
 1

行政院國家科學委員會補助專題研究計畫成果報告
※※※※※※※※※※※※※※※※※※※※※※※※※※
※ ※

※ 互動式勘測大型資料庫中循序樣式之研究 ※
※ ※
※※※※※※※※※※※※※※※※※※※※※※※※※

計畫類別：■個別型計畫 □整合型計畫

計畫編號：NSC 90-2213-E-009-078

執行期間： 90 年 8 月 1 日至 91 年 7 月 31 日

主持人：李素瑛 國立交通大學資訊工程學系

計畫參與人員：林明言 國立交通大學資訊工程學系

本成果報告包括以下應繳交之附件：

□赴國外出差或研習心得報告一份
□赴大陸地區出差或研習心得報告一份
□出席國際學術會議心得報告及發表之論文各一份
□國際合作研究計畫國外研究報告書一份

執行單位：國立交通大學資訊工程學系

中 華 民 國 91 年 10 月 30

 2

行政院國家科學委員會專題研究計畫成果報告
互動式勘測大型資料庫中循序樣式之研究

Interactive Discovery of Sequential Patterns in Large
Databases

計畫編號：NSC 90-2213-E-009-078
執行期限：90 年 8 月 1 日至 91 年 7 月 31 日

主持人：李素瑛 國立交通大學資訊工程學系

計畫參與人員：林明言 國立交通大學資訊工程學系

一、中文摘要

循序樣式的勘測，是從序列資料庫的序
列中，挖掘出所有具循序關係的項目集。通
常使用者必須指定一最小支持。然而，使用
者通常必須不斷地嘗試各不同的最小支持數
值並觀察勘測結果，經由這種互動式循序樣
式勘測，找到理想的結果。本計畫建構一個
高效率的互動式循序樣式勘測方法。以建立
知識庫的方式，來改善互動式循序樣式探勘
的效率。減少使用者各次探勘所需的執行時
間，並減少整個互動式勘測所需之時間。我
們所設計的資料結構與方法，可以提供有效
率的、符合多使用者需求的、互動式循序樣
式勘測。

關鍵詞：資料探勘、互動式勘測、知識庫

Abstract

The discovery of sequential patterns has
become a challenging task due to its complexity.
Essentially, a user would specify a minimum
support threshold with respect to the database
to find out the desired patterns. The mining
process is usually iterative since the user must
try various thresholds to obtain the satisfactory
result. In order to minimize the total execution
time and the response time for each trial, we
propose a knowledge base assisted algorithm
for interactive sequence discovery, called KISP.
KISP constructs a knowledge base
accumulating the pattern information in
individual mining, eliminates considerable

amount of potential patterns to facilitate
efficient support counting, and speeds up the
whole process. In addition, we further optimize
the algorithm by direct generations of the
reduced candidate sets and concurrent counting
of variable sized candidates. The conducted
experiments show that KISP outperforms GSP
by several orders of magnitudes for interactive
sequence discovery

Keywords: data mining, Interactive discovery,

knowledge base

二、緣由與目的

Mining sequential patterns, which finds out
temporal associations among item-sets in the
sequence database, is an important issue in data
mining. A classic application of the problem is
the market basket analysis whose database
contains purchase records, where each record is
an ordered sequence of itemsets (sets of items)
bought by a customer. The objective is to
discover the itemsets in future purchase after
certain itemsets were bought. The mining
technique can be applied to various domains
such as discovering the relationships between
the symptoms and certain diseases in medical
applications. In comparison to the mining of
association rules [3], sequential pattern mining
is more complicated because not only the
frequent itemsets but also the temporal
relationships must be found.

The mining process is very difficult and
time-consuming because patterns could be
formed by any permutation of itemsets formed
by any combination of possible items in the

 3

database. In order to distinguish the interesting
patterns, a user must supply a minimum support
threshold (abbreviated minsup) for the mining.
The result of mining finds out the set of
patterns having supports greater than or equal
to the minsup. The support of a pattern is the
percentage of sequences (in the database)
containing the pattern. The discovered patterns
are called sequential patterns or frequent
sequences. Most approaches focused on
minimizing the search space of potential
sequential patterns (called candidates), or on
minimizing the required disk I/O due to the
multiple database scanning. All these
approaches discover the patterns by directly
executing the mining algorithms once a minsup
is specified.

However, the mining process is typically
iterative and interactive since a user may
specify a minsup value that results in too many
or too few patterns. Usually, the user must try
various minsups until the result is satisfactory.
Nevertheless, most approaches are not designed
to deal with repeated mining under such
circumstance so that each minsup invokes a
re-mining from scratch. Some approaches
solved the interactive problem by
pre-processing using an assumed least minsup.
Nevertheless, the lengthy pre-processing has to
be executed again if a user supplies a minsup
below the assumed least value.

Therefore, we propose a simple approach,
called KISP, to improve the efficiency of
sequential pattern discovery with changing
supports. KISP utilizes the information
obtained from prior mining processes, and
generates a knowledge base (abbreviated KB)
for further queries about sequential patterns of
various minsups. When the results cannot be
directly derived from the knowledge base, KISP
incorporates KB into a fast sequence discovery
by eliminating the candidates existing in KB
before support counting. Unlike those
approaches assuming a least minsup for
pre-processing before iterative mining, KISP
accepts any minsup value and has no difficulty
in mining huge databases even with a small
main memory. The conducted experiments on
well-known synthetic data show that KISP
effectively improves the interactive mining

performance.

三、文獻回顧

The problem of interactive association
discovery was addressed in [1]. The method in
[1] preprocesses the data in the transactional
database, and stores frequent itemsets in an
adjacency lattice. Online repeated queries about
association rules are answered by graph
theoretic searching on the lattice.

Similarly, a knowledge cache is used for
interactive association discovery in [9]. The
knowledge cache contains frequent itemsets and the
non-frequent itemsets, if memory space is available, that
have been discovered while processing other queries.
The study [9] indicated that their benefit replacement
algorithm is the best caching algorithm.

Although on-line association discovery [1, 5, 9, 10] is
close to our problem, these approaches aim to
interactively find frequent itemsets rather than frequent
sequences, which is more complicated. One related work
of interactive sequence mining extended the SPADE
algorithm [16] into the ISM (Incremental Sequence
Mining) algorithm for incremental and interactive
sequence mining [11]. All queries are
performed on a pre-processed in-memory data
structure, the Increment Sequence Lattice (ISL).
Therefore, A ‘small enough’ minsup must be
pre-selected to apply SPADE for pre-processing
and saving the results in ISL. Nevertheless, if a
query involves a threshold smaller than the
pre-selected minsup, another (more) lengthy
mining process must be performed to generate a
new ISL for the new query. Moreover, as
described in [11], the ISM might encounter
memory problem if the number of the
potentially frequent patterns is too large.
Without any assumption on the minsup value
and on the required memory, the proposed
algorithm speeds up interactive sequence
discovery by using the acquired information with
optimizations like direct candidate-generation and
concurrent counting.

四、結果與討論

 Fig. 1 outlines the KISP algorithm. We
further optimized KISP by Theorem 1, which is
used to generate the new-candidates in pass k
(denoted by Xk') directly. Theorem 1. Xk' =
(Sk-1[KB.base]  Nk-1[minsup])  (Nk-1[minsup]

 4

 Nk-1[minsup]). That is, Xk' is the union of the
two sets; one obtained from joining the
frequent (k-1)-sequences in KB with the new
frequent (k-1)-sequences, the other obtained
from self-joining the new frequent
(k-1)-sequences. The concurrent support
counting technique further minimizes the
number of database scanning required by
counting variable sized candidates concurrently
in pass k

The relative performance of KISP and GSP
is described below. Take minsup = 0.75% for
example, the execution time ratio of GSP to
KISP is 2.1 times. The time saved by KISP
resulted from the reduced number of
candidates—GSP counted 2.3 times the number
of candidates. KISP exhibits excellent mining
capability for query intensive applications. As
we increased the number of queries from 3 to
11, the average execution time (also the time
required for posterior queries) decreased from
1763 seconds to 514 seconds.

In the experiments with concurrent
optimization, the number of database scanning
reduced by concurrent support counting is 6,
and the reduced execution time is 94 seconds
for the mining with minsup=0.5%. Most scans
were combined in pass three so that the total
number of passes and the total execution times
were reduced. When users need to find the
appropriate set of patterns by reducing the
number of patterns found in a query, the next
specified minsup would be greater than the
counting base of KB (KB.base). In the next
experiment, all KB.bases of the KBs were 0.5%,
and 100 minsups ranging from 0.5% to 2.5%
were randomly selected. The mining results are
all available in very short time with average
execution time 4.3 seconds and maximum
execution time 22 seconds. For most queries,
the execution time of KISP is several orders of
magnitude faster than GSP, which always
re-mines from scratch.

In the scale-up experiments, the total
number of customers was increased from 100K
to 1000K, running the same series of minsup
(2.5% down to 0.5%). Since KISP retrieves
merely Sk-1[KB.base] (i.e. frequent
(k-1)-sequences in KB) for generating candidate
k-sequences, even without large memory, KISP

may efficiently discover patterns in large
databases with KB. The execution time of KISP
increases linearly as the database size increases.

五、計畫成果自評

The problem of interactive sequence
mining is extensively studied in the project.
The result is a satisfactory accomplishment, the
KISP algorithm. The comprehensive
experiments also show that the proposed
algorithm outperforms current state-of-the-art
algorithm and can be used to improve the
mining efficiency of interactive sequence
mining. We summarize this project in a paper,
which is accepted in the HICSS-36 conference.
This also confirms the project is successful.

六、參考文獻

[1] C. C. Aggarwal and P. S. Yu, “Online Generation of
Association Rules,” Proceedings of the 14th
International Conference on Data Engineering, Orlando,
Florida, USA, Feb. 1998, pp. 402-411.
[2] R. Agrawal and R. Srikant, “Mining Sequential
Patterns,” Proceedings of the 11th International
Conference on Data Engineering, Taipei, Taiwan, 1995,
pp. 3-14.
[3] R. Agrawal and R. Srikant, “Fast Algorithms for
Mining Association Rules,” Proceedings of the 20th
International Conference on Very Large Data Bases,
Santiago, Chile, Sep. 1994, pp. 487-499.
[4] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal
and M.-C. Hsu, “FreeSpan: Frequent pattern-projected
sequential pattern mining,” Proceedings of the 6th ACM
SIGKDD international conference on Knowledge
discovery and data mining, 2000, pp. 355-359.
[5] C. Hidber, Online Association Rule Mining,
Technical Report UCB/CSD-98-1004, U. C. at Berkeley,
1998.
[6] M. Y. Lin and S. Y. Lee, “Incremental Update on
Sequential Patterns in Large Databases,” Proceedings of
10th IEEE International Conference on Tools with
Artificial Intelligence, 1998, pp. 24-31.
[7] H. Mannila, H. Toivonen and A. I. Verkamo,
“Discovery of Frequent Episodes in Event Sequences,”
Data Mining and Knowledge Discovery, Vol. 1, Issue 3,
1997, pp. 259-289.
[8] A. M. Mueller, Fast Sequential and Parallel
Algorithm for Association Rule Mining: A Comparison,
Technical report CS-TR-3515, University of Maryland,
1995.
[9] B. Nag, P. M. Deshpande and D. J. DeWitt, “Using a
Knowledge Cache for Interactive Discovery of
Association Rules,” Proceedings of the 1999 SIGKDD
Conference, San Diego, California, Aug. 1999, pp.

 5

244-253.
[10] S. Parthasarathy, S. Dwarkadas and M. Ogihara,
“Active Mining in a Distributed Setting,” Proceedings of
Workshop on Large-Scale Parallel KDD Systems, San
Diego, CA, USA, Aug. 1999, pp. 65-85.
[11] S. Parthasarathy, M. J. Zaki, M. Ogihara, and S.
Dwarkadas, “Incremental and interactive sequence
mining,” Proceedings of the 8th International
Conference on Information and Knowledge Management,
Kansas, Missouri, USA, Nov. 1999, pp. 251-258.
[12] J. Pei, J. Han, H. Pinto, Q. Chen, U. Dayal and M.-C.
Hsu, “PrefixSpan: Mining Sequential Patterns Efficiently
by Prefix-projected Pattern Growth,” Proceedings of
2001 International Conference on Data Engineering,
2001, pp. 215-224.
[13] T. Shintani and M. Kitsuregawa, “Mining

Algorithms for Sequential Patterns in Parallel: Hash
Based Approach,” Proceedings of the Second
Pacific–Asia Conference on Knowledge Discovery and
Data mining, 1998, pp. 283-294.
[14] R. Srikant and R. Agrawal, “Mining Sequential
Patterns: Generalizations and Performance
Improvements,” Proceedings of the 5th International
Conference on Extending Database Technology,
Avignon, France, 1996, pp. 3-17.
[15] K. Wang, “Discovering Patterns from Large and
Dynamic Sequential Data,” Journal of Intelligent
Information Systems, Vol. 9, No. 1, 1997, pp. 33-56.
[16] M. J. Zaki, “Efficient Enumeration of Frequent
Sequences,” Proceedings of the 7th International
Conference on Information and Knowledge Management,
Washington, USA, Nov.1998, pp. 68-75.

Algorithm KISP (DB, KB, minsup)
Input: DB = the database of data sequences; minsup = user specified minimum support ;
 KB = knowledge base having the supports of all the candidates in prior minings
Output : S[minsup] = sequential patterns with respect to minsup; KB = (new) knowledge base

// Let x.sup be the support of a candidate x , Xk[minsup] be the set of candidate k-sequence in DB with
// respect to minsup, and KB.base be the counting base (the smallest minsup used) in constructing the KB
1) if KB =  then KB = {x and x.sup,  x  X1} ;
2) S[minsup] = {x| xKB  x.sup  minsup} ; // obtain valid sequential patterns from knowledge base
3) if minsup < KB.base then // mine new patterns and accumulate new knowledge
4) k = 2 ;
5) generate Xk [minsup] from the frequent (k-1)-sequences in S[minsup] ;
6) Xk'= Xk [minsup] - {x| x  KB} ; // eliminate those candidate k-sequences in KB
7) while Xk'   do // there exist candidate k-sequences, obtains their supports
8) forall data sequences ds in database DB do
9) for each candidate x  Xk' do
10) increase the support of x if x is contained in ds ;
11) endfor
12) endfor
13) KB = KB  {x and x.sup,  x  Xk'} ; // collect new candidates and their supports
14) S[minsup] = S[minsup]  {x | x.sup  minsup  x  Xk'} ; // collect new patterns from Xk'
15) k = k+1 ;
16) generate Xk [minsup] from the frequent (k-1)-sequences in S[minsup] ;
17) Xk'= Xk [minsup] - {x| x  KB} ; // the reduced set eliminates candidate k-sequences in KB
18) endwhile
19) KB.base = minsup ; // update the counting base of KB
20)endif

Fig. 1. Algorithm KISP

