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Abstract

This paper proposes a novel method called FLGP to construct a classifier device of capability in feature selection and feature extrac-
tion. FLGP is developed with layered genetic programming that is a kind of the multiple-population genetic programming. Populations
advance to an optimal discriminant function to divide data into two classes. Two methods of feature selection are proposed. New fea-
tures extracted by certain layer are used to be the training set of next layer’s populations. Experiments on several well-known datasets are
made to demonstrate performance of FLGP.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction and review

1.1. Feature selection

This research concentrate on three research topics: fea-
ture selection, feature generation, and classifier design.
Feature selection is an important technique of pattern rec-
ognition dealing with raw features. It focuses on removing
useless, irrelevant, and redundant features. The classifica-
tion accuracy of data derived by selected features is better
than that by no selection. Many research working on fea-
ture selection have been proposed (Ahmad & Dey, 2005;
Dash & Liu, 1997; Jain & Zongker, 1997; John, Kohavi,
& Pfleger, 1994; Kittler et al., 1978; Kohavi & John,
1997; Kudo & Sklansky, 2000; Pernkopf, 2005; Pudil, Nov-
ovicova, & Kitter, 1994). John et al. (1994) divide feature
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selection methods into filter group and wrapper group.
Filter methods applies by measuring the degree of feature
relevance and deciding to leave or remove it. By contrast,
wrapper methods (Jain & Zongker, 1997; Kohavi & John,
1997) function by cooperating with particular classifiers.
Dash and Liu (1997) did a solid survey on many feature
selection methods. They categorize feature selection meth-
ods into five based on the evaluation of features discrimina-
tion ability of: distance measure, information measure,
dependence measure, consistency measure, and classifier

error rate. Table 1 shows the five categories (Dash & Liu,
1997). Both Jain and Zongker (1997) proposed taxonomies
of feature selection methods as shown in Fig. 1. In Jain and
Zongker (1997), experiments with 15 different feature selec-
tion algorithms on extracted 18 features of SAR images are
made. Kudo and Sklansky also compare excellently the dif-
ferences among many feature selection methods in Kudo
and Sklansky (2000). There are 16 different feature selec-
tion methods in comparison with 1-NN classifier, including
sequential algorithms and branch-and-bound algorithms.
Besides, they also give comments on these methods and
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Fig. 1. Taxonomy of feature selection algorithms (cited from Jain and
Zongker (1997)).

Fig. 2. The circle topology MGP.

Table 1
A comparison of evaluation functions (cited from Dash and Liu (1997))

Evaluation function Generality Time complexity Accuracy

Distance measure Yes Low –
Information measure Yes Low –
Dependence measure Yes Low –
Consistency measure Yes Moderate –
Classifier error rate No High Very high
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recommend some useful algorithms, which can provide the
number of raw features. Kittler et al. (1978) and Pudil et al.
(1994) proposed many feature selection techniques, such as
(generalized) sequential forward selection, (generalized)
sequential backward selection, (generalized) plus l-take
away r selection, sequential forward floating selection,
and sequential backward floating selection. Pernkopf
compared the accuracy of Bayesian network classifier and
k-NN classifiers with different feature selection methods
in Pernkopf (2005).

Feature generation (Jolliffe, 1986; Lee & Landgrebe,
1997; Ma, Theiler, & Perkins, 2004; Mao & Jain, 1995;
Park & Park, 2004; Wang & Paliwal, 2003) deals with fea-
tures in different way. It generates representative features
or classification-oriented ones (Ma et al., 2004). The former
is mainly applied when the given data are not represented
by a distinguishable form for the classifier on hand, e.g.
handwriting and images. Mostly common feature extrac-
tion methods are principle component analysis (PCA)
(Jolliffe, 1986) and linear discriminant analysis (LDA).
Ma et al. (2004) proposed a general feature extraction
framework and two nonlinear feature extraction algo-
rithms, kernel function and mean-STD-norm, cooperating
with a SVM classifier. Mao and Jain (1995) proposed
several artificial neural network models such as PCA-
networks, LDA-networks, and nonlinear discriminant
analysis (NDA) network in Mao and Jain (1995). Wang
and Paliwal (2003) investigates performance of PCA,
LDA, minimum classification error (MCE), and general-
ized MCE with SVM classifier on vowel databases.
Traditionally, GP maintains a single population to find
optimal solutions (Banzhaf, Nordin, Keller, & Framcone,
1998; Koza, 1992). Multipopulation GP (MGP) (Brameier
& Banzhaf, 2001; Fernández, Tomassini, & Vanneschi,
2003) developed in recent years uses multiple populations
to extend individual diversity and create different evolving
environments. Fernández et al. (2003) performed several
experiments about parallel and distributed GP (PADGP),
isolated MGP (IMGP) (‘‘isolated’’ means that there is no
migration between populations), and traditional single
population GP. Their experiments show that PADGP
and IMGP usually perform better than traditional SGP.
Moreover, MGP with small populations performs better
than traditional GP using single large population. Brame-
ier and Banzhaf (2001) combine linear GP and MGP tech-
niques to design a classifier. Individuals represented as
strings migrate between demes, i.e. subpopulations, accord-
ing to their fitness. Fig. 2 (Brameier & Banzhaf, 2001)
shows the circle topology where each circle stands for a
population and arrows are migration directions.

Many classifiers based on GP have been proposed
recently (Bojarczuk, Lopes, & Freitas, 1999; Chien, Lin, &
Yang, 2003; Falco, Cioppa, & Tarantino, 2002; Freitas,
1997; Kishore, Patnaik, Mani, & Agrawal, 2000; Konstam
et al., 1998; Lin, Chien, & Hong, 2002; Loveard & Ciesielski,
2001). Kishore et al. (2000) considered a k-class classifica-
tion problem as a combination of k two-class classification
problems and then generated corresponding expressions
or discriminant functions for each class, and so did we
(Chien et al., 2003; Lin et al., 2002). These methods need k
runs for a k-class classification problem. To generate classi-
fication rules, Freitas (1997) proposed Tuple-Set-Descriptor
(TSD), a logical formula to represent an individual. Muni,
Pal, and Das (2004) proposed a method to solve multi-class
problem by representing each individual as a multitree.
Each tree stands for a candidate solution corresponding to
each class. To evolve an individual is equivalent to evolve
k trees simultaneously.

Researches on feature selection and feature extraction
using evolutionary computation boom rapidly. The use
of genetic algorithm (GA) methods can be found in Oh,
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Fig. 3. Binary tree representation of individual (A1 · (8 � A3)) + 5.
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Lee, and Moon (2004), Raymer, Punch, Goodman, Kuhn,
and Jain (2000) and Siedlecki and Sklansky (1989). Also,
some papers focus on methods using genetic programming
(GP) (Hong, Jack, & Nandi, 2005; Kotani, Ozawa, Nakai,
& Akazawa, 1999; Muni, Pal, & Das, 2006; Muni et al.,
2004; Otero, Silva, Freitas, & Nievola, 2003; Rizki, Zmuda,
& Tamburino, 2002; Sherrah, Bogner, & Bouzerdoum,
1996; Smith & Bull, 2004). Sherrah et al. (1996) used GP
to perform feature selection before applying particular
classifiers. The uncontained features in the result are
removed. Kotani et al. (1999) and Hong et al. (2005) used
GP to generate new features and employed other classifiers
with the generated features to perform classification tasks.
SVM and ANN are used to be classifiers with generated
features on bearing faults problem. Rizki et al. (2002) pro-
posed a hybrid evolutionary learning algorithm, HELPR,
performing feature extraction from raw input data. Smith
and Bull (2004) combined GP and GA to do feature gener-
ation and feature selection with C4.5 classifier, and so did
Otero et al. (2003). Muni et al. (2006, 2004) proposed an
approach to construct multi-class classifier with online
feature selection named GPmtfs, multitree genetic program-
ming based feature selection. They proposed two crossover
algorithms with the multitree GP technique to find mini-
mum number of useful features.

This paper proposes a method named FLGP to design a
classifier combined with feature selection and feature
extraction. The details of FLGP are described in Section
2. In Section 3, experiments results on several datasets
are presented and analyzed. Conclusions are finally drawn
in Section 4.
2. FLGP

This section aims to itemize FLGP. At first, basic GP
terms, including terminal, operation, individual, popula-
tion, and genetic operators are going to be introduced.
Secondly, layers and the relations between layers are
described.

We define the classification problem as follows.
Let T be the training set for a K-class classification prob-

lem including n training samples and TS be the test set. A
training sample of T is a pair of class label and m signifi-
cant real-valued elements

T ¼ ftijti ¼ ðci; xiÞ; ci 2 fc1; . . . ; cKg;
xi ¼ ðai1; ai2; . . . ; aimÞ;m > 0; 1 6 i 6 n; aij 2 Rg:

It aims to find a discriminant function F to be the classifier
that provides best classification accuracy on TS, where

F : Rm ! R:
2.1. Single population

A population P is a set of individuals. The size of P is
predefined as N. Let I be an individual, then
P ¼ fI1; I2; . . . ; INg:

An individual I in this work is represented by a binary
tree, for example, an individual (A1 · (8 � A3)) + 5 is
shown in Fig. 3. A tree has three different types of nodes:
terminals, constants, and operations. Let St, Sc and Sop be
the terminal, the constant, and the operation set respec-
tively. Terminals of St are variables related to features. Sc

is a set of predefined constants. Sop is the set of operators
corresponding to St and Sc. Sop containing only {+, �, ·,
�} is sufficient because of the research results of Kishore
et al. (2000). In this way, St, Sc, and Sop are defined as

St ¼ fAij1 6 i 6 m;Ai is the name of ith featureg;
Sc ¼ fconstijconsti 2 N ; consti ¼ ig;
Sop ¼ fþ;�;�;�g:

The size of an individual is decided by its height. An
individual containing more nodes makes it possible to have
better performance, but also requires more time to calcu-
late. The height of individuals is empirically predefined
and is denoted as IH. The binary tree of an individual con-
tains at most 2IH � 1 nodes.

The target class is what the individuals are trained to fit,
for example, TC is BENIGN if we are finding an optimal
classifier for recognizing BENIGN objects. The positive

instances of T are samples whose class label is the target

class. Otherwise, they are negative instances. An individual
I recognizes a given training sample t only when Ij(t) P 0,
and repels it when Ij(t) < 0. The fitness function works to
evaluate how well an individual I is. Let the fitness value
of individual Ii be fi. Classification results of an individual
with T can be represented by four values: true positive
(TP), true negative (TN), false positive (FP), and false neg-
ative (FN), as shown in Table 2. The fitness function used
in this work is made of sensitivity and specificity (Han &
Kamber, 2001)

Sensitivity ¼ TP

ðTPþ FNÞ

¼ number of positive instances correctly classified by I i

number of positive instances in T
;



Table 2
TP, FP, FN, and TN of an individual Ij

Positive instance Negative instance

Ij is positive TP FP
Ij is negative FN TN

Fig. 4. The curve of Wm with G = 100.
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Specificity ¼ TN

ðFPþ TNÞ

¼ number of negative instances correctly classified by I i

number of negative instances in T
;

fi ¼ Sensitivity� Specificity:
2.2. The evolution process

GP evolves a population for a number of generations
and takes the best individual F as its result. The term evolve

means a systematic processes which can mimic the natural
selection mechanism by performing genetic operators on
the population. Three primary genetic operators, crossover,
mutation, and reproduction, are performed with predefined
probabilities Wc, Wm, and Wr, respectively. The crossover
operator produces two new individuals from two existing
individuals called parents. The mutation operator replaces
a subtree of a randomly selected individual by a randomly
generated subtree to obtain a mutant. This mutant may
contain new structures never occurred before. The repro-
duction operator that mimics the natural principle, the
fittest survives, keeps a selected individual alive to next
generation.

In this work, we use a modified version of the basic GP
evolution scheme (Banzhaf et al., 1998; Koza, 1992). After
evaluating the fitness values of individuals, only the best
and second best individuals are going to be reproduced.
Crossover and mutation are performed on remaining indi-
viduals. Offspring are compared with their parents, and the
better ones survive to next generation.

Only the mutation operator can generate individuals
with new information. However, in order to avoid random
walk, Wm is usually a small value. Under this circumstance,
the individuals may not have enough chance to perform
mutation. And hence it may diminish the diversity of the
population. In particular, individuals may be stuck in cer-
tain form when they are already having good fitness value,
for example, when Ii = A1 or Ij = A5, the crossover opera-
tor just swaps them entirely and will not generate any dif-
ferent offspring. Such situation is also a local optimum
problem. Therefore, we propose a method that raises Wm

with respect to generation increasing.
Let t be the current generation and G be the maximum

generation. Then Wm at generation t is set as

W m at generation t¼
W m if fMAX

fAVERAGE
> 2:0;

W m� W c

W m

� �t=G
� �

otherwise;

8><
>:
where fMAX and fAVERAGE is the best and average fitness
value of the population in generation t, respectively. Wm

does not need to change when the best fitness value is dou-
ble higher than average. Once Wm changes, Wc = 1 �Wm.
At the last generation, Wm could be equal to Wc. In other
words, the probability for Wm to be performed in later
generations is estimated 50%. Here an example is given
in Fig. 4, which shows the smooth curve of Wm under ini-
tial conditions that G = 100, Wm = 0.05 and Wc = 0.5, and
the assumption that fMAX is always smaller than 2 ·
fAVERAGE.

A population P stops its evolution process under two
conditions. First, P executes G generations. Second, the fit-
ness value of an individual equals to 1.0. Once P stops, the
fittest individual is denoted as F.

2.3. Feature selection methods

Here we discuss the feature selection method. This paper
proposes two feature selection methods: M1 and M2. M1 is
to reduce fitness value of an individual with too many fea-
tures. M2, on the other hand, controls feature occurrences
by tuning their weights during the evolution process.

2.3.1. Method 1 (M1)
This method gives the individuals with more features a

lower fitness value to reduce their probability of being
selected (Muni et al., 2006). Instead of adopting a new fit-
ness function, we assign new fitness values for individuals
once a generation completes. Using a fitness function con-
cerning only the number of features used in an individual
may cause an inaccurate individual having higher fitness.
Since the accuracy is the most concern, M1 takes into con-
sideration a set of individuals rather than single individual.

At first, we partition the population into several subsets
by collecting individuals of similar fitness. For a popula-
tion P = {I1, I2, . . . , IN}, where fi P fi+1. P is divided into
subsets {S1,S2, . . . ,Sk} by

S1 ¼ fI1; . . . ; I ig; S2 ¼ fI iþ1; . . . ; I iþjg; . . . ; Sk ¼ fIk; . . . ; INg:

Let Ia be the best one in Si, the fitness of individuals in
Si 2 ½fa; fa � h�, where h is a predefined constant. In this
paper, we define h = 0.01.
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Afterward, individuals in a subset Si are sorted by the
number of features they used. For an ordered set
Si ¼ fI i1; I i2; . . . ; I ij; . . . ; I ikg the fitness of an individual Iij

is assigned to be

f 0ij ¼
ðfmax � fminÞðk � jþ 1Þ

k

� �
þ fmin;

where fmin and fmax are the minimum fitness value and the
maximum fitness value of individuals in set Si, respectively.

2.3.2. Method 2 (M2)

Diversity of the population would be influenced by irrel-
evant features, especially when the given problem is a high-
dimensional one. The explanation goes to the limitation in
both the number of individuals of a population and the
number of available nodes of each individual. Instead of
tuning the fitness value of each individual, M2 tunes the
weights of all features generation by generation. Features
with lower weights are unlikely to be chosen when an indi-
vidual needs a new feature.

For a population Pi, once one generation completes we
calculate the terminal usage of individuals. Pi is divided
equally into two sets HF and LF. HF is the set of better indi-
viduals. We further define the terminal usage uH and uL by

uH ¼ huH
1 ;u

H
2 ; . . . ;uH

k i;
uL ¼ huL

1 ;u
L
2 ; . . . ;uL

k i;

k ¼
Xi�1

q¼0

lq;

where uH
j and uL

j stand for the occurrence frequency of ter-
minal Aj in HF and LF, respectively.

Suppose that current layer is Li, the weight of terminals
is set by

weight of Aj ¼
uH

j þ 1

uL
j þ 1

& ’, P
uH þ 1P
uL þ 1

� �
:

Terminals always have positive weights. We do not remove
any of them during the evolution process.

2.4. Layers

So far, we have proposed the methods on evolving pop-
ulations to obtain accurate functions with feature selection.
Such functions are combinations of features, which are not
only capable of classifying objects but also generating new
features. The new features are results of feature extraction.
Instead of using new features only, this paper makes pop-
ulations evolve with all original features and new features.
Some original features evolving with new features have
chances to be selected in successive layers so that the nest-
ing problem can be avoided.

A layer of FLGP is a set of populations. Populations in a
layer do not have any communication. The evolution pro-
cess of each population could be run in parallel or in
sequence. Let the number of populations in ith layer Li be
li, we have

Li ¼ fP i1; P i2; . . . ; P ilig:
Let l0 = m and T0 be the original given training set. Pop-
ulations in L1 execute their learning process through T0. In
general, layer Li needs a particular training set Ti�1. Func-
tions ðF i1; F i2; . . . ; F iliÞ are generated after evolution pro-
cesses of all populations of Li complete. Such functions
construct new features to fill up a new training set Ti

T 0 ¼ ft0jjt0j ¼ ðcj; x0jÞ; x0j ¼ ða0j1;a0j2; . . . ;a0jmÞg;
T 1 ¼ ft1jjt1j ¼ ðcj; x1jÞ;

x1j ¼ ða1j1;a1j2; . . . ;a1jm;a1jðmþ1Þ; . . . ;a1jl1
g;

..

.

T i ¼ tijjtij ¼ ðcj; xijÞ;

8>>><
>>>:

xij ¼ aij1; . . . ;aijm|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
original
features

;aijðmþ1Þ; . . . ;aijðkþliÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
new features generated

by L0;L1;...;Li

0
BBB@

1
CCCA; k ¼X

i�1

q¼0

lq

9>>>=
>>>;;

cj 2 fc1; . . . ; cKg; m > 0; 1 6 j6 n; aijk 2 R:

The value of a new feature aijk is obtained by

aijk ¼
aði�1Þjk if k 6

Pi�1

q¼0

lq;

F
k�
Pi�1

q¼0
lq
ðtði�1ÞjÞ otherwise:

8>><
>>:

The terminal set St used in layer Li+1 is defined as Siþ1
t .

Siþ1
t contains not only terminals of the Si

t but also new fea-
ture names with respect to new features

Siþ1
t ¼

[i

j¼1

Sj
t ¼ A1;A2; ::;A Pi

q¼0
lðqÞ

� �
8<
:

9=
;:

Layer Li+1 begins its evolution process with Ti after Ti is
constructed and Siþ1

t is prepared. We define FLGP as

FLGP ¼ fðLi; T i�1; T iÞj0 < i 6 Cg;
where C is the number of layers. In this paper, we define
l(C) = 1 to obtain single function as a result. After FLGP
completes, we will have

PC�1
q¼0 lq þ 1 features. The last

feature APC�1

q¼0
lqþ1

is denoted as AF to indicate the training

results. The algorithm of FLGP evolution process is shown
in Algorithm 1. Fig. 5 illustrates the architecture and rela-
tionship between layers.

Algorithm 1 (FLGP evolution process).

(1) Let T0 T, P_COUNT 1, L_COUNT 1.
(2) Perform evolution process on population PP_COUNT

in layer LL_COUNT, with training set TL_COUNT�1.
(3) P_COUNT P_COUNT + 1.
(4) Repeat (2) unless P_COUNT > lL_COUNT.
(5) Evaluate F L COUNT 1; F L COUNT 2; . . . ; F L COUNTlL COUNT with

TL_COUNT�1 to generate new feature values.
(6) Create training set TL_COUNT with values evaluated at

step (5).
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(7) If L_COUNT < C, then L_COUNT L_
COUNT + 1 and P_COUNT 1. Jump to (2).
Using discriminant function is only suitable for two-
class classification problem. A K-class classification prob-
lem can be treated as K two-class classification problems
and execute K FLGPs regarding to each class. However,
a problem called conflict may occur. To solve such prob-
lem, several creative and efficient methods have been pro-
posed in Chien et al. (2003), Kishore et al. (2000), Lin
et al. (2002) and Muni et al. (2006). This paper concerns
two-class classification problem only and performs FLGP
for the majority class.

2.5. A brief example of FLGP

This section demonstrates FLGP with the first distribu-
tion of cancer problem (Prechelt, 1994). FLGP is trained
with full training set. Table 3 shows nine training samples
of the training set T0 where M stands for malignant and
B stands for benign. The settings of this example are

targetclass ¼M ; C ¼ 2; IH ¼ 8;

FLGP ¼ ððL1; T 0; T 1Þ; ðL2; T 1; T 2ÞÞ;
L1 ¼ ðP 11; P 12Þ; L2 ¼ ðP 21Þ;
S1

t ¼ fA1;A2;A3;A4;A5;A6;A7;A8;A9g;
S2

t ¼ fA1;A2;A3;A4;A5;A6;A7;A8;A9;A10;A11g:

Assume that the best individuals output by P11, P12, and
P13 are

F 11 ¼ A9� ðððA1�ð70�ðA4�A1ÞÞÞ� ððA1þA6Þ� ðA6�A2ÞÞÞð
� ðA1=A2ÞÞ� ððA1þðA6þðA2þðA4�A3ÞÞÞÞ� 1ÞÞ;

F 12 ¼ A1�ððð9þð40=A2ÞÞ� ð8=ððA6=A4Þ� ðA2=8ÞÞÞÞð
� ðððð29�A1ÞþA2Þ� ðA1�A9ÞÞ
� ððð23�A6Þ� ð15�A6ÞÞþA4ÞÞÞÞ�A6;



Table 3
T0: a 2-class problem and nine training samples

T0 A1 A2 A3 A4 A5 A6 A7 A8 A9 Class

t01 0.20 0.10 0.10 0.10 0.20 0.10 0.20 0.10 0.10 M

t02 0.20 0.10 0.10 0.10 0.20 0.10 0.30 0.10 0.10 M

t03 0.50 0.10 0.10 0.10 0.20 0.10 0.20 0.10 0.10 M

t04 0.50 0.40 0.60 0.80 0.40 0.10 0.80 1.00 0.10 B

t05 0.50 0.30 0.30 0.10 0.20 0.10 0.20 0.10 0.10 M

t06 0.20 0.30 0.10 0.10 0.30 0.10 0.10 0.10 0.10 M

t07 0.30 0.50 0.70 0.80 0.80 0.90 0.70 1.00 0.70 B

t08 1.00 0.50 0.60 1.00 0.60 1.00 0.70 0.70 1.00 B

t09 1.00 0.90 0.80 0.70 0.60 0.40 0.70 1.00 0.30 B

1390 J.-Y. Lin et al. / Expert Systems with Applications 34 (2008) 1384–1393
The original nine features and the two new features, A10

and A11, construct T1 which is shown in Table 4. Here
the set of used features of F11 and F12 are {A1,A2,A3,
A4,A6} and {A1 A2,A4,A6,A9}, respectively.

Next, L2 uses T1 to evolve its populations and generates
F21. Suppose it is

F 21 ¼ 41= A10 þ 80� A10ð Þ þ A4ð Þð Þ=A8ð Þ=A4ð Þð Þ
þ 9� A1=A11ð Þð Þ:
Then we combines F21 and features A1, . . ., A10 of T1 to
build T2 which is shown in Table 5, where A11 is the result
of the training samples. The set of used features is

A1;A4;A8;A10;A11f g. Since A10 and A11 are made from the
two sets respecting to F11 and F12 as mentioned above,
the set of used features is {A1,A2,A3,A4,A6,A8,A9}.

Assume that we have two test data y1 and y2. Suppose
that FLGPs return y1 and y2 regarding to class M are 0.3
Table 4
Training set T1 that is generated by L1

T1 A1 � � � A9 A10 A11 Class

t11 0.20 � � � 0.10 0.1991 76.1066 M

t12 0.20 � � � 0.10 0.1991 76.1066 M

t13 0.50 � � � 0.10 1.6225 175.7748 M

t14 0.50 � � � 0.10 �7.4600 �24.2714 B

t15 0.50 � � � 0.10 0.2633 42.1644 M

t16 0.20 � � � 0.10 0.1364 22.7037 M

t17 0.30 � � � 0.70 �2.3482 �514.8546 B

t18 1.00 � � � 1.00 �440.0000 �9126.0333 B

t19 1.00 � � � 0.30 �192.1067 �1135.0109 B

Table 5
Training set T2 that is generated by L2

T2 A1 � � � A9 A10 A11 Class

t21 0.20 � � � 0.10 0.1991 0.0489 M

t22 0.20 � � � 0.10 0.1991 0.0489 M

t23 0.50 � � � 0.10 1.6225 0.0287 M

t24 0.50 � � � 0.10 �7.4600 �0.2398 B

t25 0.50 � � � 0.10 0.2633 0.1259 M

t26 0.20 � � � 0.10 0.1364 0.1161 M

t27 0.30 � � � 0.70 �2.3482 �0.1784 B

t28 1.00 � � � 1.00 �440.0000 �0.0018 B

t29 1.00 � � � 0.30 �192.1067 �0.0098 B
and �0.4, respectively. We can classify y1 to class M and
y2 to class B.
3. Experiments

This section will discuss the experiments and analyzes
classification results. We select three diagnostic problems,
cancer, diabetes, and heart, from the PROBEN1 bench-
mark set (Prechelt, 1994). These problems are originally
from the UCI repository (Blake, Keogh, & Merz, 1998)
and have been preprocessed by Prechelt (1994). Values of
all sets are normalized to the continuous range [0, 1]. Miss-
ing attributes are completed. Every attribute of m possible
values is encoded by the 1-of-m method. PROBEN1
divides every problem dataset into three subsets: training,
validation, and test. Furthermore, for each dataset PRO-
BEN1 is prepared by three different compositions with dif-
ferent orders of samples. The numbers of training set and
test set in different composition might be slightly different.
This should raise the confidence degree on the extent of
classification results not influenced by the sample distribu-
tion of the training set and test set. Summarization of these
problems is shown in Table 6.
3.1. Experiments results

Since the number of layers and the population size are
made empirically, we design 10 different configurations.
Experiments settings are shown in Table 7 and the common
parameter values for all settings are shown in Table 8. The
selected experiment datasets have already been separated
Table 6
Summarization of selected problems

Problem Classes Number of
features

Training
samples

Majority
class

Test
data

Cancer 2 9 350 C1 174
Diabetes 2 8 384 C2 192
Heart 2 35 152 C1 75

Table 7
Nine experimental settings

Settings C li Population size for each

ES1 1 1 5000

ES2 1, 1 2500
ES3 2, 1 1650
ES4 2 3, 1 1250
ES5 4, 1 1000

ES6 1, 1, 1 1650
ES7 2, 2, 1 1000
ES8 3 3, 3, 1 700
ES9 6, 3, 1 100
ES10 3, 6, 1 100



Table 8
Common settings used for all experiments

Variable Value

Sop {+, �, ·, �}
Maximum generation 250
Tournament size 5
Initial Wc 0.95
Initial Wm 0.05
IH 8

Table 10
The accuracy and the average number of used features of 10 settings

Feature Diabetes Diabetes Diabetes

Selection Distribution 1 Distribution 2 Distribution 3

ES1 M1 0.6885(6.8) > 0.6969(6.5) < 0.7052(5.7) <
M2 0.6833(7.2) 0.7063(7.1) 0.7078(7.3)

ES2 M1 0.7276(6.1) > 0.7000(5.6) > 0.7276(6.1) >
M2 0.6906(7.8) 0.6813(8.0) 0.6906(7.8)

ES3 M1 0.7146(6.8) > 0.6948(6.8) > 0.7354(6.4) >
M2 0.7078(7.9) 0.6917(8.0) 0.7307(8.0)

ES4 M1 0.6938(7.3) > 0.7094(6.1) > 0.7313(6.5) >
M2 0.6854(8.0) 0.6766(8.0) 0.7115(8.0)

ES5 M1 0.7026(7.6) > 0.7005(6.5) > 0.7307(7.2) >
M2 0.6818(8.0) 0.6693(8.0) 0.7068(8.0)

ES6 M1 0.6854(5.9) < 0.7078(6.7) > 0.7292(5.9) >
M2 0.6885(8.0) 0.6536(8.0) 0.6828(8.0)

ES7 M1 0.6729(7.0) < 0.6969(6.8) > 0.7240(6.9) >
M2 0.6792(8.0) 0.6677(8.0) 0.6885(8.0)

ES8 M1 0.6984(7.4) > 0.6958(7.0) > 0.7286(6.4) >
M2 0.6807(8.0) 0.6724(8.0) 0.6813(8.0)

ES9 M1 0.6958(6.9) > 0.7104(7.0) > 0.7266(5.8) >
M2 0.6750(8.0) 0.6734(8.0) 0.6974(7.7)

ES10 M1 0.6984(6.9) > 0.6938(6.4) > 0.7057(6.0) >
M2 0.6880(8.0) 0.6479(8.0) 0.6906(8.0)

Best accuracy and fewest average number of used features are marked
bold; >, =, and < indicate the relation between the accuracy of using M1
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into training set and test set. In this way, either further re-
separating or using cross-validation method is unnecessary.
We perform every dataset with each experiment setting 10
times to evaluate its average performance. In other words,
90 experiments for each setting are conducted. Large pop-
ulation contains more individuals and usually has better
performance. To eliminate the influence of population size,
we set the population sizes of 2-layer and 3-layer settings to
be smaller so that the number of total individuals of all
populations is approximate to 5000.

Classification accuracies of FLGP regarding to cancer,
diabetes, and heart problems are shown in Tables 9–11,
respectively. From those tables, M1 is found better than
M2 in either feature selection or accuracy in most cases.
In total 90 average accuracies, M1 outperforms M2 66
times. Best accuracies of these nine problems are derived
from M1 method.
Table 9
The accuracy and the average number of used features of 10 settings

Feature Cancer Cancer Cancer

Selection Distribution 1 Distribution 2 Distribution 3

ES1 M1 0.9747(6.9) > 0.9425(6.7) > 0.9540(6.5) <
M2 0.9701(7.6) 0.9391(7.0) 0.9546(7.1)

ES2 M1 0.9695(4.3) > 0.9362(4.3) > 0.9534(4.6) <
M2 0.9598(8.4) 0.9356(8.2) 0.9552(7.7)

ES3 M1 0.9741(5.2) > 0.9351(4.4) > 0.9569(5.0) >
M2 0.9718(8.0) 0.9333(8.5) 0.9471(8.1)

ES4 M1 0.9701(5.2) > 0.9305(4.6) > 0.9592(5.6) >
M2 0.9557(8.6) 0.9414(7.3) 0.9529(8.5)

ES5 M1 0.9776(5.2) > 0.9339(4.5) < 0.9598(4.6) >
M2 0.9684(8.9) 0.9379(8.2) 0.9529(8.0)

ES6 M1 0.9747(4.8) > 0.9356(4.0) > 0.9598(5.2) >
M2 0.9713(7.5) 0.9017(8.5) 0.9218(7.9)

ES7 M1 0.9741(4.8) > 0.9356(4.3) > 0.9563(4.4) >
M2 0.9701(8.6) 0.9345(8.1) 0.9460(8.5)

ES8 M1 0.9730(5.0) > 0.9333(4.7) < 0.9557(4.7) >
M2 0.9621(8.3) 0.9402(7.9) 0.9517(8.2)

ES9 M1 0.9672(4.7) < 0.9402(5.1) > 0.9575(5.1) >
M2 0.9741(8.7) 0.9397(7.9) 0.9448(8.1)

ES10 M1 0.9713(5.1) > 0.9408(4.8) > 0.9592(4.8) >
M2 0.9339(8.6) 0.9391(8.2) 0.9517(7.8)

Best accuracy and fewest average number of used features are marked
bold; >, =, and < indicate the relation between the accuracy of using M1
and the accuracy of using M2.

and the accuracy of using M2.
When M1 is used, an individual may drop its fitness
value because having too many features would reduce its
chance of beating other individuals in tournament selec-
tion. M1 intends to discover individuals that used fewer
features without loss of fitness. On the other side, M2 aims
to reduce the chance of poor features being selected.
Weights of features might be converged under M2 given
enough number of generations.

In the following, we analyze the experiment results by
grouping relevant experiment settings.

Group 1: ES1
ES1 is the only experiment setting that uses single pop-

ulation containing 5000 individuals. It obtains the best
accuracies in the second distribution of cancer and the first
distribution of heart. ES1 also shows the performance of
traditional single population GP with the two feature selec-
tion methods. M1 does not always outperform M2 in the
aspect of classification accuracy, and vice versa.

Group 2: ES2, ES3, ES4, and ES5
These settings use two layers. ES2 and ES3 achieve the

best accuracies in the first and the third distribution of dia-

betes, respectively. ES5 performs excellent in the first and
the third distribution of cancer. It is found that the
improvement of increasing the number of populations in
first layer is not significant. Using a number of smaller pop-
ulations redeems its lack in population diversity compared
to larger population.



Table 11
The accuracy and the average number of used features of 10 settings

Feature Heart Heart Heart

Selection Distribution 1 Distribution 2 Distribution 3

ES1 M1 0.7760(11.0) > 0.9120(17.4) < 0.8333(11.3) >
M2 0.7520(14.1) 0.9133(12.6) 0.8293(13.3)

ES2 M1 0.7387(13.6) < 0.8973(16.4) = 0.8387(14.4) >
M2 0.7680(18.1) 0.8973(19.2) 0.8333(17.0)

ES3 M1 0.7693(17.4) > 0.9067(20.2) > 0.8173(16.5) <
M2 0.7560(24.1) 0.9000(23.6) 0.8240(20.0)

ES4 M1 0.7533(18.9) < 0.9040(18.2) > 0.8120(16.8) <
M2 0.7560(22.4) 0.8947(24.7) 0.8133(21.9)

ES5 M1 0.7600(19.7) > 0.8947(21.6) > 0.8320(17.5) >
M2 0.7573(22.0) 0.8893(25.3) 0.8187(22.0)

ES6 M1 0.7547(15.9) > 0.8987(16.9) > 0.8320(15.2) >
M2 0.7520(18.6) 0.8960(20.8) 0.8200(18.1)

ES7 M1 0.7613(17.6) > 0.8947(18.7) < 0.8240(16.9) >
M2 0.7467(21.8) 0.8987(21.9) 0.8013(21.6)

ES8 M1 0.7467(20.4) < 0.8560(22.5) < 0.8227(18.2) >
M2 0.7480(23.9) 0.9027(25.8) 0.8000(23.9)

ES9 M1 0.7613(16.2) < 0.9080(19.9) = 0.8440(13.9) >
M2 0.7640(24.1) 0.9080(23.1) 0.8240(22.4)

ES10 M1 0.7440(17.6) < 0.9200(16.3) > 0.8453(12.7) >
M2 0.7493(21.4) 0.9133(19.8) 0.8240(17.9)

Best accuracy and fewest average number of used features are marked
bold; >, =, and < indicate the relation between the accuracy of using M1
and the accuracy of using M2.
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Group 3: ES6, ES7, ES8, ES9, and ES10
These settings use three layers. ES6 achieves the best

accuracy in the third distribution of cancer. ES9 achieves
the best accuracy in the second distribution of diabetes.
Both the best accuracies in the second and the third distri-
bution of heart are obtained by ES10. Using more layers
does not always infer better performance.

Group 4: ES3 and ES6
ES3 and ES6 are grouped together because they have

the same population size. ES3 outperforms ES6 in four
problems and all problems with M1 and M2, respectively.
This phenomenon raises a hypothesis that using more pop-
ulations in first layer would be better than separating pop-
ulations into more layers.

Group 5: ES5 and ES7
The reason why ES5 and ES7 are categorized into the

same group is the same as above. ES5 outperforms ES7
in six problems and seven problems with M1 and M2,
respectively. It seems that Group 5 and Group 6 ensure
the hypothesis that arranging populations within fewer lay-
ers could be a better way.

Group 6: ES9 and ES10
The last group consists of ES9 and ES10. ES9’s first

layer contains six populations, which is the number of pop-
ulation ES10 used in second layer. ES10 outperforms ES9
in six problems and three problems with M1 and M2,
respectively. Using more populations in first layer means
that the training data for the second layer have more fea-
tures. Consider the high-dimensional heart distributions
and the eight-dimensional diabetes distributions. For heart,
the three populations of the second layer of ES9 evolve 41
features, including 35 original features and 6 new ones.
However, ES10’s second layer uses six populations to
evolve only 38 features. This explains why ES9 performs
worse than ES10 in heart, but in diabetes is the opposite.
The three populations of the second layer of ES9 are suffi-
cient to obtain good results with the given 14 features,
where six of them are generated by feature extraction. Once
the proportion of new features compared to the original
ones is higher enough, using more populations in first layer
might be a good configuration.
4. Conclusions

This paper proposes a novel method called FLGP to
construct classifier with capabilities of feature selection
and feature extraction. FLGP employs multi-population
genetic programming technique in a proper multi-layer
architecture. By means of a number of experiments, we
show that FLGP not only achieves high classification accu-
racy but also completes feature selection and feature extrac-
tion simultaneously. The classification accuracy of FLGP
is comparable to traditional single population genetic
programming.

When applying FLGP in practice, its configuration is
made empirically. Some outcomes are derived from the
experiments, including:

1. Feature selection method M1 is preferable.
2. Layer architecture improves classification accuracy.
3. Given a fix number of populations, rather than separat-

ing them into more layers, using fewer layers is pre-
ferable.

4. For a high-dimensional problem, it is preferable that
using fewer populations in successive layers.

Implementation of FLGP can be achieved by either par-
allel distribution computing environment or serial comput-
ing environment. Since the populations are independent to
each other, we can perform evolutionary process of each
population on a number of different computers at different
time and combine results to build a layer afterward.

Our further research will focus on discovering the rela-
tion of the number of original and new features. Further-
more, in order to examine the quality of selected features
and extracted ones, we will use them with other classifica-
tion algorithms.
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