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Abstract

For ranking alternatives based on pairwise comparisons, current analytic hierarchy process (AHP) methods are difficult
to use to generate useful information to assist decision makers in specifying their preferences. This study proposes a novel
method incorporating fuzzy preferences and range reduction techniques. Modified from the concept of data envelopment
analysis (DEA), the proposed approach is not only capable of treating incomplete preference matrices but also provides
reasonable ranges to help decision makers to rank decision alternatives confidently.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

This paper addresses the range computation for pairwise comparison preference rating. The motivation,
purpose and advantages of the proposed approach are introduced first. Then, the concept and insufficiencies
of conventional fuzzy AHP models are described. Next, the range reduction and fuzzy ranking models are pro-
posed and constructed. Finally, a numerical example is used to illustrate the solving process.

The analytic hierarchy process (AHP), developed by Saaty (1977), is a popular approach to rank alterna-
tives. Through the ratio-scaled assessment of pairwise preferences between alternatives, the ranks of alterna-
tives are found by computing the eigenvalues of the preference matrix. Conventional AHP, however, cannot
treat incomplete preference matrices. In addition, AHP has been proven to be a mathematically flawed system
in deriving weights and synthesizing scores of attributes by several authors (Barzilai, 1997, 2001, 2005; Brugha,
2000, 2004; etc.).

Since fuzziness and vagueness commonly exist in many decision-making problems (Levary and Wan, 1998;
Ribeiro, 1996), numerous ranking methods (Graan, 1980; Laarhoven and Pedrycz, 1983; Boender et al., 1989;
0377-2217/$ - see front matter � 2007 Elsevier B.V. All rights reserved.
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Chang, 1996; Ruoning and Xiaoyan, 1996; Leung and Cao, 2000; Yu, 2002) have been developed to solve
fuzzy decision problems with pairwise comparison matrices. A major disadvantage of conventional fuzzy
AHP methods is that no range information is provided to help a decision maker to specify preferences
conveniently. Conventionally, Saaty (1980) ratio scale of [1/9, 9] is used as default upper and lower bounds,
yet the ranges are usually too big for a decision maker to use as a useful reference. In addition, most of current
AHP methods require a decision maker to specify a complete pairwise comparison matrix.

Data envelopment analysis (DEA) is another commonly used technique in ranking decision alternatives.
The DEA technique is intended to evaluate the efficiency of each alternative using CCR models (Charnes
et al., 1978) or BCC models (Banker et al., 1984) based on the concept of maximizing the ratio of outputs
to inputs. However, there are some insufficiencies of conventional DEA models in ranking alternatives. First,
current DEA models may generate too many efficient alternatives with the same rank. The lack of discrimi-
nation among alternatives prohibits its applications in real cases (Angulo-Meza and Lins, 2002). In addition,
most DEA methods do not incorporate the preferences specified by the decision maker.

This study proposes a novel ranking method with pair-wise preference comparisons. The proposed model
first adopts a modified DEA model to generate reasonable upper and lower bounds of preference ratios. By
referring to these ranges, a decision maker then specifies his/her fuzzy preferences partially. A goal-program-
ming model with minimal approximation errors and maximal fulfillment of a decision maker’s preferences is
proposed to solve the fuzzy decision problem.

The major advantages of the proposed approach are listed as follows:

(i) Reasonable upper and lower bounds are provided to help a decision maker to articulate related fuzzy
preferences.

(ii) Incomplete preference matrix can be handled.
(iii) Various fuzzy preferences with convex, concave or mixed convex–concave features are treated to obtain

a crisp optimal solution efficiently.

2. Conventional fuzzy AHP models

Consider a set of n alternatives A ¼ fAiji ¼ 1; . . . ; ng for solving a decision problem. From the basis of AHP
(Saaty, 1980), the pairwise comparison of Ai over Aj, denoted as hi,j, is the preference specified by a decision
maker as the ratio of the weights of Ai to Aj. Let hi;j ¼ wi

wj
measure the relative dominance of Ai over Aj in terms

of priority weighs w1 > 0; . . . ;wn > 0. Following Saaty, hi,j are specified as 1–9 numerical rates. Denote
H ¼ ðhi;jÞ, where hj;i ¼ 1

hi;j
is assumed. A fuzzy AHP problem can be expressed as follows:
Min
Xn

i¼1

Xn

j>i

wi

wj
� ~hi;j

����
����

Max
Xn

i¼1

Xn

j>i

lð~hi;jÞ

Subject to
Xn

i¼1

wi ¼ 1;

wi; ~hi;j P 0;

ð2:1Þ
where ~hi;j is a fuzzy number representing how many times is Ai preferred over Aj, which is specified by the
decision maker. lð~hi;jÞ is the membership function of ~hi;j. The first objective is to minimize the sum of devia-
tions resulted from approximation, and the second objective is to maximize the sum of membership functions
of ~hi;j. Model (2.1) is in the form of goal-programming (Cooper, 2005). This model can be solved by weights
method (Taha, 2003) to optimize both objectives jointly.

A most commonly used membership function is a triangle type as shown in Fig. 1, where hi;j;1 and hi;j;3

are, respectively, the lower and upper bounds of hi,j, and hi;j;2 is the hi,j value which is the most likely to
occur.
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Fig. 1. A triangular membership function of hi,j.
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Many methods have been developed to solve fuzzy AHP problems. For examples, Graan (1980) generated a
fuzzy priority vector by assigning fuzzy weights. Laarhoven and Pedrycz (1983) and Boender et al. (1989)
proposed logarithmic least squares methods to generate a priority vector under fuzzy environment. However,
most conventional fuzzy AHP methods use repetitive extension principal processes or tedious arithmetic
calculations to solve problems. Besides, the obtained fuzzy priority vector needs extra defuzzification tech-
niques to generate a crisp solution.

Yu (2002) proposed a goal-programming (GP) AHP model for solving group decision-making fuzzy AHP
problems based on the work of Li and Yu (1999). If there are e decision-makers in the group, the GP-AHP
model is formulated as follows:
Min
Xn

i¼1

Xn

j>i

XE

e¼1

ðln wi � ln wjÞ � ln he
i;j

��� ���
Max

Xn

i¼1

Xn

j>i

XE

e¼1

lðln he
i;jÞ

Subject to ln he
i;j ¼ l ln he

i;j

� �
þ se

i;j;2 � se
i;j;1

� �
ln he

i;j;2 � se
i;j;2 � se

i;j;1

� �
de

i;j þ se
i;j;1 ln he

i;j;1

n o
=se

i;j;2;

ln he
i;j � ln he

i;j;2 þ de
i;j P 0;

de
i;j; h

e
i;j P 0 8i; j;

wi P 0 8i;

ð2:2Þ
where he
i;j indicates the eth decision-maker’s fuzzy preference of Ai over Aj. The deviation variable, de

i;j, is used

to treat the absolute term. The triangular membership, l ln he
i;j

� �� �
, is a function of ln he

i;j

� �
, where ln he

i;j;1

� �
,

ln he
i;j;2

� �
and ln he

i;j;3

� �
are lower, middle and upper values of ln ~he

i;j

� �
. The slopes of the two line segments in

the triangular membership function, se
i;j;1 and se

i;j;2, are given by se
i;j;1 ¼

l ln he
i;j;2ð Þð Þ�l ln he

i;j;1ð Þð Þ
ln he

i;j;2ð Þ�ln he
i;j;1ð Þ and

se
i;j;2 ¼

l ln he
i;j;3ð Þð Þ�l ln he

i;j;2ð Þð Þ
ln he

i;j;3ð Þ�ln he
i;j;2ð Þ .

Yu applied a linearization technique to solve fuzzy AHP problems involving triangular, convex and mixed
concave-convex fuzzy estimates under a group decision-making environment. Instead of tedious computa-
tions, a GP-AHP approach can obtain a crisp solution efficiently.

A major disadvantage for current fuzzy AHP methods (Yu, 2002; Boender et al., 1989; Laarhoven and
Pedrycz, 1983; Graan, 1980) is that there is no bound information about the piecewise preferences. A core
issue of a fuzzy pairwise comparison model is how to specify the membership function of a preference. For
instance, how to specify hi;j;1 and hi;j;3 in Fig. 1. All current methods assume that a decision maker can tell
these values. In fact, without additional information, it is quite difficult for a decision maker to guess these
values. If the range is too wide (as hi;j;1 ¼ 1=9 and hi;j;3 ¼ 9), it is meaningless to specify the preferences. If
the range is too narrow (as hi;j;1 ¼ 6 and hi;j;3 ¼ 7), then some good solutions may be eliminated from the solu-
tion space.

This study proposes a novel ranking method, which can provide reasonable range information to help a
decision maker specifying their fuzzy preferences with an incomplete pairwise comparison matrix.
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3. Proposed fuzzy ranking models

Given a set of n alternatives, A ¼ ðA1;A2; . . . ;AnÞ, for solving a decision problem, where each alternative
contains m criteria Ai ¼ Aiðci;1; ci;2; . . . ; ci;mÞ. Denote wk as the weight of criterion k. Since the experience has
shown multi-criteria syntheses are difficult, all weights are assumed to be positive to avoid making them
any more complicated. All criteria values are transformed to the same positive format by subtracting from
upper bound, and normalized to a scale from 1 to 9 in advance.

Denote ci;k as the transformed kth criterion value of alternative Ai. Based on the concept of Brugha (2000,
2004), relative measured weights and scores should be synthesized using a power function. Instead of an arith-
metic synthesis of score function by AHP, the score function of Ai is assumed to be in a non-linear Cobb–
Douglas (Cobb and Douglas, 1928) form with constant return to scale, expressed below
SiðwÞ ¼ cw1
i;1cw2

i;2 ; . . . ; cwm
i;m; ð3:1Þ
where w1; . . . ;wm P 0,
Pm

k¼1wk ¼ 1 and 1 6 Si 6 9.
Define a relative dominance matrix R ¼ ðri;jÞ as a n� n matrix, where element ri;j ¼ Scorei

Scorej
expresses the ratio

of scores of Ai over Aj. rj;i ¼ 1
ri;j

is assumed. Section 3.1 illustrates how to articulate the reduced ranges of ri,j to
help a decision maker to specify related preferences. Section 3.2 describes the proposed fuzzy ranking model.

3.1. Range reduction techniques

This study proposes a range reduction technique, a modified DEA ranking method with rank minimization,
which is modified from the concept of multiplicative DEA models (Charnes et al., 1982, 1983, 1996). Denote
Scorep

j as the score of Aj and wp
k as the weight of criteria k while Ap is chosen as the target alternative (i.e. the

score or rank of Ap is optimized). Denote Rankp as the rank of Ap. 1 6 Rankp 6 n. Let Rankp ¼ 1 if Ap is the
best choice. Ap is superior to Aj (denoted as Ap � AjÞ if and only if Rankp < Rankj.

Remark 1. Rankj < Rankp if and only if Scorep
j > Scorep

p.

Since Scorep
p is the maximum score that Ap can have, Scorep

j > Scorep
p implies that Scorep

j > Scorep
p > e no

matter how we specify wp
k . Aj therefore is clearly superior to Ap. Denote Sup(p) as a superior set of Ap. Sup(p) is

a collection of Aj which are superior to Ap, expressed as
SupðpÞ ¼ fAjjScorep
j > Scorep

p for j ¼ 1; 2; . . . ; ng: ð3:2Þ
Rankp can then be computed as
Rankp ¼ 1þ SupðpÞk k; ð3:3Þ

where kSup(p)k is the number of elements in Sup(p).

For a target alternative Ap, the proposed DEA ranking model with rank minimization is formulated
below.
Model 1 (a modified DEA model)

Xn
Min
j¼1;j 6¼p

tp;j ð3:4Þ

Subject to Scorep
p þM � tp;j P Scorep

j 8j ¼ 1; 2; . . . ; n; ð3:5Þ

tp;j 2 f0; 1g; M is a large value; ð3:6Þ
1 6 Scorep

j 6 9 8j; ð3:7Þ
Xm

k¼1

wp
k ¼ 1; ð3:8Þ

w1; . . . ;wm P 0: ð3:9Þ
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The objective is to minimize the rank of Ap. If tp;j ¼ 0 for all j then Scorep
p has the maximal value. Expression

(3.5) means that if Scorep
p P Scorep

j then tp;j ¼ 0, and otherwise tp;j ¼ 1. A superior set Sup(p) of Ap can be
obtained by checking all tp;j. If tp;j ¼ 1, then Aj is in the superior set of Ap.

Model 1 can be converted directly into following linear 0–1 programs:
Min
Xn

j¼1;j 6¼p

tp;j

Subject to
Xm

k¼1

wp
k lnðcp;kÞ þM � tp;j P

Xm

k¼1

wp
k lnðcj;kÞ 8j ¼ 1; . . . ; n; ð3:10Þ

lnð1Þ 6
Xm

k¼1

wp
k lnðcj;kÞ 6 lnð9Þ 8j ¼ 1; . . . ; n; ð3:11Þ

tp;j 2 f0; 1g; M is a large value;

Xm

k¼1

wp
k ¼ 1;

w1; . . . ;wm P 0:
Let ri;j and ri;j be, respectively, the upper and lower bound of ri,j with ri;j 6 ri;j 6 ri;j. Here ri;j is obtained by
maximizing ri,j under the constraint that no other alternative getting a score greater than 1. Similarly, ri;j is
found by minimizing ri,j subjected to the same constraints, as described in Model 2.

Model 2 (range reduction model)
MaxðMinÞ ri;j ¼
Scorei

Scorej
ð3:12Þ

Subject to Scorep < Scoreq 8Aq 2 SupðpÞ 8p ¼ 1; . . . ; n; ð3:13Þ
1 6 Scorei 6 9 8i;
Xm

k¼1

wk ¼ 1;

w1; . . . ;wm P 0:
The restrictions ‘‘Scorep < Scoreq’’ (3.13) are imbedded into the constraint set for all Aq 2 SupðpÞ. By incor-
porating the superior sets obtained from Model 1, Model 2 can substantially tighten the ranges of ri,j. It is
important to note that both ri;j and ri;j are suggested bounds to assist the decision maker to articulate their
preferences. The decision make can still revise both bounds directly. Model 2 can also be converted into a lin-
ear 0–1 program as Model 1.

3.2. Proposed fuzzy ranking model

By incorporating the reduced ranges of ri,j, a proposed fuzzy ranking model can then be formulated as
follows:

Model 3 (a fuzzy ranking model)

X� �

Min Obj1 ¼

~ri;j

Scorei

Scorej
� ~ri;j

��� ��� ð3:14Þ

Max Obj2 ¼
X
~ri;j

lð~ri;jÞ ð3:15Þ
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Subject to ri;j 6
Scorei

Scorej
6 ri;j; ð3:16Þ

1 6 Scorei 6 9 8i;Xm

k¼1

wk ¼ 1;

w1; . . . ;wm P 0;
where ~ri;j is a fuzzy number representing how many times alternative i is preferred over j, specified by the deci-
sion maker. The first objective is to minimize the sum of deviations resulting from the approximation. The
second objective tries to maximize the sum of membership functions, which indicate the fulfillment of the deci-
sion maker’s preferences. Expression (3.16) sets the reduced ranges of ri,j.

A piecewise linear function with triangular membership function is illustrated here. Given a triangular
fuzzy preference ~ri;j ¼ ðri;j;1; ri;j;2; ri;j;3Þ, a piecewise linear function of lnð~ri;jÞ can be expressed below
lðlnðri;jÞÞ ¼ si;j;1 � ðlnðri;jÞ � lnðri;j;1ÞÞ þ
ðsi;j;2 � si;j;1Þ

2
� j lnðri;jÞ � lnðri;j;2Þj þ lnðri;jÞ � lnðri;j;2Þ
� �

; ð3:17Þ
where si;j;1 ¼ lðlnðri;j;2ÞÞ�lðlnðri;j;1ÞÞ
lnðri;j;2Þ�lnðri;j;1Þ

and si;j;2 ¼ lðlnðri;j;3ÞÞ�lðlnðri;j;2ÞÞ
lnðri;j;3Þ�lnðri;j;2Þ

. joj is the absolute value of o.

After taking logarithms, Model 3 can then be transferred into a linear program as follows:
Min Obj1 ¼
X
~ri;j

ðlnðScoreiÞ � lnðScorejÞ � lnðri;jÞ þ 2zi;jÞ

Max Obj2 ¼
X
~ri;j

lðlnðri;jÞÞ

Subject to lðlnðri;jÞÞ ¼ si;j;1 � ðlnðri;jÞ � lnðri;j;1ÞÞ þ ðsi;j;2 � si;j;1Þ � ðlnðri;jÞ � lnðri;j;2Þ þ di;jÞ 8~ri;j;

ð3:18Þ
lnðri;jÞ � lnðri;j;2Þ þ di;j P 0 8~ri;j; ð3:19Þ
di;j P 0 8~ri;j; ð3:20Þ
lnðri;jÞ 6 lnðScoreiÞ � lnðScorejÞ 6 lnðri;jÞ 8i; j > i; ð3:21ÞX
~ri;j

ðlnðScoreiÞ � lnðScorejÞ � lnðri;jÞ þ zi;jÞP 0 8~ri;j; ð3:22Þ

zi;j P 0 8~ri;j; ð3:23Þ

lnðScoreiÞ ¼
Xm

k¼1

wk lnðci;kÞ 8i; ð3:24Þ

lnð1Þ 6 lnðScoreiÞ 6 lnð9Þ 8i;Xm

k¼1

w¼k 1;

w1; . . . ;wm P 0:
Expressions (3.18)–(3.20) are based on Yu (2002). Expression (3.21) is from (3.16). In order to linearize the
absolute term in Obj1, constraints (3.22) and (3.23) are added into the model based on the work of Li
(1996). Expression (3.24) is from (3.1). Model 3 is a multi-objective linear optimization problem, which can
be solved by many techniques to get a global optimum. One of commonly used methods is formulated below:
Min Obj1�Obj2

Subject to All other constraints are in Model 3
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4. A numerical example

Considering the implications of a tendency of multicriteria decision-making, Brugha (2004) used screening,
ordering and choosing phases to find a preference. The solving process of the proposed approach is illustrated
by these three phases as listed below:

(i) The screening phase: the DM specifies upper and lower bounds of attributes to screen out of poor
alternatives.

(ii) The ordering phase: the DM tries to put a preference order on the remaining alternatives.
(a) All criteria values are transformed to the same positive format by subtracting from upper bound,

and then normalized to a scale from 1 to 9.
(b) Use the proposed DEA ranking model (Model 1) to get the superior set of each alternatives.
(c) Apply range reduction model (Model 2) to provide reasonable upper and lower bounds of ri,j, where

ri,j represents a pairwise comparison of Ai over Aj.
(d) Decision makers specify fuzzy preferences based on the support of suggested ranges. Apply the

fuzzy ranking model (Model 3) to get the weights of each criterion.
(e) Calculate the scores of each alternative and get a preference order.
(iii) The choosing phase: the DM makes a choice between two or three close alternatives.

The following example, modified from Harvard Business Review (Hammond et al., 1998), is applied to
illustrate above concepts. The example describes a business problem for renting an office. A decision maker
defines four major objectives to fulfill in selecting his/her office: (i) a short commute time from home to office,
(ii) good access to his clients, (iii) sufficient space, and (iv) low costs. The commuting time is the average time
in minutes needed to travel to work during rush hour. The percentage of his clients within an hour’s drive of
the office is used to measure the access to clients. Office size is measured in square feet, and cost is measured by
monthly rent. The DM hopes to keep monthly cost and commuting time as small as possible and remaining
criteria larger. There are thirty available alternatives.

(i) The screening phase
Suppose the DM sets the upper bounds of monthly cost and commute time to be 2200 and 60, respec-
tively, and the lower bounds of office size and customer access to be 500 and 50%, respectively. Twenty
alternatives are screened out. The remaining 10 alternatives are listed in Table 1.

(ii) The ordering phase
(a) Monthly cost and commute time are transformed to the positive format by subtracting from upper

bound: inexpensiveness instead of costs, convenience instead of commute time. Then, all criteria
values are normalized to a scale from 1 to 9, as listed in Table 2.
Table 1
Original criteria values for renting an office

Alternative Minimization Maximization

Monthly cost ($) Commute time (minutes) Office size (square feet) Customer access (%)

A1 1850 45 800 50
A2 1700 25 700 80
A3 1500 20 500 70
A4 1900 25 950 85
A5 1750 30 700 75
A6 1950 40 950 65
A7 1800 60 850 60
A8 1600 45 1000 50
A9 2200 50 900 75
A10 2000 45 1050 85



Table 2
Transformed criteria values with positive format

Alternative Maximization

Inexpensive Convenience Office size (square feet) Customer access (%)

A1 5.00 4.00 5.36 1.00
A2 6.71 8.00 3.91 7.86
A3 9.00 9.00 1.00 5.57
A4 4.43 8.00 7.55 9.00
A5 6.14 7.00 3.91 6.71
A6 3.86 5.00 7.55 4.43
A7 5.57 1.00 6.09 3.29
A8 7.86 4.00 8.27 1.00
A9 1.00 3.00 6.82 6.71
A10 3.29 4.00 9.00 9.00
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(b) Let M ¼ 1000 and e ¼ 0:1, solving the office-renting example by Model 1 yields the best rank and
the corresponding score of each alternative in the last three columns of Table 3. Taking A1 for
instance, let p ¼ 1, solving Model 1 yields Score1

1 ¼ 5:04. By the proposed model, there are four
alternatives better than A1, that is Supð1Þ ¼ fA2;A4;A5;A8g. The best rank of A1 is 5.
In order to compare the proposed model with conventional DEA models, the optimal score and the
corresponding rank of each alternative by a conventional DEA model (multiplicative CCR model)
are listed in the second and third column of Table 3. Taking A1 for instance, the rank of A1 is 7. The
proposed model can obtain a better rank ðRank1 ¼ 5Þ for alternative A1 than that of conventional
DEA model ðRank1 ¼ 7Þ.

(c) Next, in order to provide reasonable ranges of ri,j, a range reduction model is applied to the exam-
ple. Applying Model 2 to the example yields the upper ðri;jÞ and lower ðri;jÞ bound of ri,j, as listed in
Table 4. For simplicity, only the upper-right parts of the matrix are shown. Each element is divided
into two parts, where upper and lower values indicate the upper and lower bounds, respectively. The
ranges of ri,j are significantly reduced by adding the superior set constraints. Taking r1,2 for instance,
the original range of r1,2 is 1=9 6 r1;2 6 9 because 1 6 Scorei 6 9; 8i. After taking Model 2, the
range of r1,2 is reduced to 0:24 6 r1;2 6 0:98.
In order to help the decision makers specify preferences conveniently, the values of ri,j are trans-
ferred to a discrete numerical rating r0i;j based on the pairwise comparison scale (Saaty, 1980) listed
in Table 5. The reduced upper and lower bounds of ri,j in Table 4 can then be transferred to a cor-
responding matrix in Saaty’s scale in Table 6. These reduced ranges provide reasonable upper and
lower bounds to help the decision maker specify their preferences.
Table 3
Results and comparisons of the office-renting example

Conventional DEA model Proposed DEA model

Maximal score Rank Best rank Score Superior set Sup(k)

A1 5.36 7 5.04 5 {A2,A4,A5,A8}
A2 8.00 2 7.17 1
A3 9.00 1 7.23 1
A4 9.00 1 8.33 1
A5 7.00 4 5.69 2 {A2}
A6 7.55 3 6.02 2 {A4}
A7 6.09 6 5.58 2 {A8}
A8 8.27 2 5.92 1
A9 6.82 5 6.74 3 {A4,A10}
A10 9.00 1 7.40 1



Table 4
The reduced ranges ½ri;j; ri;j� of ri,j

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

A1 1 0.98 3.31 1.00 1.00 1.21 4.00 1.00 4.16 1.43
0.24 0.27 0.22 0.28 0.40 0.70 0.64 0.41 0.31

A2 1 3.38 1.47 1.16 1.75 8.00 4.18 6.13 2.04
0.77 0.56 1.02 0.62 0.77 0.68 0.63 0.48

A3 1 1.91 1.44 2.26 9.00 3.67 7.94 2.66
0.17 0.30 0.18 0.23 0.21 0.19 0.14

A4 1 1.83 1.82 8.00 4.49 4.16 2.00
0.74 1.09 0.85 0.64 1.14 0.86

A5 1 1.59 7.00 3.61 5.59 1.85
0.60 0.76 0.64 0.62 0.47

A6 1 5.00 2.47 3.52 1.25
0.72 0.55 1.00 0.75

A7 1 1.00 4.91 1.56
0.25 0.33 0.25

A8 1 6.38 2.10
0.41 0.31

A9 1 0.76
0.32

A10 1

Table 5
The mapping of ri,j and the pairwise comparison scale for AHP preferences (Saaty, 1980)

Numerical rating Verbal judgments of preferences Value of ri,j

9 Extremely preferred ri;j P 8:5
8 Very strongly to extremely 7:5 6 ri;j < 8:5
7 Very strongly preferred 6:5 6 ri;j < 7:5
6 Strongly to very strongly 5:5 6 ri;j < 6:5
5 Strongly preferred 4:5 6 ri;j < 5:5
4 Moderately to strongly 3:5 6 ri;j < 4:5
3 Moderately preferred 2:5 6 ri;j < 3:5
2 Equally to moderately 1:5 6 ri;j < 2:5
1 Equally preferred 1 6 ri;j < 1:5

Table 6
The reduced ranges of ri,j in Saaty’s scale

Max A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

A1 1 1 3 1 1 1 4 1 4 1
1/4 1/4 1/4 1/4 1/2 1 1/2 1/2 1/3

A2 1 3 1 1 2 8 4 6 2
1 1/2 1 1/2 1 1 1/2 1/2

A3 1 2 1 2 9 4 8 3
1/6 1/3 1/5 1/4 1/5 1/5 1/7

A4 1 2 2 8 4 4 2
1 1 1 1/2 1 1

A5 1 2 7 4 6 2
1/2 1 1/2 1/2 1/2

A6 1 5 2 4 1
1 1/2 1 1

A7 1 1 5 2
1/4 1/3 1/4

A8 1 6 2
1/2 1/3

A9 1 1
1/3

A10 1
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(d) Suppose the decision maker specifies the membership functions as ~r1;4 ¼ 1
4
; 1

3
; 1

2

� �
, ~r4;7 ¼ ð2; 3; 5Þ and

~r2;7 ¼ ð3; 5; 6Þ, Model 3 can be formulated as follows:
Min Obj1�Obj2

Obj1 ¼
X4

k�1

wk � lnðc1;kÞ �
X4

k�1

wk � lnðc4;kÞ � lnðr1;4Þ þ 2� z1;4

 !

þ
X4

k�1

wk � lnðc4;kÞ �
X4

k�1

wk � lnðc7;kÞ � lnðr4;7Þ þ 2� z4;7

 !

þ
X4

k�1

wk � lnðc2;kÞ �
X4

k�1

wk � lnðc7;kÞ � lnðr2;7Þ þ 2� z2;7

 !

Obj2 ¼ lðlnðr1;4ÞÞ þ lðlnðr4;7ÞÞ þ lðlnðr2;7ÞÞ

Subject to l lnðr1;4Þð Þ ¼ 3:48� lnðr1;4Þ � ln
1

4

� �� �
þ ð�2:47� 3:48Þ � lnðr1:4Þ � ln

1

3

� �
þ d1;4

� �
;

lðlnðr4;7ÞÞ ¼ 2:47� ðlnðr4;7Þ � lnð2ÞÞ þ ð�1:96� 2:47Þ � ðlnðr4;7Þ � lnð3Þ þ d4;7Þ;
lðlnðr2;7ÞÞ ¼ 1:96� ðlnðr2;7Þ � lnð3ÞÞ þ ð�5:48� 1:96Þ � ðlnðr2:7Þ � lnð5Þ þ d2;7Þ;

lnðr1;4Þ � ln
1

3

� �
þ d1;4 P 0;

lnðr4;7Þ � lnð3Þ þ d4;7 P 0;

lnðr2;7Þ � lnð5Þ þ d2;7 P 0

d1;4 P 0; d4;7 P 0; d2;7 P 0;

X4

k�1

wk � lnðc1;kÞ �
X4

k�1

wk � lnðc4;kÞ � lnðr1;4Þ þ z1;4

 !
P 0;

X4

k�1

wk � lnðc4;kÞ �
X4

k�1

wk � lnðc7;kÞ � lnðr4;7Þ þ z4;7

 !
P 0;

X4

k�1

wk � lnðc2;kÞ �
X4

k�1

wk � lnðc7;kÞ � lnðr2;7Þ þ z2;7

 !
P 0;

z1;4 P 0; z4;7 P 0; z2;7 P 0;

lnðri;jÞ 6
X4

k¼1

wk � lnðci;kÞ �
X4

k¼1

wk � lnðcj;kÞ 6 lnðri;jÞ 8i ¼ 1; . . . ; n� 1; j ¼ iþ 1; . . . ; n;

lnð1Þ 6
X4

k¼1

wk � lnðci;kÞ 6 lnð9Þ 8i;

Xm

k¼1

wk ¼ 1;

w1; . . . ;wm P 0:
Solving the above program by Lingo software yields a global optimal solution with obj1 ¼ 0:465,
obj2 ¼ 0, w1 ¼ 0:24, w2 ¼ 0:36, w3 ¼ 0, w4 ¼ 0:4, lðlnðr1;4ÞÞ ¼ 1, lðlnðr4;7ÞÞ ¼ 1, lðlnðr2;7ÞÞ ¼ 1,
lnðr1;4Þ ¼ �1:099, lnðr4;7Þ ¼ 1:099, lnðr2;7Þ ¼ 1:609 and d1;4 ¼ d4;7 ¼ d2;7 ¼ 0.
Represented in Saaty’s ratio scale, r1;4 ¼ 1

3
, r4;7 ¼ 3 and r2;7 ¼ 5. The approximation error, obj1, is

equal to 0.463. Obj2 is equal to 3, which implies high fulfillment of the decision maker’s preferences.



Table 7
The final score and rank of each alternative

Score Rank

A1 2.43 9
A2 7.62 1
A3 7.43 2
A4 7.28 3
A5 6.67 4
A6 4.48 6
A7 2.43 9
A8 2.70 8
A9 3.18 7
A10 5.27 5
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(e) Substituting the values of w1, w2, w3, and w4 into Expression (3.1) yields the score and rank of each
alternatives, as listed in Table 7. A2 is the best choice, following by A3, A4, A5, A10, A6, A9 and A8.
A1 and A7 are at the same score and ranked the worst.
(iii) The choosing phase
Since the scores of the top three alternatives A2, A3 and A4 are close to each other, the DM may make a
final choice among these three alternatives.
This office-renting example demonstrates how proposed approach provides reasonable upper and lower
bounds information of preferences based on the concept of DEA. By referring to these ranges, a decision
maker can specify his/her fuzzy preferences partially, and obtain the optimized ranks of alternatives.
5. Concluding remarks

This study proposes a novel ranking method which incorporates fuzzy preferences specified by a decision
maker. Based on a modified DEA model, reasonable upper and lower bounds are provided to assist a decision
maker in articulating related preferences. A goal-programming model with minimal approximation errors and
maximal fulfillment of a decision maker’s preferences is proposed to solve the fuzzy preference problem
directly and efficiently.

A comparison with other ranking methods, such as AHP methods (Saaty, 1977, 1980, etc.) and Fuzzy AHP
methods (Graan, 1980; Chang, 1996; Leung and Cao, 2000; Yu, 2002, etc.), indicates the following advantages
of the proposed method:

(i) The proposed method provides reasonable upper and lower bounds information about specifying pref-
erences, which are not provided by other methods.

(ii) The proposed method can treat incomplete pairwise comparison matrices; while most of the other meth-
ods cannot deal with them.

(iii) The proposed fuzzy ranking method results in a crisp solution directly; however, most of fuzzy AHP
methods require extra defuzzification techniques to obtain such a solution.

Two issues could be studied in the future research. First, to enhance the fuzzy rating of the proposed
method, the fuzzy set gradual membership grid technique (Badiru and Cheung, 2002) can be incorporated
in the proposed fuzzy ranking method. Second, in order to improve some restrictions resulting from linear
programming methods whose solutions are found at corners of combinations of constraints, non-linear or
fuzzy constraints can be applied in the range limits.
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