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Abstract

In this paper, chaos synchronizations of two uncoupled fractional order chaotic modified Duffing systems are
obtained. By replacing their corresponding parameters by the same function of chaotic state variables of a third chaotic
system, chaos synchronization can be obtained. The method is named parameter excited chaos synchronization which
can be successfully obtained for very low total fractional order 0.2. Numerical simulations are illustrated by phase por-
trait, Poincaré map and state error plots.
� 2006 Published by Elsevier Ltd.
1. Introduction

Since the pioneering work by Pecora and Carroll [1], various effective methods for chaos synchronization have been
reported [2–36]. However, most of synchronizations can only be realized under the hypotheses that there exists coupling
between two chaotic systems. In practice, such as in physical and electrical systems, sometimes it is difficult even impos-
sible to couple two chaotic systems, In comparison with coupled chaotic systems, for synchronization between the
uncoupled chaotic systems, there are many advantages [8,9]. In this paper, synchronization of two fractional Duffing
systems whose corresponding parameters are excited by a chaotic signal of a third system is studied.

Fractional calculus is a 300-year-old mathematical topic [37–40]. Although it has a long history, the applications of
fractional calculus to physics and engineering are just a recent focus of interest [41–61].

The system studied in this paper is a modified form of nonlinear damped Duffing system. The chaos synchroni-
zations of two uncoupled fractional order modified Duffing systems are obtained by replacing their corresponding
parameters by the same function of chaotic state variables of a third chaotic system. The method is named parameter
excited chaos synchronization which can be successfully obtained for very low total fractional order 0.2. Numerical sim-
ulations are illustrated by phase portraits, Poincaré maps and state error plots.

The rest of this paper is organized as follows. In Section 2 the fractional derivative and its approximation are intro-
duced. In Section 3 the system under study is described both in its integer and fractional forms. In Section 4 numerical
simulations of synchronization scheme based on driving the corresponding parameters of two chaotic systems by a cha-
otic signal of a third system are presented. In Section 5 conclusions are drawn.
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2. Fractional derivative and its approximation

Two commonly used definitions for the general fractional differintegral are the Grunwald definition and the Rie-
mann–Liouville definition. The Riemann–Liouville definition of the fractional integral is given here as [62]:
Fig. 2.
order

Fig. 1.
q1 = q
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where q can have noninteger values, and thus the name fractional differintegral. Notice that the definition is based on
integration and more importantly is a convolution integral for q < 0. When q > 0, then the usual integer nth derivative
must be taken of the fractional (q � n)th integral, and yields the fractional derivative of order q as
dqf
dtq
¼ dn

dtn

dq�nf
dtq�n

� �
; q > 0 and n an integer > q: ð2Þ
The time histories of the errors of the states of the synchronized fractional order modified Duffing systems (11) and (12) with
q1 = q2 = 0.9 for Case 1.

The phase portrait and Poincaré map of the synchronized fractional order modified Duffing systems (11) and (12) with order

2 = 0.9 for Case 1.
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This appears so vastly different from the usual intuitive definition of derivative and integral that the reader must
abandon the familiar concepts of slope and area and attempt to get some new insight. Fortunately, the basic engineering
tool for analyzing linear systems, the Laplace transform, is still applicable and works as one would expect, i.e.,
Fig. 3.
q1 = q2

Fig. 4.
order q
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; for all q; ð3Þ
where n is an integer such that n � 1 < q < n. If the initial conditions are considered to be zero, this formula reduces to
the more expected and comforting form:
L
dqf ðtÞ

dtq

� �
¼ sqLff ðtÞg: ð4Þ
An efficient method is to approximate fractional operators by using standard integer order operators. In [62], an
effective algorithm is developed to approximate fractional order transfer functions. Basically, the idea is to approximate
the system behavior in the frequency domain. By utilizing frequency domain techniques based on Bode diagrams, one
can obtain a linear approximation of fractional order integrator, the order of which depends on the desired bandwidth
The phase portrait and Poincaré map of the synchronized fractional order modified Duffing systems (11) and (12) with order
= 0.1 for Case 1.

The time histories of the errors of the states of the synchronized fractional order modified Duffing systems (11) and (12) with

1 = q2 = 0.1 for Case 1.
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and discrepancy between the actual and the approximate magnitude Bode diagrams. In Table 1 of [49], approximations
for 1/sq with q = 0.1–0.9 in steps 0.1 are given, with errors of approximately 2 dB. These approximations are used in
following simulations.
3. A fractional order modified duffing system

The famous Duffing system is:
Fig. 5.
q1 = q

Fig. 6.
order
€xþ a _xþ xþ x3 ¼ b cos xt; ð5Þ
where a, b are constant parameters.
It can be written as two first order ordinary differential equations:
dx
dt ¼ y;
dy
dt ¼ �x� x3 � ay þ b cos xt:

(
ð6Þ
The phase portrait and Poincaré map of the synchronized fractional order modified Duffing systems (11) and (12) with order

2 = 0.9 for Case 2.

The time histories of the errors of the states of the synchronized fractional order modified Duffing systems (11) and (12) with
q1 = q2 = 0.9 for Case 2.
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Consider the following modified Duffing system:
Fig. 8.
order q

Fig. 7.
q1 = q2
dx
dt ¼ y;

dy
dt ¼ �x� x3 � ay þ bz;
dz
dt ¼ w;

dw
dt ¼ �cz� dz3:

8>>>>><
>>>>>:

ð7Þ
It becomes an autonomous system with four states where a, b, c, and d are constant parameters of the system. System
(7) can be divided into two parts:
dx
dt ¼ y;
dy
dt ¼ �x� x3 � ay þ bz

(
ð8Þ
The time histories of the errors of the states of the synchronized fractional order modified Duffing systems (11) and (12) with

1 = q2 = 0.1 for Case 2.

The phase portrait and Poincaré map of the synchronized fractional order modified Duffing systems (11) and (12) with order
= 0.1 for Case 2.
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and
Fig. 9.
q1 = q

Fig. 10
order
dz
dt ¼ w;
dw
dt ¼ �cz� dz3:

(
ð9Þ
As a nonlinear oscillator, system (9) provide the periodic time function bz to system (8) as an excitation which pro-
duces the chaos in system (8). To sum up, system (8) can be considered as a nonautonomous system with two states x, y

with bz as an excitation which is a given periodic function of time, while system (8) and system (9) together can be con-
sidered as an autonomous system with four states x, y, z, w. We focus on system (8), while system (9) remains an integral
order system.

Now, consider a fractional order modified Duffing system. Here, the conventional derivatives in Eq. (8) are replaced
by the fractional derivatives as follows:
dq1 x
dtq1
¼ y;

dq2 y
dtq2
¼ �x� x3 � ay þ bz;

dz
dt ¼ w;
dw
dt ¼ �cz� dz3;

8>>>><
>>>>:

ð10Þ
The phase portrait and Poincaré map of the synchronized fractional order modified Duffing systems (11) and (12) with order

2 = 0.9 for Case 3.

. The time histories of the errors of the states of the synchronized fractional order modified Duffing systems (11) and (12) with
q1 = q2 = 0.9 for Case 3.
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where system parameter b is allowed to be varied, and q1, q2 are two fractional order numbers. Simulations are then
performed using qi(i = 1,2) varied from 0.1 to 0.9, respectively. The approximations from Table 1 of [49] are used
for the simulations of the appropriate qith integrals. When qi < 1, the approximations are used directly. It should fur-
ther be noted that approximations used in the simulations for 1=sqi , when qi > 1, are obtained by using 1/s times the
approximation for 1=sqi�1 from Table 1.
4. Numerical simulations for chaos synchronization with parameter driven by a chaotic signal

In this section, two chaotic fractional order modified Duffing systems:
Fig. 11
q1 = q2

Fig. 12
order q
dq1 x1

dtq1
¼ y1;

dq2 y1

dtq2
¼ �x1 � x3

3 � ay1 þ bz1;
dz1

dt ¼ w1;
dw1

dt ¼ �cz1 � dz3
3

8>>>><
>>>>:

ð11Þ
. The phase portrait and Poincaré map of the synchronized fractional order modified Duffing systems (11) and (12) with order
= 0.1 for Case 3.

. The time histories of the errors of the states of the synchronized fractional order modified Duffing systems (11) and (12) with

1 = q2 = 0.1 for Case 3.
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and
Fig. 13
q1 = q

Fig. 14
order
dq1 x2

dtq1
¼ y2;

dq2 y2

dtq2
¼ �x2 � x3

3 � ay2 þ bz2;
dz2

dt ¼ w2;
dw2

dt ¼ �cz2 � dz3
2;

8>>>><
>>>>:

ð12Þ
where q1 and q2 are the fractional orders, are synchronized by replacing corresponding parameters by the same function
of chaotic states of a third chaotic modified Duffing system:
dx
dt ¼ y;
dy
dt ¼ �x� x3 � ay þ bz;
dz
dt ¼ w
dw
dt ¼ �cz� dz3;

8>>>><
>>>>:

ð13Þ
. The phase portrait and Poincaré map of the synchronized fractional order modified Duffing systems (11) and (12) with order

2 = 0.9 for Case 4.

. The time histories of the errors of the states of the synchronized fractional order modified Duffing systems (11) and (12) with
q1 = q2 = 0.9 for Case 4.
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where a = 0.05, b = 53, c = 1, and d = 0.3 are constant parameters of the system. Define the error states as e1 = x1 � x2

and e2 = y1 � y2 in system (11) and (12). The synchronization scheme is to replace the corresponding parameters b in
system (11) and (12) by the same function of chaotic states of system (13) such that ke(t)k ! 0 as t!1. In following
simulations, for various derivative orders q1 and q2, we replace the system parameter b in system (11) and (12) by x, y,
x2, y2, xy where x and y are state variables in system (13). Simulations are performed under q1 = q2 = 0.1–0.9 in steps of
0.1. In our numerical simulations, four parameters a = 0.05, b = 53, c = 1 and d = 0.3 of system (13) are fixed. The ini-
tial states of system (13) are x(0) = 3, y(0) = 4, z(0) = 1 and w(0) = 0. The numerical simulations are carried out by
MATLAB.

Case 1: The parameters a = 0.05, c = 1 and d = 0.3 of system (11) and (12) are fixed. The parameter b of system (11)
and (12) is replaced by the same x, where x is the state variable of system (13). All synchronizations for
q1 = q2 = 0.1–0.9 are successfully obtained. For saving space, only results for q1 = q2 = 0.1 and 0.9 are shown in
Figs. 1–4.
Case 2: The parameters a = 0.05, c = 1 and d = 0.3 of system (11) and (12) are fixed. The parameter b of system (11)
and (12) is replaced by the same y, where y is the state variable of system (13). All synchronizations for
Fig. 15. The phase portrait and Poincaré map of the synchronized fractional order modified Duffing systems (11) and (12) with order
q1 = q2 = 0.1 for Case 4.

Fig. 16. The time histories of the errors of the states of the synchronized fractional order modified Duffing systems (11) and (12) with
order q1 = q2 = 0.1 for Case 4.
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q1 = q2 = 0.1–0.9 are successfully obtained. For saving space, only results for q1 = q2 = 0.1 and 0.9 are shown in
Figs. 5–8.
Case 3: The parameters a = 0.05, c = 1 and d = 0.3 of system (11) and (12) are fixed. The parameter b of system (11)
and (12) is replaced by the same x2, where x is the state variable of system (13). All synchronizations for
q1 = q2 = 0.1–0.9 are successfully obtained. For saving space, only results for q1 = q2 = 0.1 and 0.9 are shown in
Figs. 9–12.
Case 4:The parameters a = 0.05, c = 1 and d = 0.3 of system (11) and (12) are fixed. The parameter b of system (11)
and (12) is replaced by the same y2, where y is the state variable of system (13). All synchronizations for
q1 = q2 = 0.1–0.9 are successfully obtained. For saving space, only results for q1 = q2 = 0.1 and 0.9 are shown in
Figs. 13–16.
Case 5:The parameters a = 0.05, c = 1 and d = 0.3 of system (11) and (12) are fixed. The parameter b of system (11)
and (12) is replaced by the same xy, where x and y are the state variables of system (13). All synchronizations for
q1 = q2 = 0.1–0.9 are successfully obtained. For saving space, only results for q1 = q2 = 0.1 and 0.9 are shown in
Figs. 17–20.
. 17. The phase portrait and Poincaré map of the synchronized fractional order modified Duffing systems (11) and (12) with order
q2 = 0.9 for Case 5.

. 18. The time histories of the errors of the states of the synchronized fractional order modified Duffing systems (11) and (12) with
er q1 = q2 = 0.9 for Case 5.



Fig. 20. The time histories of the errors of the states of the synchronized fractional order modified Duffing systems (11) and (12) with
order q1 = q2 = 0.1 for Case 5.

Fig. 19. The phase portrait and Poincaré map of the synchronized fractional order modified Duffing systems (11) and (12) with order
q1 = q2 = 0.1 for Case 5.
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5. Conclusions

In this paper, parameter excited chaos synchronizations of uncoupled integral and fractional order modified Duffing
systems are studied by means of phase portrait, Poincaré map and the state error plots. It is found that this approach is
very effective even for very low total fractional order 0.2.
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