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KEYWORDS Summary In river basins with several tributaries, wells in alluvial valleys are often
Analytical solution; located near the wedge-shaped confluence of two tributaries. Therefore, stream deple-
Groundwater; tion characteristics, namely stream depletion rate (SDR) and stream depletion volume
Stream depletion rate (SDV), induced by the pumping wells are distributed between two tributaries upstream
(SDR); from the confluence. Existing methods for the evaluation of stream depletion character-
Stream depletion istics are applicable only for a wedge-shaped aquifer with special or uncommon wedge
volume (SDV); angles or for steady-state conditions. In water resources management, temporal stream
Wedge-shaped aquifer; depletion characteristics are important for the adjudication of water rights. A new and
Tributaries practically important method for analytical evaluation of transient SDR and SDV is devel-

oped for a wedge-shaped aquifer with arbitrary wedge angles. Results are obtained for
each of two tributaries or the tributary segment lengths. A simple expression for the
SDR fraction that originates from each tributary is presented for long period of pumping
after which 100% of the pumping rate is supplied by stream depletion. The sensitivity anal-
yses for different parameters are performed to examine their affects on the influence per-
iod of the total SDR and the results indicated that the SDR is sensitive to the angles of
wedge-shaped aquifer and the pumping well. The results and sensitivity analysis presented
in this study may provide useful information in the assessment of water balance or exploi-
tation of river basins.
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Introduction

The hydrogeological concept of stream depletion is widely

used for water resources management since the stream

* Corresponding author. Tel.: +886 3 5731910; fax: +886 3 water is one of the main water sources. In river basins with
5726050. several tributaries, wells in alluvial valleys are often located
E-mail address: hdyeh@mail.nctu.edu.tw (H.-D. Yeh). near the wedge-shaped confluence of two tributaries

0022-1694/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.jhydrol.2007.11.025


mailto:hdyeh@mail.nctu.edu.tw

502

H.-D. Yeh et al.

(Lambs, 2004). Therefore, stream depletion characteristics,
namely stream depletion rate (SDR) and stream depletion
volume (SDV), induced by the pumping well are distributed
between two tributaries upstream from the confluence. The
issues of depletion evaluation from the nearby streams have
been addressed in the literature. Theis (1941) proposed a
transient method to evaluate the effect of ground water
pumping on a nearby stream. Glover and Balmer (1954) later
generalized Theis’ approach based on a series of idealistic
assumptions and developed a formula expressed in terms
of the distance of the well from the stream, the properties
of the aquifer, and pumping time. Hantush (1965) extended
this approach by considering an imperfect hydraulic connec-
tion between the aquifer and stream, but the extension has
seen relatively little use in practice. Jenkins (1968) imple-
mented the Theis/Glover-Balmer solutions to provide the
standard tools and examples for the use in water manage-
ment design. Using more realistic representation of stream-
bed properties (see Zlotnik and Huang, 1999), Zlotnik et al.
(1999) developed a semi-analytical solution for stream
depletion due to pumping from a well near a stream. This
solution considered the finite width of a stream with shallow
penetration, streambed properties, and variations in aqui-
fer transmissivity. In a special case of an aquifer of uniform
saturated thickness, a fully analytical solution for stream
depletion was developed. The solution is general enough
to contain the solutions of Theis (1941), Glover and Balmer
(1954), and Hantush (1965). Independently, Hunt (1999) de-
rived compact analytical solutions for both stream deple-
tion and aquifer drawdown with the assumptions that
streambed penetration of the aquifer and dimensions of
the streambed cross section are small. Using a sensitivity
analysis, Christensen (2000) assessed potential stream
depletion by using aquifer drawdown data and results of
Hunt (1999). Butler et al. (2001) extended the results of
Zlotnik et al. (1999) and Hunt (1999) to a heterogeneous
aquifer of finite width. Hunt et al. (2001) and Kollet and
Zlotnik (2003, 2007) applied these solutions to various field
studies in New Zealand and the USA. Later, Fox et al. (2002)
explored modifications of Hunt’s solution (1999) to develop
an analytical solution for drawdown in an aquifer with leak-
age from a finite-width stream. Hunt (2003a) generalized
this solution to a case of delayed-yield aquifer. Moreover,
he compared the new solution (Hunt, 2003a) with data ob-
tained from a stream depletion field test (Hunt, 2003b).
Lough and Hunt (2006) used data obtained from pumping
tests for aquifer and streambed parameter evaluation based
on the Hunt (2003) solution. A number of analytical models
have been developed for leaky aquifers (e.g., Zlotnik, 2004;
Butler et al., 2007; Zlotnik and Tartakovsky, 2008). And la-
tely, Miller et al. (2007) described a modified Jenkins meth-
od to assess the effect of lateral impermeable aquifer
boundaries.

However, in commonly occurring wedge-shaped aquifers,
methods for evaluation of stream depletion characteristics
are limited. Hantush (1967) considered the flow from a
stream having a specific, right-angle bend to a nearby
pumping well and developed an analytical solution to eval-
uate the stream depletion in such an aquifer system. Hol-
zbecher (2005) gave a steady-state solution for an
idealized case of two isopotentials, intersecting at an arbi-
trary angle, to determine the groundwater flow using a base

flow component and pumping wells. Assumptions used for
derivation of these solutions constrain their practical
applications.

In water resources management, temporal stream deple-
tion characteristics are important for the adjudication of
water rights. This paper presents a new and practically
important method for the analytical evaluation of transient
SDR and SDV in a wedge-shaped aquifer with arbitrary
wedge angles. Results are obtained for each of two tributar-
ies or the tributary segment lengths. These solutions con-
tain improper integrals that involve Bessel functions. The
oscillatory nature of the integrands results in a slow integral
convergence; therefore, a numerical approach that includes
the roots search scheme, Gaussian quadrature, and Shanks’
method, is proposed. This approach can evaluate the solu-
tions accurately and quickly. A simple expression for SDR
fraction that originates from each tributary is presented
for very long times, when 100% of the pumping rate is sup-
plied by stream depletion after a long period of pumping.
Transient results for SDR are verified by comparing with a
special case of Hantush (1967) solution. In addition, sensi-
tivity analyses for different parameters are performed to
study their affects on the influence period of the total
SDR. Our results are obtained by assuming constant head
along both tributaries. However, the slope of water level
in the stream may be significant at large scale in some
cases. Under these circumstances, the solutions given in
Yeh and Chang (2006) can be used to generalize the estima-
tions for SDR and SDV.

Mathematical model

Governing equation, boundary and initial
conditions, and head solution

Consider radial system of coordinates (r, 0). A wedge-shaped
aquifer with an angle of ¢ and constant head boundaries at
0 =0and 0 = ¢ is shown in Fig. 1. For a pumping well located
at a point (rg, ) with a pumping rate Q, the partial differ-
ential equation governing the transient hydraulic head
h(r, 0, t) at any point may be expressed as

?h 10h 1 d%h oh Q
T(m"‘;&‘i‘r—zﬁ) —Sa——?é(r—ro)5(0—00)

(1)

W
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(r0.60)
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Figure 1 Schematic diagram of well location near the wedge-

shaped confluence of two tributaries.
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where T is the transmissivity (L2/T); S is the storage coeffi-
cient; h is the hydraulic head (L); t is time from the start of
the pumping test (T); r is the radial distance from the origin
(L) and 6 is the angle (radians) from the lower boundary.
The initial and boundary conditions are as follows:

h(r,0,0)=0, 0<0< ¢, 0<r< oo 2)
h(r,0,t)=0, 0<r<oo (3)
h(r,¢,t) =0, 0<r< oo (4)

The solution for hydraulic head in a wedge-shaped aquifer
to Egs. (1)—(4) can be expressed as (Chan et al., 1978;
Yeh and Chang, 2006):

h(r» 67 t) ¢ T Z S]n ﬂn )Sln(ﬂneo)(91 + QZ) (5)
with

) 2
Q= /0 {— exp (UTT t)]_lun (uro)J,,n(ur)% (6)
and

o du
Q, :/O Jﬂn(uro)Jﬂn(ur)7 (7)
and
="y (8)

where u is the dummy variable, and J, () is the Bessel func-
tion of the first kind with order p,.

Transient stream depletion rate (SDR) for a
tributary segment length in wedge-shaped aquifer

The SDR for a tributary segment length that starts at the ori-
gin of coordinates and ends at radial distance R measured
from the origin, can be written for each of tributaries. We
denote the stream depletion characteristics related to the
tributary at angle 0 =0 by index ‘*0’’ and stream depletion
characteristics related to the tributary at angle 0 = ¢ by in-
dex **¢’’. SDR for each tributary is estimated as follows

R
@:/ Tl oh(r,0,t) dar 9
o0 0=0
and
a, /‘R 1 0h(r, 0,
—_ [ 72222 dr 10
Q o T o0 o= (10)

where h is given by Eq. (5).
The solutions for the SDR by Egs. (9) and (10) from Egs.
(1)—(8) can be written as:

9o _ t R

a—D(t: T’ 0) )
and

9, [t R

o=cn) 12

where t, is a characteristic time scale introduced by Jenkins
(1968) and defined as:

2
Srg

to="° (13)

The function of D(u,v,w) has two forms for different ranges
of R/ry:

D(u,v,w) = Z [(=1)"]" o0 (11,00
uyJ o ( / —J,, (¢o)dodé

[ R/ro )" sin(no/ ) }
1—

"(R/ro)"* cos(nly/ )
for R/ro <1 (14)

Y1
iexp(_élu)Jﬂn(f)/o (—TJMn(éo')d(rdé

+(=)"! Veant |1 ) (ro/R)™?sin(nbo/¢)
T 1—(=1)"(ro/R)™? cos(nblo/ $)

(1 _w)+(—1)wf10_(; for R/ro > 1 (15)

where ¢ and ¢ are the dummy variables.

Transient stream depletion rate (SDR) for
tributaries

The SDRs for both tributaries can be obtained by setting
R/ro =00 in Egs. (11) and (12) as:

G_ 2\ "l (- b

0" qSHZ;S]n(H"OO)/o éeXP( £t> ,()dE+1 p
(16)

and

q(b 2 = 001 th z 90

6,5;‘( 1) sm(ﬂneo)/o P (—q t—a)Jun(é)ng
(17)

Steady stream depletion rate for tributaries

When the flow system reaches steady state, 100% of the
pumping rate is supplied by stream depletion. Then a simple
expression for SDR fraction for each tributary is as follows:

9 Oo

10 _q_29 18
Q="' (18)
and

Q¢ 0o

Q"¢ (19)

These simple relationships play an important role in con-
straining the SDR. To our knowledge, no such explicit rela-
tionships have been published previously.

Transient stream depletion volume (SDV) for a
tributary segment length

Define the SDV as

v 1 ['q
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Then the SDV for the each tributary can, respectively, be
written as

V()_ t R

@—E<ta,ro,0) 1)
and

Vo _p(L R

@7E<tavr071) (22)

Accordingly, the functions of E(u,v,w) for different ranges
of R/rg are:

E(uv.w) = 2% i [(=1)"]" sy Si0 1 00)
*1 2 Y1 B
<[ o= - 13, [ e dod
e tan { ()" (R/ro)"*sin(xo/ ) }
m 1= (A1) (R/ro)™ cos(n/ )
for R/ro < 1 (23)
and
2 tg win .
E(u,v,w) ZETZ [(_1) } Hn SiN(,00)

: "1
<[ Fexp(=2us, (&) [ 2, (eordoe
(=1)"(ro/R)™" sin(nfo/ )
1—(=1)"(ro/R)™* cos(nb/¢)

w—1@

¢

w—11 -1
+(-1) ntan

+(1=w)+(-1) forR/ro>1 (24)

Transient stream depletion volume for tributaries

The SDVs for each tributary can be obtained by setting
R/ro =00 in Egs. (21) and (22) as:

00

Vo_Ztu

Qt ot ; sin(4y60)

[ el 28) riens(-8) @

and
\'4 2 ta -
aq; ot ;(—1) sin(u,00)
% q 22 t PN 90
X /O 2 {exp (—c t_a) - 1}J;Ln(c)d€ t% (26)

Numerical evaluations

The improper integrals of the solutions of Eqgs. (14)—(16),
(17), (24)—(26) converge slowly because of oscillating Bes-
sel functions. These integrals can be transformed as a sum
of infinite series and each term of the series is obtained by
integrating the area between the integrand and the hori-
zontal axis from two consecutive roots. Therefore, New-
ton’s method with suggested increments given below is
employed to find the consecutive roots of the integrand

along the u-axis. For each area between the integrand
and the horizontal axis, Gaussian quadrature (e.g., Gerald
and Wheatley, 1989) is chosen to perform numerical inte-
grations. Finally, Shanks’ method is applied to accelerate
the convergence when evaluating the Bessel functions,
trigonometric functions and the infinite series in these
solutions (e.g., Yang and Yeh, 2002; Peng et al., 2002;
Yeh et al., 2003).

The integrands of the solutions are oscillatory due to the
nature of Bessel functionJ,(u). One may find the roots of the
integrand from the roots of J,(u), which may be found by a
conjunctive use of the following suggested increments and
Newton’s method. An asymptotic expansion of the large
positive ith root of J,(u) for a given v is (Abramowitz and
Stegun, 1964)

Jui=B— (47 —1)/86 — [4(4V* — 1)(28/* — 31)]/3(8p)’
(27)

with 8 = (n/4)(2v + 4i—1). The increments A, from the origin
to the first root can be approximated by j, 1. The remaining
increments A; are chosen as j, ;_1—J,,i_2, and the remaining
roots are approximately equal to j,;=j,i_1+A;, where
i=2,3,.... The roots of J,(u) determined by Newton’s
method and the suggested increments are of accuracy to
the seventh digit.

Sensitivity analysis of the parameters

Sensitivity analysis provides a way of examining the re-
sponse of a model to changes in its parameters. It also helps
in assessing how well parameters are likely to be estimated
from the data available for model calibration. The paramet-
ric sensitivity is a measure of the effect of change in one
factor on another factor. It may be mathematically ex-
pressed as (McCuen, 1985)

6=180°

¢:180°:

v

N/

6=0°"

Figure 2 The configuration of a well pumping near an infinite
stream.
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Table 1 Values of gq/Q for the present solution and
Hantush’s solution corresponding to the values of dimen-

sionless time t/t,

t/'t, q/Q (Hantush’s q/Q (Present
solution) solution)
5.00x 103 5.303%x 1077 5.960 x 1077
6.00x 103 4.991x 10~ 5.006 x 10~°
7.00x 103 2.387 x107° 2.384x107°
8.00x 103 7.722 x 1073 7.724x 1073
9.00x 103 1.9397 x 10~* 1.9395x 10~*
1.00 x 1072 4.069 x 10~ 4.069 x 10~
2.00% 102 1.243405 x 102 1.243405 x 102
3.00x 1072 4.161701 x 102 4.161700 x 102
4.00x 1072 7.912989 x 102 7.912991 x 102
5.00 x 102 0.11931377 0.11931379
6.00 x 1072 0.15948459 0.15948461
7.00 x 102 0.19834209 0.19834213
8.00 x 102 0.23526249 0.23526247
9.00 x 102 0.26998323 0.26998324
0.1 0.30244242 0.30244244
0.15 0.4340228 0.43402286
0.2 0.52674783 0.52674781
0.25 0.59435953 0.59435953
0.3 0.64547785 0.64547786
0.35 0.68534840 0.68534841
0.4 0.71725890 0.71725888
0.45 0.74334990 0.74334991
0.5 0.76506645 0.76506645
0.55 0.78341593 0.78341594
0.6 0.79912062 0.79912063
0.65 0.81271115 0.81271116
0.7 0.8245858 0.82458581
0.75 0.8350491 0.83504911
0.8 0.84433780 0.84433778
0.85 0.85263864 0.85263864
0.9 0.86010089 0.86010090
0.95 0.86684525 0.86684525
1 0.87297037 0.87297037
1.1 0.88367482 0.8836748
1.2 0.89271750 0.89271750
1.3 0.90045709 0.90045709
1.4 0.90715608 0.90715608
1.5 0.91301094 0.91301093
1.6 0.91817166 0.91817165
1.7 0.92275469 0.92275470
1.8 0.92685185 0.92685186
1.9 0.93053648 0.93053647
2 0.93386785 0.93386785
2.2 0.93965621 0.93965621
2.4 0.94451314 0.94451313
2.6 0.94864665 0.94864664
2.8 0.95220713 0.95220713
3 0.95530599 0.95530600
3.5 0.96154049 0.96154049
4 0.96624874 0.96624874
4.5 0.96993003 0.96993003
5 0.97288730 0.97288730
5.5 0.97531502 0.97531502
6 0.97734373 0.97734372
7 0.98054204 0.98054201

Table 1 (continued)

t/ty g/Q (Hantush’s g/Q (Present
solution) solution)
8 0.98294906 0.98294904
9 0.98482613 0.98482613
10 0.98633090 0.98633092
15 0.99086201 0.99086202
20 0.99313700 0.99313701
25 0.99450503 0.99450504
30 0.99541836 0.99541832
35 0.99607128 0.99607129
40 0.99656133 0.99656136
45 0.99694271 0.99694272
50 0.99724790 0.99724794
100 0.99862283 0.99862282
200 0.99931111 0.99931112
300 0.99954068 0.99954068
400 0.99965548 0.99965549
500 0.99972437 0.99972438
600 0.99977030 0.99977031
700 0.99980310 0.99980310
800 0.99982771 0.99982772
900 0.99984685 0.99984686
1000 0.99986216 0.99986217
2000 0.99993109 0.99993108
3000 0.99995406 0.99995405
4000 0.99996553 0.99996554
5000 0.99997244 0.99997243

00  f(Pi+ AP;;Pyjsi) — f(P1,Pa, ... Py)
Spi = P~ AP, (28)
where O is the output function of the system and P; is the ith
input parameter of the system. The sensitivity of Eq. (28)
can be normalized by the parameter value so that the sen-
sitivity coefficient with respect to any given parameter is in
the same unit. The normalized sensitivity is defined as

s, - 0 _p%
" op /P oP;

where §; ; is the sensitivity coefficient of ith input parame-
ter at time t. The partial derivative of Eq. (29) can be
approximated by a finite difference formula expressed as:
00 _ O(P; + AP;) — O(P;)

oP; AP; (30)
The increment in the denominator may be chosen as the
parameter value times a factor of 1073, i.e., AP;=1073P
(Yeh, 1987). Eq. (29) measures the influence that the frac-
tional change in the parameter, or its relative error, exerts
on the output (Huang and Yeh, 2007).

(29)

Results and discussion

Transient stream depletion rate/volume for
different angle configurations of wedge confluence
and pumping well

Several cases are considered in this paper to illustrate the
SDR and SDV for wedge-shaped aquifers of different angles.
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Figure 3 The dimensionless transient SDR against dimensionless time t/t, for infinite tributaries at 6 =0 and 0 = ¢ with different
angle configurations of wedge confluence and pumping well (a) ¢ = 63° and 0y = 17°; (b) ¢ =45° and 6y =30° and (c) ¢ = 108° and

00 = 65°.

For groundwater pumping near an infinite stream as shown
in Fig. 2 (i.e., ¢ = ), the solution should reduce to that of
Glover and Balmer (1941):

qd G 9 1/t
5=0 Q1—erf(2 t) (31)

This is demonstrated in Appendix.

For the depletion of flow in right-angle stream bends
(i.e., ¢ =n/2), the values of stream depletion rate evalu-
ated from the presented solution should be identical to
Hantush (1967) solution:

q

G 9 sinf)o\/g cosﬁo\/g
Q_Q+ Q =1 erf( > ¢ erf o) F (32)

However, identity of our solution to Eq. (32) could not be
proven using analytical techniques. Therefore, we com-
pared values of g/Q for both Hantush’s solution and the
present solution with ¢ = /2 using numerical techniques.
As shown in Table 1, there are only small differences in
the seventh decimal place between Hantush’s solution and
the present solution. The solution obtained by Hantush con-
tains the error function which was evaluated by the function
DERF of IMSL (1997). The error function calculated by the
DERF is of accuracy less than the seventh digit if compared
with the error function value given in Abramowitz and Ste-
gun (1964). Thus, the differences may arise from the numer-
ical evaluation in DERF.

Figs. 3a—c and 4a—c show the transient SDR and SDV,
respectively, assuming R/ro=co at 6 =0 and 0 = ¢ with dif-
ferent combinations of angle for the wedge confluence and
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Figure 4 The dimensionless transient SDV against dimensionless time t/t, for infinite tributaries at 0 =0 and 0 = ¢ with different
angle configurations of wedge confluence and pumping well (a) ¢ = 63° and 0y = 17°; (b) ¢ =45° and 6 = 30° and (c) ¢ = 108° and

00 = 65°.

pumping well. The solid lines denote total SDR/SDV for both
streams, dash lines represent SDR/SDV from the tributary at
0 =0 and the dot-dash lines represent SDR/SDV from the
tributary at 0 = ¢. As indicated in these figures, the stream
near the pumping well contributes more recharge to the
pumping well. These figures illustrate how SDR and SDV de-
pend on the wedge angle and the angles of the pumping well
from the tributaries.

Transient stream depletion rate/volume with
different tributary segment lengths at 6 =0

Cases with different tributary segment lengths are consid-
ered to assess the influence of tributary segment length
on the quantities of SDR and SDV at 0 = 0 in a wedge-shaped
aquifer with ¢ = 63° and 6y = 17°. Fig. 5a and b illustrate the

values of SDR and SDV, respectively, with different tributary
segment lengths R/rg =0.25, 0.5, 0.75, 1, 5 and oc at 0 = 0.
Those two figures show that the values of SDR and SDV in-
crease with the tributary segment length and these two val-
ues for the case of R/rg =5 are almost identical with those
of R/rg=oco. It indicates that the SDR and SDV induced by
the pumping well are mostly contributed from tributary seg-
ment lengths within R/ro=5 at 6 =0.

Sensitivity analysis of parameters

Consider that the distance ry from the confluence to the
pumping well is ro=400m, the transmissivity T is 1 m?/
min (6.944 x 10~* m?/day), storage coefficient S is 0.2, the
angle of wedge-shaped aquifer ¢ is 80°, and the angle of
pumping well 6y is 40°. The total transient SDR and the
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Figure 5 (a) The dimensionless transient SDR against dimensionless time t/t, for different tributary segment lengths R/ry = 0.25,

0.5, 0.75, 1, 5 and oo and (b) The dimensionless transient SDV against dimensionless time t/t, for different tributary segment lengths

R/ro=0.25, 0.5, 0.75, 1, 5 and cc.

sensitivity coefficients of T, S and ry are plotted in Fig. 6.
This figure indicates that the temporal distribution of each
sensitivity coefficient of the parameters reflects the tempo-
ral change of the SDR in response to the relative change of
each parameter. The non-zero periods in the sensitivity
coefficient curves imply that the parameter T has a positive

————— Sensitivity of T

influence and the parameters S and ry have negative influ-
ences on the total SDR. In addition, those sensitivity coeffi-
cient curves show that T, S and rg influence SDR beginning at
t = 500 min (0.347 days), maximizing at t = 4000 min (2.777
days), and then terminating at t=10°min (694.44 days).
In fact, those sensitivity coefficient curves indicate that
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Figure 6 The dimensionless transient SDR and the sensitivity coefficients of the wedge-shaped aquifer parametersT, S and rq

(ro=400m, T=1m?/min, S=0.2, 0y =40° and ¢ = 80°).
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Figure 7 The dimensionless transient SDR and the sensitivity coefficients of ¢ for different angles of pumping well 0y ranging from
10° to 70° with an increment of 10°. (ro =400 m, T=1m?/min, S=0.2, and ¢ = 80°).

the total SDR starts to react to the pumping at 500 min
(0.347 days), has an inflection point at 4000 min (2.777
days), and reaches steady state at 10° min. Fig. 7 shows
the total transient SDR and the sensitivity of ¢ for 0y from
10° to 70° with an increment of 10°. As illustrated in the
figure, the time that the total transient SDR starts to
response increases with 0y and the curves of total SDR for
0 equal 10° and 70°, 20° and 60°, and 30° and 50° are the
same since they are symmetrical to the line at 0y = 40°. This
figure also indicates that the parameter ¢ has a negative
influence on the total SDR, and the maximum sensitivity
of ¢ increases with 0y. Such a phenomenon can be related
to the configuration of the systems. The total SDR is mainly
contributed from the stream at 6 = 0 when 6, = 10° and the
total SDR is mainly contributed from the stream at 0= ¢
when 0y =70°. Thus, the total SDR induced by a pumping
well which is closer to the stream at 6 = ¢ is more sensitive
to the parameter ¢. Fig. 8 shows the sensitivity of parame-
ter 0p for Og from 10° to 70° with an increment of 10°. The
maximum sensitivity coefficient of 0, decreases when 0,
increases and approaches zero at g = 40°. Notice that the
maximum sensitivity of 0y begins to be positive when
0o = 50° and the maximum sensitivity of 6, increases with
0o. These results are attributed to the location of the pump-
ing well. If the pumping well is closer to the stream, the
total SDR will be more sensitive to the 0.

Concluding remarks

New analytical solutions of transient and steady-state
stream depletion rate (SDR) and stream depletion volume
(SDV) for a wedge-shaped aquifer are developed for arbi-

——=-——=- Sensitivity of 6, for 6,=10"
————— Sensitivity of 6, for 6,=20¢
h p ——  — Sensitivity of 8, for ,=30°
. \ —— - = = Sensitivity of 8, for6,=40°
3 / ‘\ Sensitivity of 8, for 8,=50
cg I = = = Sensitivity of 8, for 6,=60
'46 1 \ — — - = Sensitivity of 6, for 6,=70 ¢
. .
-
5, | \
e ] \
b=
® ' .
8 7 l -\
Ay
=
£ VAR
= ' '
(2] '
< / B \\
& A ] “\
.
! N
° i
AN ,/
i T
A T T UL AL TTTTI T 1117 T T T T
I R I -
10° 10 10 10° 10°* 10° 10 10’
Time (min)

Figure 8 The sensitivity coefficients of 0, for different angles
of pumping well 6, ranging from 10° to 70° with an increment of
10°. (ro=400m, T=1 mZ/min, §$=0.2, and ¢ = 80°).

trary angles of the wedge confluence. In the steady-state
case, these solutions have a very simple structure that does
not involve complicated computations. In transient cases,
the solutions consist of infinite series with an improper
integral involving Bessel functions. Therefore, a numerical
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approach, including the use of Newton’s method, Gaussian
quadrature, and Shanks’ method, is used for efficiently
evaluating the solutions.

The solution for evaluating SDR in an infinite stream has
been shown analytically to be identical to that of Glover and
Balmer (1954). For a right-angle stream, it was shown
numerically that the values of the proposed solution are al-
most identical to these of Hantush’s solution (1967). These
newly-derived solutions can be used to evaluate the tran-
sient SDR and SDV for a wedge-shaped aquifer with arbitrary
wedge angles and tributary segment lengths.

From the results of the sensitivity analysis of parameters,
it was found that the total SDR has different sensitivities for
different angles of wedge-shaped aquifer or pumping well,
and the differences in the angles of the wedge-shaped aqui-
fer and the pumping well can be an important factor. The
sensitivity analyses for different parameters in the SDR
and SDV solutions in investigating their influence period of
SDR and SDV provide useful information to examine the re-
sponse of the wedge-shape aquifers to the change of the re-
lated parameters.

The results of this paper are useful in computerized
assessment of water balance of river basins in the wedge-
shaped aquifers. For rapid stream depletion assessment
and practical applications, the present graphs can be uti-
lized with reasonable accuracy.
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Appendix A
For groundwater pumping near an infinite stream, the total

SDR can be obtained by Eq. (A1) and substituting ¢ = and
0o = 7 into Egs. (16) and (17). Then,

Qe q .
and
q 2 & n T
- ' x ;[1 — (=1)"sin (ni)
= 2 & . dé
<[ e (—: t:)J"(g’? (A2)

Rearranging Eq. (A2), the total SDR can be expressed as

g 4 [ 2\ ¢
62175/0 exp (fcztf) ;sz(é)

% sin [(2n+1)f}¥

2
The summation of Eq. (A3) can be obtained based on the
formula (8.514—6) of Jeffrey et al. (1980) as

iJZnH(cf) sin [ (2n + 1)%] _ Sinz(f) (Ad)
n=0

(A3)

Therefore, Eq. (A3) can be simplified as

q_, 2 /[% a2t gn 9
a,1 ﬂ/o exp( éta>sm(é)é (A5)

In addition, the integrand of Eq. (A5) can be expressed as
the summation form based on the formula (3.956—6) of Jef-
frey et al. (1980) as

2 e (e )sne S
2k+1
1_i§:%1_erf 1\/—t_; (A6)
Y. I, T 2Vt

The total SDR for the impact of groundwater pumping near
an infinite stream can then be written as

9_q_ 1ﬁ

Q- 1 erf(2 t) (A7)
Thus, the present solution is identical to the solution in Glo-
ver and Balmer (1954), and their solution can be considered

as a special case of our transient SDR solution for infinite
tributaries.
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