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(Communicated by David H. Sharp)

Abstract. In this paper we rigorously show the existence of solutions of a
matrix equation which arises in the design of micro electronical circuits. This
equation was studied by Szidarovszky and Palusinsk [Appl. Math. Comput.
64, 115-119(1994)], who also presented an iterative algorithm for its solution.
We show, via an example, that this algorithm could converge extremely slow
in certian cases. The solution can then be used to minimize the reflection
coefficients of the active signals.

1. Introduction

Consider the following matrix equation of the form

R = (M +X)−1(M −X).(1)

Here M is an M -matrix [3], which is given. A matrix A is called an M -matrix
if A is invertible, A−1 is nonnegative (in the componentwise sense), and aij ≤ 0
for all i, j = 1, · · · , n, i 6= j. The unknown matrices R and X have the following
constraints:

(C1) The matrix X = diag (x1, x2, · · · , xn), xi > 0 for all i = 1, 2, · · · , n.
(C2) The diagonal of matrix R contains only zero elements.

Equation (1) arises in microelectronics. The matrix M is the characteristic
admittance matrix, which represents various signal propagation properties of the
interconnections of high speed electronic circuits and systems. The diagonal admit-
tance matrix X gives the load of the resistive terminating network. The reflection
matrix R describes the ratios of the amplitudes of the incident and reflected waves.
Physically, matrix M has non-positive off-diagonal elements, a positive diagonal
and a nonnegative inverse with positive diagonal. In practice, we wish to select
the load of the resistive terminating elements so that the reflection coefficients of
the active signals are equal to zero. That is, given an M -matrix M , find a diago-
nal matrix X with positive diagonal such that R = (M +X)−1(M −X) has zero
diagonal.
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Some numerical procedures for solving equation (1) were proposed in [2]. Note
that the boundedness of the sequence in [2] has not been established. For more
physical details see, for example, [1, 2].

The purpose of this paper is two-fold. First, a priori upper and lower bounds
for X are obtained. The existence of solutions to (1) will be established via degree
theory. Second, an example is given to illustrate that the algorithm in [2] could
converge extremely slow in certain cases.

2. Main results

Define the mapping F : Rn×n → Rn×n such that for any n × n matrix A =
(aij), F(A) = diag (a11, a22, · · · , ann). We note, as in [2], that, from (1),

R = (M +X)−1(M +X − 2X) = I − 2(M +X)−1X.

Therefore, all diagonal elements of (M +X)−1X must be equal to 1
2 . Equation (1)

can thus be decoupled as

F((M +X)−1) = diag (
1

2x1
,

1

2x2
. · · · , 1

2xn
),

which is equivalent to the following fixed point problem:

X =
1

2
F−1((M +X)−1) := G(X).(2)

Notation. 1. Let A be the set of all n×n matrices with only nonnegative elements.
2. Let A,B,∈ Rn×n; we write A ≥ B if A−B ∈ A.
To be complete, we recall the following well-known results, see e.g., 2.4.10 of [3]

and Theorem 13.2.11 of [4] respectively.

Theorem 1. Let two n × n matrices Ai, i = 1, 2, be, respectively, decomposed as
Ai = Di −Bi, where Di, i = 1, 2, are diagonal parts of Ai, i = 1, 2. Suppose A1 is
an M -matrix, D1 ≤ D2 and B1 ≥ B2. Then A2 is an M -matrix and A−1

2 ≤ A−1
1 .

Theorem 2. Let D ⊂ Rn be an open bounded set. Suppose that φ : D̄ → Rn is
continuous. Assume that no solution of φ(x) = p lies on ∂D. Then the following
hold:

(i) Homotopy Invariance. Let Ht be a homotopy, and suppose that Ht(x) 6= p
for any x ∈ ∂D and t ∈ [0, 1]. Then d(Ht, p,D) is independent of t.

(ii) d(I, p,D) = 1 if p ∈ D, d(I, p,D) = 0 if p /∈ D.
(iii) If d(φ, p,D) 6= 0, the equation φ(x) = p has at least one solution in D.

Consider the following one-parameter family of equations:

X = 1
2F−1((M + tX)−1)

:= Gt(X), 0 ≤ t ≤ 1.
(3)

We next establish a priori bounds for X and all t.

Lemma 1. Let X ∈ A be a solution of (3). Then 1
2F
−1(M−1) ≤ X ≤ F (M) for

all 0 ≤ t ≤ 1.

Proof. Let X be as assumed. Using Theorem 1, we see that

X =
1

2
F−1((M + tX)−1) ≤ 1

2
F−1((M +X)−1)

≤ 1

2
F−1((F (M) +X)−1) =

1

2
(F (M) +X).
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Consequently, the a priori upper bound as asserted follows. The a priori lower
bound can be obtained by dropping the term tX .

Theorem 3. There exist R and X satisfying the constraints (C1) and (C2) and
equation (1). Moreover, for any solution X ∈ A of equation (2), the corresponding
solution R of (1) has the property that −R ∈ A.

Proof. Let D = {X ∈ Rn×n : 1
4F
−1(M−1) < X < 2F (M)}. D is evidently a

non-empty bounded open subset of Rn×n, and Gt : D̄ → Rn×n is continuous. It
is also clear, via Lemma 1, that if X −GtX = 0 for X ∈ D̄, then X ∈ D. The
preparations for the use of degree theory are now complete. Consider the homotopy
Ht = I −Gt. Hence by homotopy invariance

d(I −G0, 0, D) = d(I −G1, 0, D).

But

d(I −G0, 0, D) = d(I,
1

2
F−1(M−1), D) = 1

by Theorem 2-ii, as 1
2F−1(M−1) ∈ D. The first assertion of the theorem now follows

from Theorem 2-iii. The last assertion of the theorem follows from the constraints
(C2) and the fact that (M +X)−1 ≥ 0.

Our second result deals with the asymptotic convergence rate of the algorithm
in [2]. Consider now the iteration procedure:

X(k+1) = G(X(k)),(4a)

X(0) = 0.(4b)

Applying the theorem in [2], we obtain that {X(k)} is a bounded, increasing se-
quence. Hence, it converges upward to a limit, say X∗. Note that in this case X∗

is the smallest positive solution of (2). In the following, we shall illustrate, via an
example, that such an algorithm can be extremely slow to converge. Let

M =

(
1 −(1− ε)

−(1− ε) 1

)
,

where ε is a small positive parameter. Clearly, M is an M -matrix. Writing equation
(2) in component form, we obtain that

x1 =
(1 + x1)(1 + x2)− (1− ε)2

2(1 + x2)
:= f1(x1, x2; ε),(5a)

x2 =
(1 + x1)(1 + x2)− (1− ε)2

2(1 + x2)
:= f2(x1, x2; ε).(5b)

A simple calculation gives that the unique positive solution x∗ = (x∗1, x
∗
2) to (5) is

x∗1 = x∗2 =
√

1− (1− ε)2. Define : f : R2 → R2 by

f(x; ε) = (f1(x; ε), f2(x; ε)),(5c)

where x = (x1, x2).
Then the iteration procedure (4) is equivalent to

x(k+1) = f(x(k); ε),(6a)

x(0) = 0.(6b)
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Note that the asymptotic convergence rate of the algorithm is determined by the
spectral radius σ(f ′(x∗; ε)) of the Jacobian matrix f ′(x∗; ε). A direct calculation
yields that

σ(f ′(x∗; ε)) =
1

2
[1 +

(1− ε)2

(1 +
√

1− (1− ε)2)
] = 1− h(ε),

where h(ε) > 0 and h(ε) = o(ε
1
2 ).

We also note that if M is a diagonal matrix, the convergence rate of (4) is 1
2 . It

is observed that as M becomes less diagonally dominate, the convergence rate of
the algorithm deteriorates.

In conclusion, we note that if the initial sequence X(0) is chosen to be F(M),
then {X(k)} is decreasing and bounded below. These observations are a direct
consequence of Lemma 1. The sequence then converges to the largest positive
solution X∗∗ of (2). Applying Lemma 1, we obtain the following corollary.

Corollary. Let R∗ = (r∗ij) and r∗∗ = (r∗∗ij ), respectively, be the corresponding
solutions of equation (1) with respect to the solutions X∗ and X∗∗ of equation (2).
We further assume that R = (rij) is the corresponding solution of (1) associated
with any positive solution X of (2). Then r∗∗ij ≤ rij ≤ r∗ij ≤ 0 for all i, j.
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