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一、中文摘要 
 

循序樣式的勘測，是從序列資料庫的序
列中，挖掘出所有具循序關係的項目集。通
常使用者必須指定一最小支持。然而，使用
者通常必須不斷地嘗試各不同的最小支持數
值並觀察勘測結果，經由這種互動式循序樣
式勘測，找到理想的結果。本計畫建構一個
高效率的互動式循序樣式勘測方法。以建立
知識庫的方式，來改善互動式循序樣式探勘
的效率。減少使用者各次探勘所需的執行時
間，並減少整個互動式勘測所需之時間。我
們所設計的資料結構與方法，可以提供有效
率的、符合多使用者需求的、互動式循序樣
式勘測。 

 
關鍵詞：資料探勘、互動式勘測、知識庫 
 
Abstract 
 

The discovery of sequential patterns has 
become a challenging task due to its complexity. 
Essentially, a user would specify a minimum 
support threshold with respect to the database 
to find out the desired patterns. The mining 
process is usually iterative since the user must 
try various thresholds to obtain the satisfactory 
result. In order to minimize the total execution 
time and the response time for each trial, we 
propose a knowledge base assisted algorithm 
for interactive sequence discovery, called KISP. 
KISP constructs a knowledge base 
accumulating the pattern information in 
individual mining, eliminates considerable 

amount of potential patterns to facilitate 
efficient support counting, and speeds up the 
whole process. In addition, we further optimize 
the algorithm by direct generations of the 
reduced candidate sets and concurrent counting 
of variable sized candidates. The conducted 
experiments show that KISP outperforms GSP 
by several orders of magnitudes for interactive 
sequence discovery 

 
Keywords: data mining, Interactive discovery, 

knowledge base 
 
二、緣由與目的 
 

Mining sequential patterns, which finds out 
temporal associations among item-sets in the 
sequence database, is an important issue in data 
mining. A classic application of the problem is 
the market basket analysis whose database 
contains purchase records, where each record is 
an ordered sequence of itemsets (sets of items) 
bought by a customer. The objective is to 
discover the itemsets in future purchase after 
certain itemsets were bought. The mining 
technique can be applied to various domains 
such as discovering the relationships between 
the symptoms and certain diseases in medical 
applications. In comparison to the mining of 
association rules [3], sequential pattern mining 
is more complicated because not only the 
frequent itemsets but also the temporal 
relationships must be found. 

The mining process is very difficult and 
time-consuming because patterns could be 
formed by any permutation of itemsets formed 
by any combination of possible items in the 
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database. In order to distinguish the interesting 
patterns, a user must supply a minimum support 
threshold (abbreviated minsup) for the mining. 
The result of mining finds out the set of 
patterns having supports greater than or equal 
to the minsup. The support of a pattern is the 
percentage of sequences (in the database) 
containing the pattern. The discovered patterns 
are called sequential patterns or frequent 
sequences. Most approaches focused on 
minimizing the search space of potential 
sequential patterns (called candidates), or on 
minimizing the required disk I/O due to the 
multiple database scanning. All these 
approaches discover the patterns by directly 
executing the mining algorithms once a minsup 
is specified. 

However, the mining process is typically 
iterative and interactive since a user may 
specify a minsup value that results in too many 
or too few patterns. Usually, the user must try 
various minsups until the result is satisfactory. 
Nevertheless, most approaches are not designed 
to deal with repeated mining under such 
circumstance so that each minsup invokes a 
re-mining from scratch. Some approaches 
solved the interactive problem by 
pre-processing using an assumed least minsup. 
Nevertheless, the lengthy pre-processing has to 
be executed again if a user supplies a minsup 
below the assumed least value. 

Therefore, we propose a simple approach, 
called KISP, to improve the efficiency of 
sequential pattern discovery with changing 
supports. KISP utilizes the information 
obtained from prior mining processes, and 
generates a knowledge base (abbreviated KB) 
for further queries about sequential patterns of 
various minsups. When the results cannot be 
directly derived from the knowledge base, KISP 
incorporates KB into a fast sequence discovery 
by eliminating the candidates existing in KB 
before support counting. Unlike those 
approaches assuming a least minsup for 
pre-processing before iterative mining, KISP 
accepts any minsup value and has no difficulty 
in mining huge databases even with a small 
main memory. The conducted experiments on 
well-known synthetic data show that KISP 
effectively improves the interactive mining 

performance. 
  
三、文獻回顧 
 

The problem of interactive association 
discovery was addressed in [1]. The method in 
[1] preprocesses the data in the transactional 
database, and stores frequent itemsets in an 
adjacency lattice. Online repeated queries about 
association rules are answered by graph 
theoretic searching on the lattice.  

Similarly, a knowledge cache is used for 
interactive association discovery in [9]. The 
knowledge cache contains frequent itemsets and the 
non-frequent itemsets, if memory space is available, that 
have been discovered while processing other queries. 
The study [9] indicated that their benefit replacement 
algorithm is the best caching algorithm.  

Although on-line association discovery [1, 5, 9, 10] is 
close to our problem, these approaches aim to 
interactively find frequent itemsets rather than frequent 
sequences, which is more complicated. One related work 
of interactive sequence mining extended the SPADE 
algorithm [16] into the ISM (Incremental Sequence 
Mining) algorithm for incremental and interactive 
sequence mining [11]. All queries are 
performed on a pre-processed in-memory data 
structure, the Increment Sequence Lattice (ISL). 
Therefore, A ‘small enough’ minsup must be 
pre-selected to apply SPADE for pre-processing 
and saving the results in ISL. Nevertheless, if a 
query involves a threshold smaller than the 
pre-selected minsup, another (more) lengthy 
mining process must be performed to generate a 
new ISL for the new query. Moreover, as 
described in [11], the ISM might encounter 
memory problem if the number of the 
potentially frequent patterns is too large.  
Without any assumption on the minsup value 
and on the required memory, the proposed 
algorithm speeds up interactive sequence 
discovery by using the acquired information with 
optimizations like direct candidate-generation and 
concurrent counting. 
 
四、結果與討論 
 
  Fig. 1 outlines the KISP algorithm. We 
further optimized KISP by Theorem 1, which is 
used to generate the new-candidates in pass k 
(denoted by Xk') directly. Theorem 1. Xk' = 
(Sk-1[KB.base]  Nk-1[minsup])  (Nk-1[minsup] 
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 Nk-1[minsup]). That is, Xk' is the union of the 
two sets; one obtained from joining the 
frequent (k-1)-sequences in KB with the new 
frequent (k-1)-sequences, the other obtained 
from self-joining the new frequent 
(k-1)-sequences. The concurrent support 
counting technique further minimizes the 
number of database scanning required by 
counting variable sized candidates concurrently 
in pass k 

The relative performance of KISP and GSP 
is described below. Take minsup = 0.75% for 
example, the execution time ratio of GSP to 
KISP is 2.1 times. The time saved by KISP 
resulted from the reduced number of 
candidates—GSP counted 2.3 times the number 
of candidates. KISP exhibits excellent mining 
capability for query intensive applications. As 
we increased the number of queries from 3 to 
11, the average execution time (also the time 
required for posterior queries) decreased from 
1763 seconds to 514 seconds. 

In the experiments with concurrent 
optimization, the number of database scanning 
reduced by concurrent support counting is 6, 
and the reduced execution time is 94 seconds 
for the mining with minsup=0.5%. Most scans 
were combined in pass three so that the total 
number of passes and the total execution times 
were reduced. When users need to find the 
appropriate set of patterns by reducing the 
number of patterns found in a query, the next 
specified minsup would be greater than the 
counting base of KB (KB.base). In the next 
experiment, all KB.bases of the KBs were 0.5%, 
and 100 minsups ranging from 0.5% to 2.5% 
were randomly selected. The mining results are 
all available in very short time with average 
execution time 4.3 seconds and maximum 
execution time 22 seconds. For most queries, 
the execution time of KISP is several orders of 
magnitude faster than GSP, which always 
re-mines from scratch.  

In the scale-up experiments, the total 
number of customers was increased from 100K 
to 1000K, running the same series of minsup 
(2.5% down to 0.5%). Since KISP retrieves 
merely Sk-1[KB.base] (i.e. frequent 
(k-1)-sequences in KB) for generating candidate 
k-sequences, even without large memory, KISP 

may efficiently discover patterns in large 
databases with KB. The execution time of KISP 
increases linearly as the database size increases.  

 
五、計畫成果自評 
 

The problem of interactive sequence 
mining is extensively studied in the project. 
The result is a satisfactory accomplishment, the 
KISP algorithm. The comprehensive 
experiments also show that the proposed 
algorithm outperforms current state-of-the-art 
algorithm and can be used to improve the 
mining efficiency of interactive sequence 
mining. We summarize this project in a paper, 
which is accepted in the HICSS-36 conference. 
This also confirms the project is successful. 
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Algorithm  KISP (DB, KB, minsup)
Input: DB = the database of data sequences; minsup = user specified minimum support ;
    KB = knowledge base having the supports of all the candidates in prior minings
Output : S[minsup] = sequential patterns with respect to minsup; KB = (new) knowledge base

// Let x.sup be the support of a candidate x , Xk[minsup] be the set of candidate k-sequence in DB with
// respect to minsup, and KB.base be the counting base (the smallest minsup used) in constructing the KB
1)  if KB =  then KB = {x and x.sup,  x  X1} ;
2)  S[minsup] = {x| xKB  x.sup  minsup} ; // obtain valid sequential patterns from knowledge base
3)  if  minsup < KB.base  then // mine new patterns and accumulate new knowledge
4)     k = 2 ;
5)     generate Xk [minsup] from the frequent (k-1)-sequences in S[minsup] ;
6)     Xk'= Xk [minsup] - {x| x  KB} ; // eliminate those candidate k-sequences in KB
7)     while Xk'   do // there exist candidate k-sequences, obtains their supports
8)        forall data sequences ds in database DB do
9)           for each candidate x  Xk' do
10)             increase the support of x if x is contained in ds ;
11)         endfor
12)      endfor
13)      KB = KB  {x and x.sup,  x  Xk'} ; // collect new candidates and their supports
14)      S[minsup] = S[minsup]  {x | x.sup  minsup   x  Xk'} ; // collect new patterns from Xk'
15)      k = k+1 ;
16)      generate Xk [minsup] from the frequent (k-1)-sequences in S[minsup] ; 
17)      Xk'= Xk [minsup] - {x| x  KB} ; // the reduced set eliminates candidate k-sequences in KB
18)   endwhile
19)   KB.base = minsup ; // update the counting base of KB
20)endif

 
Fig. 1. Algorithm KISP 


