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Abstract. Let K be a compact semi-simple Lie group, and let N be a max-
imal unipotent subgroup of the complexified group KC. In this paper, we
classify all the K-invariant Kaehler structures on KC/N . For each Kaehler
structure ω, let L be the line bundle with connection whose curvature is ω. We
then study the holomorphic sections of L, which constitute a K-representation
space.

1. Introduction

Let K be a compact semi-simple Lie group, let G = KC be its complexification,
and let KAN be an Iwasawa decomposition of G. Since G and N are complex, the
space X = G/N is a complex homogeneous space, with left K action. We denote by
T the centralizer of A in K; T is a Cartan subgroup of K here. Since T normalizes
N , it acts on X on the right.

Given a suitable K-invariant symplectic structure ω on X , the process of geomet-
ric quantization [5] converts it into a K-representation space V . A desired property
of V is that every irreducible K-representation occurs with multiplicity one (termed
a model in [3], if V is in addition unitary). Several years ago, A.S. Schwarz sug-
gested the space X = G/N as a candidate for this process [6], and this was worked
out in [1] for K × T -invariant Kaehler structures on X .

In this paper, we classify all the K-invariant Kaehler structures on X . For each
K-invariant Kaehler structure, we study its associated line bundle whose holomor-
phic sections constitute the K-representation space V .

Let H = TA = TC (which is a Cartan subgroup of G), with Lie algebra h. Let
n be the rank of G, and denote by λ1, ..., λn ∈ h∗ the positive simple roots. For
each positive simple root λj , let χj : H −→ C∗ be the character that satisfies
χj(exp v) = expλj(v). We say that a differential form β transforms by χj if R∗tβ =
χj(t)β, where t ∈ T and Rt is the right T action. We shall prove

Theorem I. Every K-invariant Kaehler structure on X can be uniquely written as

ω =
√
−1∂∂̄F +

n∑
1

dβj ,
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where
√
−1∂∂̄F is a K×T -invariant Kaehler structure; each βj is K-invariant and

transforms by χj under the right T action.

Since the K × T -invariant component
√
−1∂∂̄F has been described carefully in

[1], this theorem completely classifies all the K-invariant Kaehler structures on X .
Observe that ω is K × T -invariant if and only if the component

∑
dβj vanishes.

We shall see in the next theorem that this is in fact the desired property to perform
geometric quantization.

Let ω be a K-invariant Kaehler structure on X . By Theorem I, ω is exact, hence
is in particular integral. Therefore, we can consider the complex line bundle L on X
whose Chern class is [ω] = 0. It is equipped with a connection ∇ whose curvature
is ω. Let k be the Lie algebra of K. For ξ ∈ k, we denote by ξ] the vector field on
X induced by the K action. There is a canonical representation of k on the smooth
sections of L, given by the operators

∇ξ] +
√
−1φξ, ξ ∈ k,

where φ is the moment map associated to the K action on (X,ω) ([2], [5]). We shall
assume that this representation is K-invariant; namely, it lifts to a holomorphic K
action on L. Thus O(L), the space of holomorphic sections of L, becomes a K-
representation space. The following theorem asserts that O(L) suits the purpose
of geometric quantization best when ω is K × T -invariant:

Theorem II. The following are equivalent:
(i) ω is K × T -invariant ;
(ii) ω has a potential function ;
(iii) every irreducible K-representation occurs in O(L) with multiplicity one.

2. K-invariant Kaehler structures on KC/N

In this section, we prove Theorem I, which classifies all the K-invariant Kaehler
structures onX = KC/N . Let ∂, ∂̄ be the Dolbeault operators onX , and Z0,1

K (X,C)
be the space of K-invariant ∂̄-closed (0,1)-forms on X . We shall see that every K-
invariant Kaehler structure ω on X can be written as

ω = ∂α+ ∂α,

where α ∈ Z0,1
K (X,C). Therefore, we now develop some machineries to calculate

Z0,1
K (X,C).
Let g, k, a, n, t be the Lie algebras ofG,K,A,N, T respectively. Let n = rank G =

dimCH. Let λ±1, ..., λ±m ∈ ∆ be the root system of g, where λ1, ..., λn are positive
simple roots, and n ≤ m. Let

{ξj , ξ−j} ⊂ g/h , ξ±j ∈ g±λj(2.1)

be a Weyl basis ([4], p. 421) of g/h. Then

ζj = ξj − ξ−j , γj =
√
−1(ξj + ξ−j) ∈ k ; j = 1, ...,m.(2.2)

In fact, under the image of k −→ k/t, {ζj , γj} form a basis of k/t. By Iwasawa,
g/n ∼= k + a, which induces an almost complex structure J on k + a. Then

Jζj = γj ; Jγj = −ζj .(2.3)

The Killing form identifies these vectors with ζ∗j , γ
∗
j ∈ k∗. Consider

qj = ζj +
√
−1γj ∈ ∧0,1(k + a) , vj = ζ∗j −

√
−1γ∗j ∈ ∧0,1(k + a)∗ ,(2.4)
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for j = 1, ...,m. By Iwasawa, X = G/N = KA. Therefore, we may identify
∧0,1(k+a) and ∧0,1(k+a)∗ with the K×A-invariant anti-holomorphic vector fields
and complex (0,1)-forms on X .

Let ξ ∈ t, and ad∗ξ : k∗ −→ k∗. Then

ad∗ξζ
∗
j = ad∗ξ(ξ

∗
j − ξ∗−j)

= λj(ξ)ξ
∗
j + λj(ξ)ξ

∗
−j

= −
√
−1λj(ξ)γ

∗
j ,

(2.5)

and

ad∗ξγ
∗
j = ad∗ξ

√
−1(ξ∗j + ξ∗−j)

=
√
−1(λj(ξ)ξ

∗
j − λj(ξ)ξ∗−j)

=
√
−1λj(ξ)ζ

∗
j .

(2.6)

Note that, in (2.5) and (2.6), the root λj satisfies
√
−1λj(ξ) ∈ R for ξ ∈ t.

For ξ ∈ t, the action of ad∗ξ on ∧0,1(g)∗ preserves ∧0,1(n)∗. Therefore ad∗ξ acts

on ∧0,1(g/n)∗ = ∧0,1(k + a)∗. Let vj ∈ ∧0,1(k + a)∗ be the (0,1)-form given in (2.4).
Then (2.5) and (2.6) give

ad∗ξvj = λj(ξ)vj .(2.7)

We now go from Lie algebra representation to group representation; so consider

Ad∗t : ∧0,1(k + a)∗ −→ ∧0,1(k + a)∗,

for t ∈ T . Also, for each root λj , we define the character χj : T → C∗ which
satisfies

χj(exp ξ) = exp(λj , ξ)(2.8)

for all ξ ∈ t. Then (2.7) implies that

Ad∗t vj = χj(t)vj(2.9)

for all t ∈ T .
Since T normalizes N , there is a right T action on X = G/N , which induces T

representation on the K × A-invariant (0,1)-forms ∧0,1(k + a)∗. For t ∈ T , let Lt
and Rt denote the left and right T actions on X respectively. Then, by (2.9),

R∗t vj = R∗tL
∗
tvj

= Ad∗t vj
= χj(t)vj .

(2.10)

Let {ζj , γj} be the vectors in (2.2), and let

V = ⊕m1 R(ζj , γj) ⊂ k.(2.11)

Then (2.3) says that V is preserved by the almost complex structure on k+a = g/n.
In fact,

k + a = V ⊕ h(2.12)

is a decomposition of k + a into complex vector subspaces. This decomposition is
orthogonal with respect to the Killing form on k+a = g/n. It induces the inclusions

∧0,k(V )∗,∧0,k(h)∗ ⊂ ∧0,k(k + a)∗,
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where ∧0,k(V )∗ annihilates ∧0,k(h) and ∧0,k(h)∗ annihilates ∧0,k(V ). Note that the
(0,k)-forms in ∧0,k(h)∗ are K × T -invariant: If ξ ∈ ∧0,k(h)∗, then ad∗vξ = 0 for all
v ∈ h. Hence Ad∗t ξ = ξ for all t ∈ T . It follows that

R∗t ξ = R∗tL
∗
t ξ = Ad∗t ξ = ξ(2.13)

for all t ∈ T .
Let v1, ..., vm be the K ×A-invariant (0,1)-forms in (2.4). We want to consider

the K × A-invariant (0,2)-forms {∂̄vj} ⊂ ∧0,2(k + a)∗. Fix j ∈ {1, ...,m}, and the
general expression for ∂̄vj is

∂̄vj = w +
∑
k

uk ∧ vk +
∑
r<s

brsvr ∧ vs,(2.14)

for some w ∈ ∧0,2(h)∗, uk ∈ ∧0,1(h)∗, brs ∈ C. The following lemma describes
w, uk and brs. Recall that λ1, ..., λn are simple, among the positive roots λ1, ..., λm.
Then,

Lemma 2.1. In (2.14), w = 0; and uk = 0 if and only if k 6= j. Finally, all brs
vanish if and only if j = 1, ..., n.

Proof. In view of (2.10),

R∗t ∂̄vj = ∂̄R∗t vj = χj(t)∂̄vj

for all t ∈ T . Therefore, we also need RHS of (2.14) to transform by χj under the
right T action. But

R∗t (uk ∧ vk) = R∗tuk ∧R∗t vk
= L∗t−1uk ∧ χk(t)vk
= χk(t)uk ∧ vk,

(2.15)

and

R∗t (vr ∧ vs) = R∗t vr ∧R∗t vs = χr(t)χs(t)vr ∧ vs.(2.16)

Since the non-zero elements of {w, uk ∧ vk, vr ∧ vs} ⊂ ∧0,2(k + a)∗ are linearly
independent, the vectors that do not transform by χj have to vanish. Therefore,
(2.13) and (2.15) imply that

w = 0 , and uk = 0 if k 6= j.

However, uj 6= 0 in (2.14): Let qj be the vector in (2.4). By arguments similar to
the ones in (2.5) and (2.6), we see that [ξ, qj ] = λj(ξ)qj for all ξ ∈ ∧0,1(h). Choose
ξ such that λj(ξ) 6= 0. Then

0 6= λj(ξ)(vj , qj) = (vj , [ξ, qj ])
= (∂̄vj , ξ ∧ qj).

Since ∧0,1(V )∗ annihilates ∧0,1(h), (w, ξ ∧ qj) = (brsvr ∧ vs, ξ ∧ qj) = 0. It follows
that (uj ∧ vj , ξ ∧ qj) 6= 0, i.e. uj 6= 0.

We next compute the brs, and show that they all vanish if and only if j = 1, ..., n.
If j = 1, ..., n, then λj is simple so χrχs 6= χj for all r, s ∈ {1, ...,m}. Hence by
(2.16), all brs = 0.

On the other hand, consider j = n + 1, ...,m, so that λj is not simple. There
exist some roots λk, λl such that λk + λl = λj , and ξk, ξl, ξj be the eigenvectors in
(2.1) such that

[ξk, ξl] = c ξj ,(2.17)
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where c ∈ C is non-zero. Let pk, pl, vj be the K × A-invariant vector fields and
differential form given in (2.4). With some computations following (2.4), we can
conclude from (2.17) that

(vj , [pk, pl]) 6= 0.

But (∂̄vj , pk∧pl) = (vj , [pk, pl]), which means that bkl 6= 0 in (2.14). This completes
the proof of the lemma.

Let Ω0,1
K (X,C) be the space of K-invariant (0,1)-forms on X . Since we identify

∧0,1(k + a)∗ with the K ×A-invariant (0,1)-forms on X , it follows that

Ω0,1
K (X,C) = C∞K (X,C)⊗ ∧0,1(k + a)∗.

However, by Iwasawa X = KA, so a K-invariant function on X is simply a function
on A. Therefore,

Ω0,1
K (X,C) = C∞(A,C)⊗ ∧0,1(k + a)∗.(2.18)

We are interested in

Z0,1
K (X,C) = {α ∈ Ω0,1

K (X,C) ; ∂̄α = 0}.
For all positive simple roots λ1, ..., λn with their characters χj defined in (2.8), let

Z0,1
K,λj

(X,C) = {α ∈ Z0,1
K (X,C) ; R∗tα = χj(t)α for all t ∈ T}.

Similarly, let Z0,1
KT (X,C) denote the elements in Z0,1

K (X,C) that are invariant under
the right T action. Then

Proposition 2.2. (i) For every positive simple root λj, Z
0,1
K,λj

(X,C) is one

dimensional ;
(ii) Z0,1

K (X,C) = Z0,1
KT (X,C)⊕ (⊕n1Z

0,1
K,λj

(X,C)).

Proof. Let α ∈ Ω0,1
K (X,C). By (2.18), we have

α = w +
m∑
1

fjvj ,(2.19)

where w ∈ C∞(A,C)⊗ ∧0,1(h)∗, fj ∈ C∞(A,C), and vj ∈ ∧0,1(V )∗ are the (0,1)-
forms in (2.4).

Clearly C∞(A,C) is K × T -invariant. It follows from (2.13) that w is K × T -
invariant, and from (2.10) that each fjvj transforms by χj under the right T action.

Since R∗t commutes with ∂̄,

∂̄w ∈ Ω0,2
KT (X,C) , ∂̄(fjvj) ∈ Ω0,2

K,λj
(X,C)

for all j = 1, ...,m. Therefore, in (2.19), ∂̄α = 0 if and only if ∂̄w = ∂̄(f1v1) =
... = ∂̄(fmvm) = 0; so we can investigate these components separately. Clearly if

∂̄α = 0, then w ∈ Z0,1
KT (X,C).

Suppose that ∂̄(fjvj) = 0, for j = 1, ..., n. By Lemma 2.1, ∂̄vj = uj ∧ vj , for
some uj ∈ ∧0,1(h)∗. Then

0 = ∂̄(fjvj) = (∂̄fj) ∧ vj + fj∂̄vj
= (∂̄fj + fjuj) ∧ vj .

(2.20)

If 0 6= ∂̄fj+fjuj ∈ ∧0,1(h)∗, then ∂̄fj+fjuj and vj are linearly independent, which
contradicts (2.20). Therefore,

∂̄fj + fjuj = 0.(2.21)
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We claim that the solutions fj of (2.21) form a one dimensional vector space:
We make the identification

fj ∈ C∞K (X,C) = C∞(A,C) , uj ∈ ∧0,1(h)∗ = Hom(a,C) = Ω1
A(A,C),

so that fj and uj are a complex function and an invariant form on A respectively.
However, the Lie group A is isomorphic to its Lie algebra a via the exponential
map, and by a choice of Euclidean coordinates, a = Rn. Let dx1, ..., dxn be the
standard 1-forms on Rn. Then, under these identifications, uj becomes a complex
linear 1-form on Rn. Namely, uj =

∑
k cjkdxk for some cjk ∈ C. Also, the operator

∂̄ on C∞K (X,C) is identified with the operator d on C∞(A,C). Therefore, (2.21)
becomes

0 = dfj + fjuj =
∑
k

∂fj
∂xk

dxk + cjkfjdxk,

which means that
∂fj
∂xk

= −cjkfj

for all k = 1, ..., n. This equation can be solved with

fj(x) = a exp(−
∑
k

cjkxk),

and is unique up to the constant a ∈ C. Hence the space of solutions of (2.21) is
one dimensional, as claimed. This proves part (i) of the proposition.

In order to complete the proof, we need to show that fn+1, ..., fm = 0 in (2.19).
Since ∂̄α = 0, ∂̄(fjuj) = 0 for all j. Let j ∈ {n+ 1, ...,m}. Then

0 = ∂̄(fjvj) = (∂̄fj) ∧ vj + fj(∂̄vj)
= (∂̄fj) ∧ vj + fjuj ∧ vj + fjx
= (∂̄fj + fjuj) ∧ vj + fjx,

(2.22)

where uj ∈ ∧0,1(h)∗, and 0 6= x ∈ ∧0,2(V )∗ by Lemma 2.1. But (∂̄fj+fjuj)∧vj and
fjx are linearly independent if they are both non-zero. So (2.22) implies fjx = 0,
and hence fj = 0. This proves the proposition.

We have shown that every α ∈ Z0,1
K (X,C) can be uniquely written as

α = α0 + α1 + ...+ αn,

where α0 isK×T -invariant andR∗tαj = χj(t)αj for all j = 1, ..., n. With this result,
we now consider a K-invariant Kaehler structure ω on X . Since K is semi-simple,

H2(X,R) = H2(KA,R) = H2(K,R) = 0.

Therefore ω, being closed, can be written as

ω = dβ,

for some real 1-form β on X . Let

β = α+ ᾱ

be its Dolbeault decomposition, where α and ᾱ are (0,1) and (1,0)-forms respec-
tively. Averaging by K if necessary, we may assume that β, α, ᾱ are K-invariant.
Since ω is of type (1,1),

ω = ∂α+ ∂α(2.23)
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and

∂̄α = ∂ᾱ = 0.

Therefore, α ∈ Z0,1
K (X,C). We apply Proposition 2.2 and write

α =
n∑
0

αj ,(2.24)

where α0 ∈ Z0,1
KT (X,C) and αj ∈ Z0,1

K,λj
(X,C) for j = 1, ..., n. We claim that α0 is

∂̄-exact:
Recall from (2.19) that α0 can be written as an element of C∞(A,C)⊗∧0,1(h)∗.

We make the natural identification

α0 ∈ C∞(A,C)⊗ ∧0,1(h)∗

= C∞(A,C)⊗Hom(a,C)
= C∞(A,C)⊗ Ω1

A(A,C)
= Ω1(A,C),

so that α0 is identified with a complex 1-form on A. Then α0, being a ∂̄-closed
(0,1)-form, is identified with a closed 1-form on A. Since

H1(A,C) = 0,

it means that α0 is identified with an exact 1-form on A. Hence

α0 = ∂̄f ∈ C∞(A,C)⊗ ∧0,1(h)∗,(2.25)

for some f ∈ C∞(A,C), as claimed.
Set F =

√
−1(f̄ − f) and βj = αj + ᾱj . Then (2.23), (2.24) and (2.25) imply

that

ω =
√
−1∂∂̄F +

n∑
1

dβj ,

which satisfies the decomposition for ω described in Theorem I.
Let ι : H ↪→ X be the natural holomorphic imbedding of the Cartan subgroup

H into X . Then each ι∗βj is a T -invariant form that transforms by χj under the
right T action. Since H and T are abelian, Lt = Rt−1 . Therefore

ι∗dβj = dι∗βj = 0,(2.26)

which means that each dβj degenerates along H. Hence if ω =
√
−1∂∂̄F +

∑
dβj is

Kaehler, then
√
−1∂∂̄F cannot vanish. We shall show that more is true:

√
−1∂∂̄F

has to be Kaehler.
Let k + a = V ⊕ h be the decomposition of k + a into complex subspaces V and

h, given in (2.12). Note that

k = V + t.(2.27)

For each positive simple root λj , we let χj : H −→ C∗ be its corresponding charac-
ter. We then say that a differential form β transforms by χj if R∗tβ = χj(t)β. The
following proposition completes the proof of Theorem I.

Proposition 2.3. Let ω =
√
−1∂∂̄F +

∑
dβj be a K-invariant Kaehler structure,

where
√
−1∂∂̄F is K × T -invariant, and each βj transforms by χj under the right

T action. Then
√
−1∂∂̄F is necessarily Kaehler.
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Proof. For simplicity, we write ω = ω′+ω′′, where ω′ =
√
−1∂∂̄F and ω′′ =

∑
dβj .

Since X is diffeomorphic to KA, the points on X can be written as ka, k ∈ K, a ∈ A.
Suppose that ω′ is not Kaehler. Since it is K-invariant, ω′a is degenerate for

some a ∈ A. Given ξ ∈ k, let ξ] be the infinitesimal vector field on X generated by
the K action. Let V ⊂ k be the subspace given in (2.11), generated by the basis
{ζj, γj} in (2.2). Then

(V ])a ⊕ (t])a ⊕ J(t])a = TaX.

Further, (V ])a and (t])a ⊕ J(t])a are complementary with respect to ω′a (see [1]).
Therefore, one of the following two cases is valid:

Case 1. ω′a is degenerate on (t])a⊕ J(t])a. Then, together with (2.26), we see that
ωa is degenerate.

Case 2. ω′a is degenerate on V ]. There exists a non-zero vector

η =
m∑
1

ajζj + bjγj ∈ V

such that ω′(η], Jη])a ≤ 0. Let

π : k = V ⊕ t −→ t

be the projection onto the second factor, and let

Φ : X −→ k∗

be the moment map associated to the K action on (X,ω′). Then

0 ≥ ω′(η], Jη])a
= (Φ(a), [η, Jη])
= (Φ(a), π[η, Jη]) as Φ(a) ∈ t∗ [1],
=
∑m

1 (a2
j + b2j)(Φ(a), λj).

Since η is non-zero, there exists some positive root λj such that

(Φ(a), λj) ≤ 0.(2.28)

For this λj , we see that

ω(ζ]j , Jζ
]
j )a = ω(ζ]j , γ

]
j)a = (Φ(a), λj) + (

∑
i

βi, [ζj , γj]
])a.(2.29)

But in view of (2.26) and [ζj , γj ] ∈ t,

(
∑
i

βi, [ζj , γj]
])a = 0.(2.30)

Combining equations (2.28), (2.29) and (2.30), we get

ω(ζ]j , Jζ
]
j )a ≤ 0,

i.e. ω is not Kaehler. This solves the situation of Case 2, hence Proposition 2.3.

We have thus proved Theorem I. The K × T -invariant component,
√
−1∂∂̄F ,

has been studied carefully in [1], and we briefly state it here: By K-invariance and
the exponential map, F becomes a function on a. Then

√
−1∂∂̄F is Kaehler if and

only if the following conditions hold.
(i) F : a −→ R is strictly convex.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



K-INVARIANT KAEHLER STRUCTURES ON KC/N 3489

(ii) Let Φ : X −→ k∗ be the moment map corresponding to the K action on
(X,
√
−1∂∂̄F ). Then the image of Φ intersects t∗ inside the positive Weyl chamber.

Hence this result, together with Theorem I, classifies all the K-invariant Kaehler
structures on X .

3. Line bundles on KC/N

Let ω be a K-invariant Kaehler structure on X = KC/N . We write ω in the
canonical form

ω =
√
−1∂∂̄F +

n∑
1

dβj ,

as expressed in Theorem I.
We claim that ω is K × T -invariant if and only if it has a potential function:
Since each βj transforms by the character χj , we know that ω is K×T -invariant

if and only if
∑
dβj vanishes. This will imply that ω has a potential function F .

Conversely, suppose that ω has a potential function F. Then, averaging by K if
necessary, we may assume that F is K-invariant. But by Iwasawa, X = KA; so
the K-invariant function F is just a function on A. Consequently F , and hence ω,
are K × T -invariant. We have shown that the first two properties of Theorem II,
the K × T -invariance and the existence of a potential function, are equivalent.

As we shall see, this is the desired property to perform geometric quantization.
The above formula proves that ω is exact, and hence is in particular integral.
Therefore, there exists a complex line bundle L whose Chern class is [ω] = 0;
it is equipped with a connection ∇ whose curvature is ω. There is a natural k

representation on the smooth sections of L given by the operators

∇ξ] +
√
−1φξ, ξ ∈ k,

where φ is the moment map corresponding to the K action on X ([2], [5]). We
shall assume that this representation is induced from a holomorphic K action on
L. With nice topological conditions, this assumption is always valid. For instance,
it is always possible to do this if K is simply-connected [5]. This way, we get a K
representation on O(L), the space of holomorphic sections of L. In [1], we see that
if ω is K×T -invariant, then O(L) contains every irreducible K representation with
multiplicity one. We shall show that O(L) is not so nice if ω is not invariant under
the right T action. Therefore, the most appropriate setting to perform geometric
quantization is a K × T -invariant Kaehler manifold.

Proposition 3.1. Suppose ω is not invariant under the right T action. Then there
is no non-vanishing holomorphic section on L.

Proof. As in (2.23), we write

ω = ∂α+ ∂α,

where α is a (0,1)-form and ∂̄α = 0. Since ω is not K × T -invariant, it has no
potential function; hence α is not ∂̄-exact. Write

β = α+ ᾱ,(3.1)

so that dβ = ω.
Suppose s is a non-vanishing holomorphic section of L. Then

γ =
√
−1
∇s
s

(3.2)
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is a complex 1-form, and, by the definition of curvature, dγ = ω. This means that
γ − β is closed. Since K is semi-simple,

H1(X,C) = H1(KA,C) = H1(K,C) = 0.

Therefore, there exists a complex-valued function h such that

γ − β = dh.

From (3.2), we see that
√
−1∇s = (β + dh) s.(3.3)

Let J be the almost complex structure on X . Since s is holomorphic,

∇√−1ξ−Jξs = 0(3.4)

for every real vector field ξ. Combining (3.3) and (3.4), we get

(β + dh, ξ +
√
−1Jξ)s = 0.

But s is non-vanishing, so (β + dh, ξ +
√
−1Jξ) = 0. Since ξ +

√
−1Jξ is anti-

holomorphic,

β + dh ∈ Ω1,0(X,C).

From (3.1),

α+ ᾱ+ ∂h+ ∂̄h ∈ Ω1,0(X,C).

We end up with

α+ ∂̄h ∈ Ω1,0(X,C),

where α is a (0,1)-form that is not ∂̄-exact. This is a contradiction, and hence the
proposition.

Using this result, we now show that if ω is not right T invariant, then the trivial
(one dimensional) representation does not occur in O(L) as a subrepresentation.
This is because, if the trivial representation occurs in O(L), then it contains some
K-invariant holomorphic sections other than the zero section. However:

Proposition 3.2. Suppose ω is not right T invariant. Then the only K-invariant
holomorphic section of L is the zero section.

Proof. Suppose s is a K-invariant holomorphic section. By the previous proposi-
tion, sp = 0 for some p ∈ X . Let Kp denote the K orbit through p. Then s, being
K-invariant, vanishes on Kp. However, the orbit Kp contains some totally real
subspace of X , as can be seen from (2.12) and (2.27). Hence s, being holomorphic,
has to be the zero section.

This completes the proof of Theorem II. We conclude that O(L) serves the pur-
pose of geometric quantization best when X is a K×T -invariant Kaehler manifold.
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