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Abstract

Let LA = {fA,x: x is a partition of [0,1]} be a class of piecewise linear maps associated with a transition matrix A. In this
paper, we prove that if fA,x ∈LA, then the Liapunov exponent λ(x) of fA,x is equal to a measure theoretic entropy hmA,x of fA,x,
where mA,x is a Markov measure associated with A and x. The Liapunov exponent and the entropy are computable by solving
an eigenvalue problem and can be explicitly calculated when the transition matrix A is symmetric. Moreover, we also show that
maxx λ(x) = maxx hmA,x = log(λ1), where λ1 is the maximal eigenvalue of A.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Our main concern here is to relate entropy to Liapunov exponents. Let A = (aij ) be an n×n transition matrix, i.e.,
aij = 0 or 1 for all i, j . Let x = (x1, x2, . . . , xn)

T ∈ R
n, where xi > 0 for all i and

∑n
i=1 xi = 1. We shall call such x

a partition of the interval [0,1]. Let Ij = [∑j−1
i=1 xi,

∑j

i=1 xi], where x0 = 0, and αi = {1 � j � n: aij = 1}. We then
define LA as

LA = {
fA,x: x is a partition of [0,1]}. (1.1)

Here fA,x is a piecewise linear map satisfying

f (Ii) =
⋃
j∈αi

Ij (1.2a)

and

f ′(t) = (Ax)i

xi

=: si for t ∈ I̊i − Di, (1.2b)
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where I̊i is the interior of Ii and Di ⊂ Ii is a finite set. If, for instance, A = ( 1 1
1 0

)
and x = ( 1

2 , 1
2 )T , then

fA,x(t) =
{

2t, 0 � t � 1
2 ,

t − 1
2 , 1

2 � t � t.

We prove, in this paper, that the Liapunov exponent λ(x) of fA,x is equal to a measure theoretic entropy hmA,x

of fA,x, where mA,x is a Markov measure associated with A and x. Here, the Liapunov exponent and the entropy
are computable by solving an eigenvalue problem and can be explicitly calculated when the transition matrix A is
symmetric. Moreover, we also show that maxx λ(x) = maxx hmA,x = log(λ1), where λ1 is the maximal eigenvalue
of A.

The relationship between entropy and Liapunov exponents have been studied by many authors (see, e.g., [3,4,6,8]
and the works cited therein). In [8], Ruelle proved that

hμ(f ) =
∫
M

χ dμ, (1.3)

where μ is any invariant measure for f and χ(x) = ∑
λj (x)�0 mj(x) in which λj (x) denotes the j th Liapunov expo-

nent of f at x and mj(x) is it’s multiplicity. It was shown by Pesin [6] that the equality in (1.3) holds provided that f

is Hölder C1 and μ is absolutely continuous with respect to Lebesgue measure of M . In [3], Ledrappier studied the
relationship between dimension, entropy and Liapunov exponent for piecewise differential interval maps. In [4], Liu
studied Pesin’s formula for C2 noninvertible maps.

2. Preliminaries

For ease of references, we shall recall some definitions and known results. Let (X,B,m) be a measure space. Here
B denotes the σ -algebra of all measurable sets in X and m denotes the measure on X. Let f : X → X be a measurable
function, f is said to be measure preserving with respect to the measure m if m(S) = m(f −1(S)) for all S ∈ B. Here
m is called an invariant measure for f .

Definition 2.1. Let f be measure preserving on (X,B,m). A set S ∈ B is called f-invariant if f −1(S) = S. f is said
to be ergodic if every f -invariant set has measure 0 or full measure.

Definition 2.2. Let f : R → R be a C1 function. For each point t0 ∈ R, define the Liapunov exponent at t0 as follows:

λ(t0) = lim sup
n→∞

1

n
log

∣∣(f (n)
)′
(x)

∣∣ = lim sup
n→∞

1

n

n−1∑
j=0

log
∣∣f ′(xj )

∣∣, (2.1)

where xj = f j (x).

Proposition 2.1. (See, e.g., [7, p. 86].) Let f : [0,1] → [0,1] be differentiable. If f is ergodic with respect to the
measure m, then the Liapunov exponent for f is constant a.e. and is given by

λ(x) =
1∫

0

log
∣∣f ′(t)

∣∣dm a.e. (2.2)

Definition 2.3. Let (X,B,m) be a measure space and P be a partition of X, the entropy of partition P is defined to be

H(P) = −
∑
P∈P

m(P ) logm(P ).

Let f : X → X be measure preserving. The entropy of f with respect to P is defined by

h(f,P) = lim
n→∞

1

n
H

(
n−1∨

f −j (P)

)
. (2.3)
j=0
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Here the notation
∨n−1

j=0 f −j (P) denotes the partition whose elements are of the form A0 ∩ · · · ∩ An−1 for Ai ∈
f −j (P), i = 0, . . . , n − 1, satisfying m(A0 ∩ · · · ∩ An−1) 	= 0. The measure theoretic entropy of f is given by

hm(f ) = sup
P : partition

h(f,P).

Proposition 2.2. (See [5, Proposition IV.3.2].) The limit in (2.3) is well defined and exists.

Let A be an n × n transition matrix. P = (pij ) ∈ Mn×n(R) is said to be a stochastic matrix associated with A if

(1) pij = 0 if and only if aij = 0 for 1 � i, j � n.
(2) 0 � pij � 1 for all 1 � i, j � n.
(3)

∑
j pij = 1.

Clearly, there exists a left eigenvector qT = (q1, q2, . . . , qn) satisfying the following:

qT P = qT (2.4a)

and
n∑

i=1

qi = 1. (2.4b)

We then define a Markov measure μ = μP,q associated with (P,q) by

μ
(
C(i0, i1, . . . , ik)

) = qi0pi0,i1 · · ·pik−1,ik , (2.5)

where C(i0, i1, . . . , ik) = {(j0, j1, . . .) ∈ ΣA: j0 = i0, . . . , jk = ik} is called a cylinder.

Proposition 2.3. (See, e.g., [5, Theorem I-10.1].) μ = μP,q is an invariant measure of the Markov shift σA.

Theorem 2.1. (See, e.g., [5, p. 221].) Let A be an n × n transition matrix and μP,q = μ be the invariant Markov
measure defined by (P,q) associated with A. Then

hμ(σA) = −
∑
ij

qipij logpij .

Definition 2.4. Let (Xi,Bi ,mi), i = 1,2, be measure spaces and fi : Xi → Xi be measure preserving. We say that f1
is equivalent to f2 if there exist F : X1 → X2 and G : X2 → X1 satisfying the following properties:

(a) For any A2 ∈ B2, F−1(A2) ∈ B1 and m1(F
−1(A2)) = m2(A2).

(b) For any A1 ∈ B1, G−1(A1) ∈ B2 and m2(G
−1(A1)) = m1(A1).

(c) G ◦ F = idX1 a.e. and F ◦ G = idX2 a.e.
(d) f2 ◦ F = F ◦ f1 a.e.

This is obviously an equivalence relation. Equivalence maps have the following important properties that can be
easily derived.

Proposition 2.4. (See [5, Proposition IV.4.1].) Equivalent maps have the same measure theoretic entropy and ergod-
icity.

3. Main results

By adopting the standard techniques for solving the Perron–Frobenius equation, we are able to obtain an invariant
measure of fA,x on [0,1].
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Theorem 3.1. Let yT = (y1, . . . , yn) be the left eigenvector of diag(s−1
1 , . . . , s−1

n )A corresponding to eigenvalue 1
with yT x = 1, i.e.,

yT diag
(
s−1

1 , . . . , s−1
n

)
A = yT (3.1)

and

yT x = 1. (3.2)

Let ρ(t) = yi for t ∈ Ii . Then the measure m on [0,1] defined as m(S) = mA,x(S) = ∫
S
ρ(t) dt is an invariant measure

of fA,x on [0,1].

Proof. Since diag(s−1
1 , . . . , s−1

n )Ax = x, the existence of the left eigenvector y satisfying (3.1) and (3.2) is guaranteed.
To see m is an invariant measure of fA,x, it suffices to show that for J ⊂ Ii , 1 � i � n, m(J ) = m(f −1

A,x(J )). To this
end, let αi = {j : αji = 1}. We see that

f −1
A,x(J ) =

⋃
j∈αi

Jj ,

where Jj ⊂ Ij and �(J ) = sj �(Jj ). Here �(J ) is the Lebesgue measure of J . Now,

m
(
f −1

A,x(J )
) = m

( ⋃
j∈αi

Jj

)
=

∑
j∈αi

yj �(Jj ) =
∑
j∈αi

yj

sj
�(J ) = yi�(J ) = m(J ).

We have used (3.1) to justify the second equality above. �
Theorem 3.1 is indeed a special case of [1, Proposition 3.3.1]. In the following, we show that the eigenvalue

problem (3.1) and (3.2) can be explicitly solved when A is symmetric.

Corollary 3.1. If A is a symmetric transition matrix, then the row vector yT as given in Theorem 3.1, is

yT = xT A
xT Ax

.

Proof. Since A is symmetric, xT A = ((Ax)1, . . . , (Ax)n). Hence

xT A diag
(
s−1

1 , . . . , s−1
n

) = (
(Ax)1, . . . , (Ax)n

)
diag

(
x1

(Ax)1
, . . . ,

x1

(Ax)n

)
= (x1, . . . , xn) = xT .

Thus yT is as asserted. �
From here on to the end of this section, we set P and q as follows:

P = (diag Ax)−1A diag x, (3.3)

and

qT = yT diag x
(

= xT A(diag x)

xT Ax
if A is symmetric

)
. (3.4)

Here A is a transition matrix and x is defined in (3.1). Note that P is a stochastic matrix associated with A and qT is
a left eigenvector corresponding to eigenvalue 1. Thus μP,q is an invariant measure for σA.

Theorem 3.2. Consider fA,x and σA on ([0,1],mA,x) and (ΣA,μP,q), respectively. Here P and q are described as
above. Then fA,x is equivalent to σA.
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Proof. Given 1 < i0, . . . , ik < n, let

Ii0,i1,...,ik = {
t ∈ [0,1]: f j (t) ∈ Iij , 0 � j � k

}
.

It is well known that fA,x is topological conjugate to σA (i.e., satisfying condition (c) and (d) in Definition 2.4, see,
e.g., [2, Theorem 3.18]). Therefore, it suffices to show that

mA,x(Ii0,...,ik ) = μP,q(Ci0,...,ik ).

Writing s−1
i = xi

(Ax)i
, we get that

mA,x(Ii0,i1,...,ik ) = yi0s
−1
i0

ai0,i1s
−1
i1

· · ·aik−1,ik xik

= (yi0xi0)

(
1

(Ax)i0
ai0,i1xi1

)
· · ·

(
1

(Ax)ik−1

aik−1,ik xik

)
= (qi0)(pi0,i1)(pi1,i2) · · · (pik−1,ik )

= μP,q(Ci0,...,ik ).

We thus complete the proof of Theorem 3.2. �
Theorem 3.3. Let A be an n × n transition matrix which is irreducible, then the Liapunov exponent λ(x) of fA,x is

λ(x) = yT log diag(s1, . . . , sn)x.

Proof. According to the equivalence of fA,x and σA, we see that fA,x is ergodic if and only if A is irreducible. Hence,
it follows from (2.2) and the construction of fA,x, that the Liapunov exponent λ of fA,x is

λ =
1∫

0

log
∣∣f ′

A,x(t)
∣∣dmA,x = yT log diag(s1, . . . , sn)x.

We just proved the theorem. �
We are now ready to state the main result of the paper.

Theorem 3.4. Let A be an n×n transition matrix which is irreducible. Let λ = λ(x) be the Liapunov exponent of fA,x,
then

(1) λ(x) = hmA,x(fA,x) where mA,x is the invariant measure for fA,x given as in Theorem 3.1.
(2) supx: partition λ(x) = htop(fA,x) = logλ1, where λ1 is the maximal eigenvalue of A. The sup attains while x is

chosen to be the eigenvector of A corresponding to eigenvalue λ1 with
∑

xi = 1.

Proof. Let P = (pij ), and so (pij ) = (
xj

(Ax)i
aij ). Set P̃ = (pij logpij ), and e = (1, . . . ,1)T , it follows from Theo-

rem 3.2, (3.3), (3.4) and Theorem 2.1(1) that

hmA,x(fA,x) = hμP,q(σA) = −qT P̃e = −yT (diag x)̃Pe. (3.5)

Now,

P̃e =
(

xj

(Ax)i
aij log

(
xj

(Ax)i
aij

))
n×n

e

= (diag Ax)−1
(

aij log

(
xj

(Ax)i
aij

))
n×n

diag(x1, . . . , xn)e

= (diag Ax)−1
(

aij log

(
xj

(Ax)i
aij

))
n×n

x. (3.6)

Moreover, we have that
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−
(

aij

(
log

xj

(Ax)i
aij

))
n×n

= −(aij logaij )n×n + (
aij log(Ax)i

)
n×n

− (aij logxj )n×n. (3.7)

Since either aij = 0 or aij = 1, we see that aij logaij = 0. We also note that(
aij log(Ax)i

)
n×n

= log(diag Ax)A

and

(aij logxj )n×n = A log diag x.

Substituting (3.7) into (3.6), we get that

−P̃e = (diag Ax)−1 log(diag Ax)Ax − (diag Ax)−1A(log diag x)x. (3.8)

Here log A = (logaij ) and

diag x =

⎛⎜⎜⎝
x1 0

x2
. . .

0 xn

⎞⎟⎟⎠ .

To further simplify (3.5), we note that

yT diag x(diag Ax)−1A = yT (3.9)

and

yT diag x(diag Ax)−1 log(diag Ax)Ax = yT log(diag Ax)(diag x)(diag Ax)−1Ax

= yT log(diag Ax)(diag x)e

= yT log(diag Ax)x. (3.10)

It then follows from (3.8)–(3.10) and Theorem 3.2, (3.5) becomes

hμP,q(σA) = yT log(diag Ax)x − yT (log diag x)x

= yT log
(
diag(s1, . . . , sn)

)
x

= λ(x).

We thus complete the proof of the theorem. �
Remark 3.1. It is shown in [3, Proposition 4] that for any piecewise differentiable map f with λ(f,μ) > 0, the
equality

HD(μ)λ(f,μ) = hμ(f )

holds. Here HD(μ) denotes the fractal dimension of the ergodic invariant measure μ on a compact space. In the case of
this paper, it can be shown that HD(μ) = 1, and hence, Theorem 3.4(1) can be obtained when the Liapunov exponent
of fA,x is positive. In this work, we mainly provide an alternative proof without using the dimension. On the other
hand, combining Theorems 3.3 and 3.4(1), it reveals that the Liapunov exponent and the measure theoretic entropy of
the maps fA,x are computable by solving the eigenvalue problem (3.1) (e.g., using the power method). In particular,
while the corresponding transition matrix A is symmetric, it follows from Corollary 3.1 that the Liapunov exponent
(as well as the entropy) can be explicitly solved by

λ(x) = hmA,x(fA,x) =
∑
ij

1

xT z
aij xixj log

aij xj

zi

(3.11)

where z = Ax. From the viewpoint of an eigenvalue problem, using Theorem 3.4(2), (3.11) also gives a nontrivial
lower bound for the maximal eigenvalue of a symmetric transition matrix.
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