear formula so that the interpolation accuracy is second-
order. That is

u�I ¼ uBI þ C�I þ Oðh2Þ; ð2:9Þ



Fig. 2. A diagram of the interpolation from a grid function to an interface
marker X I.

Table 2
The maximum errors for the examples of Poisson problem on the N � N
grid points

N ku� uek1 Ratio CPU time

Example 1

40 2.1577E�03 – 0.015
80 6.3698E�04 3.39 0.016
160 1.7153E�04 3.71 0.046
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where uBI is the bi-linear interpolation of u at XI. To derive
C�I , we have

uBI ¼ buT þ ð1� bÞuB

¼ bðð1� aÞuþi;jþ1 þ au�iþ1;jþ1Þ
þ ð1� bÞðð1� aÞu�i;j þ au�iþ1;jÞ
¼ bðð1� aÞu�i;jþ1 þ au�iþ1;jþ1Þ þ ð1� bÞðð1� aÞu�i;j
þ au�iþ1;jÞ þ bð1� aÞuc

i;jþ1

¼ u�I þ bð1� aÞuc
i;jþ1;

where the correction uc
i;jþ1 can be derived exactly the same

procedure as Eq. (2.5). However, since we only need to
approximate the correction up to Oðh2Þ, one can neglect
the second normal derivative jump, that is

uc
i;jþ1 ¼ uþi;jþ1 � u�i;jþ1 ¼ ½u�X� þ d

ou
on

� �
X�

þ Oðh2Þ; ð2:10Þ

where X� is the orthogonal projection of the grid point
xi;jþ1 on the interface. Therefore, the interpolating correc-
tion term can be derived as

C�I ¼ �bð1� aÞ ½u�X� þ d
ou
on

� �
X�

 !
: ð2:11Þ
320 4.0663E�05 4.22 0.219

Example 2

40 1.1909E�03 3.71 0.015
80 3.0901E�04 3.85 0.016
160 7.8497E�05 3.94 0.078
320 1.9776E�05 3.97 0.235

Example 3

40 5.5511E�16 – 0.015
80 7.9797E�16 – 0.016
160 2.6749E�15 – 0.047
320 1.5377E�14 – 0.172
2.3. Numerical examples

We consider three different exact solutions (shown in
Table 1) for Poisson equation in X ¼ ½�1; 1� � ½�1; 1� with
jump discontinuities on an elliptical interface
C ¼ fx2

a2 þ y2

b2 ¼ 1g with a ¼ 0:8, and b ¼ 0:2. In [21], the
similar examples were used but with a circle interface so
that the orthogonal projection point can be found straight-
forwardly and the implementation is much simpler. In our
present code, we have also implemented the uniformly cho-
Table 1
Three test examples for Poisson problem (2.1)–(2.3) with an elliptic
interface x2

ð0:8Þ2 þ
y2

ð0:2Þ2 ¼ 1 in X ¼ ½�1; 1� � ½�1; 1�

Example 1 Example 2 Example 3

u� 1 expðxÞ cosðyÞ x2 � y2

uþ 1þ lnð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
Þ expðx2Þ cosðyÞ 0

f� 0 0 0
fþ 0 ð1þ 4x2Þ expðx2Þ cosðyÞ 0
sen markers to construct the interface and thus from which
to find the necessary orthogonal projections and the curva-
tures. Our numerical scheme and interface construction can
be applied to any smooth curve in principle.

Table 2 shows the maximum errors of N � N grid points
in X. For Examples 1 and 2, we can see that the present
scheme is indeed second-order convergent. For Example
3, the discrete Laplacian approximates the Laplacian oper-
ator exactly so that the error is roughly equal to the
machine precision. Those numerical results behave simi-
larly as the ones obtained in [21] for the circular interface
problems. Throughout this paper, all of numerical results
were obtained by running our Fortran 90 code in a PC
of Intel Pentium 4 (3.00 GHz) processor with 4 GB
RAM. We also list the CPU time (s) in Table 2 for our
computations. One can see that even a grid size
320 · 320, the overall CPU time takes less than a quarter
of a second.

Once we obtain the solution on the grid, we can interpo-
late the value on the interface from inside by using the tech-
nique discussed before. Note that, the solution and its
normal derivative are not continuous across the interface
C. Table 3 shows the maximum errors of the interpolating
solution (from inside) of Example 2 on the interface mark-
ers ðX k;Y kÞ ¼ ð0:8 coshk; 0:2 sin hkÞ; k ¼ 0; 1; . . . ;N � 1 with
hk ¼ kDh, Dh ¼ 2p=N . One can see the present interpolat-
ing accuracy is also close to second-order.
Table 3
The interpolation errors for Example 2 of Poisson problem on the
interface markers ðX k ; Y kÞ ¼ ð0:8 cos hk ; 0:2 sin hkÞ; k ¼ 0; 1; . . . ;N � 1
with hk ¼ kDh, Dh ¼ 2p=N

N ku�u�e k1;C Ratio

40 1.6036E�03 –
80 4.7394E�04 3.38
160 1.2650E�04 3.75
320 4.0435E�05 3.13
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3. Stokes flow with singular forces

In this section, we consider the following Stokes
equations:

�rp þ lDuþ f þ g ¼ 0 in X; ð3:1Þ
r � u ¼ 0 in X; ð3:2Þ
u ¼ ub on oX; ð3:3Þ

where u ¼ ðuðxÞ; vðxÞÞ is the fluid velocity, p ¼ pðxÞ is the
pressure, and l is the constant viscosity. There are two dif-
ferent forces acting to the fluid; namely, the singular force f

exerted by the immersed interface (immersed boundary)
and the external force g (could be discontinuous). More
precisely, the singular force f has a support only along
the interface C ¼ fXðsÞ ¼ ðX ðsÞ; Y ðsÞÞ; 0 6 s 6 Lg and it
has the form

fðxÞ ¼
Z

C
FðsÞdðx� XðsÞÞds; ð3:4Þ

where d is the 2D Dirac delta function. The boundary force
F defined on the interface can be further decomposed to its
normal ðn ¼ ðn1; n2ÞÞ and tangential (s ¼ ðs1; s2Þ) directions
as

F ¼ ðF 1; F 2Þ ¼ ðF � nÞnþ ðF � sÞs ¼ F nnþ F ss; ð3:5Þ

where F n and F s represent the normal and tangential
forces, respectively.

Since the force f has a delta function singularity along
the interface, one can expect that the velocity and the pres-
sure will not be smooth across the interface. In fact, the
boundary force F plays an important role to the jump con-
ditions of u and p, and their derivatives. In IIM, we usually
reformulate the Eqs. (3.1)–(3.5) into a Stokes problem
without the delta function force term but with some known
jump conditions across the interface. Thus, the governing
equations are summarized as follows [14]:

�rp þ lDuþ g ¼ 0 in X; ð3:6Þ
r � u ¼ 0 in X; ð3:7Þ

½u� ¼ 0; l
ou

on

� �
¼ �F ss on C; ð3:8Þ

½p� ¼ F n;
op
on

� �
¼ oF s

os
þ ½g� � n on C; ð3:9Þ

u ¼ ub on oX: ð3:10Þ
Fig. 3. A diagram of the interface cutting through a staggered grid with a
uniform mesh width h in X. The pressure is located at the center of the cell,
the velocity component u is at the left-right face, and v is at the top-bottom
face of a cell.
3.1. Numerical scheme

Unlike the traditional IIM implementation, we use a
staggered grid [8] with a uniform mesh width
h ¼ Dx ¼ Dy for the fluid velocity and the pressure as in
Fig. 3. By applying the divergence operator to Eq. (3.6)
and using the incompressibility constraint of Eq. (3.7),
the pressure satisfies the following equation:
Dp ¼ r � g in X; ð3:11Þ

½p� ¼ F n;
op
on

� �
¼ oF s

os
þ ½g� � n on C: ð3:12Þ

This is exactly the type of Poisson equation that we have
discussed in the previous section so the scheme discussed
before can be applied directly. One remaining question is
how to choose the pressure boundary condition on the
computational boundary oX. In this work, for testing pur-
pose, the pressure boundary condition can be chosen either
a Dirichlet (Examples 1 and 2 in next subsection) or a zero
Neumann boundary condition (Example 3 in next
subsection).

Once we solve the pressure, the velocity field can be
obtained by solving other two Poisson-type equations with
the interface as

Du ¼ 1

l
ðrp � gÞ in X; ð3:13Þ

½u� ¼ 0;
ou

on

� �
¼ � 1

l
F ss on C; ð3:14Þ

u ¼ ub on oX: ð3:15Þ

Once again, the numerical scheme in previous section can
also be applied directly to find the velocity. However, in
order to compute the pressure gradient at the right-hand
side of Eq. (3.13) accurately, one has to take its jump across
the interface into account. To derive the jumps [px] and [py],
we first recall that the unit tangent vector can be written as
s ¼ ðs1; s2Þ ¼ ð�n2; n1Þ at each point on C. Since

op
on

� �
¼ ½px�n1 þ ½py �n2 ¼

oF s

os
þ ½g� � n; ð3:16Þ

o

os
½p� ¼ ½px�s1 þ ½py �s2 ¼ �½px�n2 þ ½py �n1 ¼

oF n

os
; ð3:17Þ

we can easily obtain the pressure gradient jump ½rp� ¼
ð½px�; ½py �Þ as
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½px� ¼ n1

oF s

os
þ ½g� � n

� 	
� n2

oF n

os
; ð3:18Þ

½py � ¼ n2

oF s

os
þ ½g� � n

� 	
þ n1

oF n

os
: ð3:19Þ

We summarize our numerical algorithm as follows:
Step 1: Solve the pressure Poisson equation

Dhp ¼ r � gþ pc

h2
in X ð3:20Þ

with modified right-hand side functions at those irregular
points which the modifications are based on the jump con-
ditions of the pressure. More precisely, the correction terms
at those irregular points can be computed as

pc ¼ ½p� þ a
op
on

� �
þ 1

2
a2 ½Dp� � j

op
on

� �
� o2½p�

os2

� 	

¼ F n þ a
oF s

os
þ ½g� � n

� 	

þ 1

2
a2 ½r � g� � j

oF s

os
þ ½g� � n

� 	
� o2F n

os2

� 	
: ð3:21Þ

Step 2: Solve the velocity equations

Dhu ¼ 1

l
ðrhp � gÞ þ uc

h2
in X; ð3:22Þ

u ¼ ub on oX; ð3:23Þ

where the corrections are made only at irregular points as

uc ¼ ½u� þ a
ou

on

� �
þ 1

2
a2 Du½ � � j

ou

on

� �
� o2½u�

os2

� 	

¼ 1

l
�aF ssþ

1

2
a2ð½rp� � ½g� þ jF ssÞ

� 	
: ð3:24Þ

Note that, the above pressure gradient jump has been
derived from (3.18) and (3.19).

The remaining question is how to approximate the pres-
sure gradient in Eq. (3.22). At those regular points, the
derivatives px and py at the locations of ui;j and vi;j can
be approximated by centered differences ðpiþ1;j � pi;jÞ=h,
and ðpi;jþ1 � pi;jÞ=h, respectively. However, a correction
term must be added when the p-grid points straddle across
the interface. Suppose the locations of pi;j and ui;j fall in the
same side of the interface while the location of piþ1;j falls in
another side of the interface as illustrated in Fig. 3, then we
need to add a correction term pc

iþ1;j of piþ1;j so that the
approximation of px at ui;j grid can be computed by
ððpiþ1;j þ pc

iþ1;jÞ � pi;jÞ=h. Note that, the correction term
pc

iþ1;j can be computed by the formula (3.21). On the other
hand, if the locations of piþ1;j and ui;j fall in the same side of
the interface while the location of pi;j falls in another side of
the interface, then the approximation of px at ui;j grid can
be computed by ðpiþ1;j � ðpi;j þ pc

i;jÞÞ=h, where a correction
term pc

i;j of pi;j must be added. The approximation of py at
the vi;j grid point can be handled in a similar manner.
3.2. Numerical results

In this subsection, we perform three different numerical
tests to examine the accuracy of the present numerical
schemes for Stokes problems. Throughout the following
examples, the computational domain is chosen as
X ¼ ½�2; 2� � ½�2; 2�, and the interface is simply a circle
with radius one so that it can be represented by
C ¼ fXðhÞ ¼ ðcosðhÞ; sinðhÞÞ; 0 6 h < 2pg where h is the
arc-length parameter. For simplicity, we also choose the
viscosity l = 1.

Example 1 (Normal force on an interface [5]). In the first
example, we consider the case in which the boundary force
exerts only along the normal direction, and it has the form
as

FðhÞ ¼ 2 sinð3hÞXðhÞ: ð3:25Þ
For convenience, the pressure and the velocity are written
in polar coordinates as

pðr; hÞ ¼
�r3 sinð3hÞ; r < 1;

r�3 sinð3hÞ; r > 1;

(

uðr; hÞ ¼

3
8
r2 sinð2hÞ þ 1

16
r4 sinð4hÞ

� 1
4
r4 sinð2hÞ; r < 1;

1
8
r�2 sinð2hÞ � 3

16
r�4 sinð4hÞ

þ 1
4
r�2 sinð4hÞ; r P 1;

8>>>>><
>>>>>:

vðr; hÞ ¼

3
8
r2 cosð2hÞ � 1

16
r4 cosð4hÞ

� 1
4
r4 cosð2hÞ; r < 1;

1
8
r�2 cosð2hÞ þ 3

16
r�4 cosð4hÞ

� 1
4
r�2 cosð4hÞ; r P 1:

8>>>>><
>>>>>:

Example 2 (Tangential force on an interface [5]). In this
example, we consider the case in which the boundary force
exerts only along the tangential direction, and it has the
form as

FðhÞ ¼ 2 sinð3hÞX0ðhÞ: ð3:26Þ
The pressure and the velocity are given by

pðr; hÞ ¼ �r3 cosð3hÞ; r < 1;

�r�3 cosð3hÞ; r > 1;

�

uðr; hÞ ¼

1
8
r2 cosð2hÞ þ 1

16
r4 cosð4hÞ

� 1
4
r4 cosð2hÞ; r < 1;

� 1
8
r�2 cosð2hÞ þ 5

16
r�4 cosð4hÞ

� 1
4
r�2 cosð4hÞ; r P 1;

8>>><
>>>:

vðr; hÞ ¼

� 1
8
r2 sinð2hÞ þ 1

16
r4 sinð4hÞ

þ 1
4
r4 sinð2hÞ; r < 1;

1
8
r�2 sinð2hÞ þ 5

16
r�4 sinð4hÞ

� 1
4
r�2 sinð4hÞ; r P 1:

8>>><
>>>:



Table 4
The maximum errors for the examples of Stokes problem on N � N grid points

N ku� uek1 Ratio kv� vek1 Ratio kp � pek1 Ratio

Example 1

32 2.9955E�03 – 9.5555E�03 – 1.4625E�02 –
64 7.4576E�04 4.02 2.1775E�03 4.39 3.2027E�03 4.57
128 2.1442E�04 3.48 5.4344E�04 4.01 8.2001E�04 3.91
256 4.8445E�05 4.43 1.3800E�04 3.94 1.9358E�04 4.24

Example 2

32 9.3164E�03 – 5.5489E�03 – 1.7579E�02 –
64 2.2334E�03 4.17 9.8214E�04 5.65 3.5421E�03 4.96
128 4.5329E�04 4.93 2.6948E�04 3.64 9.5814E�04 3.70
256 1.2100E�04 3.75 6.8943E�05 3.91 2.1994E�04 4.36

Example 3

32 9.9654E�03 – 9.3837E�03 – 2.5682E�02 –
64 2.7483E�03 3.63 1.8844E�03 4.98 7.2394E�03 3.55
128 5.2897E�04 5.20 4.4803E�04 4.21 1.8827E�03 3.85
256 1.4410E�04 3.67 1.2263E�04 3.65 4.7359E�04 3.98

Table 5
The interpolation errors for Example 3 of Stokes problem on the inter-
face markers ðX k ; Y kÞ ¼ ðcos hk ; sin hkÞ; k ¼ 0; 1; . . . ;N � 1, hk ¼ kDh,
Dh ¼ 2p=N

N ku� uek1;C Ratio kv� vek1;C Ratio

32 1.0035E�02 – 1.0923E�02 –
64 2.3020E�03 4.36 2.9853E�03 3.66

128 4.5430E�04 5.07 6.8889E�04 4.33
256 1.2788E�04 3.55 1.8553E�04 3.71
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After some careful calculations, one can obtain that the
velocity and the pressure in above two examples satisfy the
Stokes equations (3.6)–(3.10) without the external forcing
term (g ¼ 0). The pressure and velocity boundary condi-
tions for those two examples are all Dirichlet.

Example 3 (Normal and tangential forces on an inter-

face). In this example, we consider the boundary force that
has both normal and tangential components as

FðhÞ ¼ 2 sinð3hÞX0ðhÞ � cos3ðhÞXðhÞ: ð3:27Þ
The velocity components u and v are chosen exactly the
same as in Example 2 while the pressure written in Carte-
sian coordinates (x ¼ r cos h; y ¼ r sin h) is

pðx; yÞ ¼ x3 þ cosðpxÞ cosðpyÞ; r < 1;

cosðpxÞ cosðpyÞ; r P 1:

�

The velocity and the pressure satisfy the Stokes equations
(3.6)–(3.10) with a nonzero external force g 6¼ 0 which
can be calculated analytically. Here, we use the zero Neu-
mann boundary condition (easily to be checked) for the
pressure and the Dirichlet boundary conditions for the
velocity.

Table 4 shows the maximum errors of the computed
velocity u; v and the pressure p for those three examples.
One can see from these numerical results that our scheme is
indeed second-order accurate. In addition, using the
computed values on the grid, we can interpolate the
velocity from the grid to the interface. Table 5 shows
the interpolation errors for the velocity field on the
interface. One can also see that the interpolating accuracy
is second-order on average.
4. Conclusion

In this paper, we introduce a simple version of the
immersed interface methods (IIM) for Stokes flows with
singular forces along an interface. The numerical method
is based on applying the Taylor’s expansions along the
normal direction and incorporating the solution and its
normal derivative jumps into the finite difference approxi-
mations. The fluid variables are solved in a staggered grid,
and a new interpolation scheme for the non-smooth veloc-
ity has been developed. The numerical results show that the
scheme is second-order accurate. In the future work, we
shall develop a fourth-order accurate scheme to the present
problems by taking more jump relations into account and
extend the same techniques to the three-dimensional
problems.
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