K-INVARIANT KAEHLER STRUCTURES ON $K_{\mathbf{C}} / N$ AND THE ASSOCIATED LINE BUNDLES

MENG-KIAT CHUAH
(Communicated by Roe Goodman)

Abstract

Let K be a compact semi-simple Lie group, and let N be a maximal unipotent subgroup of the complexified group $K_{\mathbf{C}}$. In this paper, we classify all the K-invariant Kaehler structures on $K_{\mathbf{C}} / N$. For each Kaehler structure ω, let \mathbf{L} be the line bundle with connection whose curvature is ω. We then study the holomorphic sections of \mathbf{L}, which constitute a K-representation space.

1. Introduction

Let K be a compact semi-simple Lie group, let $G=K_{\mathbf{C}}$ be its complexification, and let $K A N$ be an Iwasawa decomposition of G. Since G and N are complex, the space $X=G / N$ is a complex homogeneous space, with left K action. We denote by T the centralizer of A in $K ; T$ is a Cartan subgroup of K here. Since T normalizes N, it acts on X on the right.

Given a suitable K-invariant symplectic structure ω on X, the process of geometric quantization [5] converts it into a K-representation space V. A desired property of V is that every irreducible K-representation occurs with multiplicity one (termed a model in [3], if V is in addition unitary). Several years ago, A.S. Schwarz suggested the space $X=G / N$ as a candidate for this process [6], and this was worked out in [1] for $K \times T$-invariant Kaehler structures on X.

In this paper, we classify all the K-invariant Kaehler structures on X. For each K-invariant Kaehler structure, we study its associated line bundle whose holomorphic sections constitute the K-representation space V.

Let $H=T A=T_{\mathbf{C}}$ (which is a Cartan subgroup of G), with Lie algebra \mathfrak{h}. Let n be the rank of G, and denote by $\lambda_{1}, \ldots, \lambda_{n} \in \mathfrak{h}^{*}$ the positive simple roots. For each positive simple root λ_{j}, let $\chi_{j}: H \longrightarrow \mathbf{C}^{*}$ be the character that satisfies $\chi_{j}(\exp v)=\exp \lambda_{j}(v)$. We say that a differential form β transforms by χ_{j} if $R_{t}^{*} \beta=$ $\chi_{j}(t) \beta$, where $t \in T$ and R_{t} is the right T action. We shall prove

Theorem I. Every K-invariant Kaehler structure on X can be uniquely written as

$$
\omega=\sqrt{-1} \partial \bar{\partial} F+\sum_{1}^{n} d \beta_{j}
$$

[^0]where $\sqrt{-1} \partial \bar{\partial} F$ is a $K \times T$-invariant Kaehler structure; each β_{j} is K-invariant and transforms by χ_{j} under the right T action.

Since the $K \times T$-invariant component $\sqrt{-1} \partial \bar{\partial} F$ has been described carefully in [1], this theorem completely classifies all the K-invariant Kaehler structures on X. Observe that ω is $K \times T$-invariant if and only if the component $\sum d \beta_{j}$ vanishes. We shall see in the next theorem that this is in fact the desired property to perform geometric quantization.

Let ω be a K-invariant Kaehler structure on X. By Theorem I, ω is exact, hence is in particular integral. Therefore, we can consider the complex line bundle \mathbf{L} on X whose Chern class is $[\omega]=0$. It is equipped with a connection ∇ whose curvature is ω. Let \mathfrak{k} be the Lie algebra of K. For $\xi \in \mathfrak{k}$, we denote by ξ^{\sharp} the vector field on X induced by the K action. There is a canonical representation of \mathfrak{k} on the smooth sections of \mathbf{L}, given by the operators

$$
\nabla_{\xi^{\sharp}}+\sqrt{-1} \phi^{\xi}, \quad \xi \in \mathfrak{k},
$$

where ϕ is the moment map associated to the K action on (X, ω) ([2], [5]). We shall assume that this representation is K-invariant; namely, it lifts to a holomorphic K action on \mathbf{L}. Thus $\mathcal{O}(\mathbf{L})$, the space of holomorphic sections of \mathbf{L}, becomes a K representation space. The following theorem asserts that $\mathcal{O}(\mathbf{L})$ suits the purpose of geometric quantization best when ω is $K \times T$-invariant:

Theorem II. The following are equivalent:
(i) ω is $K \times T$-invariant ;
(ii) ω has a potential function ;
(iii) every irreducible K-representation occurs in $\mathcal{O}(\mathbf{L})$ with multiplicity one.

2. K-Invariant Kaehler structures on $K_{\mathbf{C}} / N$

In this section, we prove Theorem I, which classifies all the K-invariant Kaehler structures on $X=K_{\mathbf{C}} / N$. Let $\partial, \bar{\partial}$ be the Dolbeault operators on X, and $Z_{K}^{0,1}(X, \mathbf{C})$ be the space of K-invariant $\bar{\partial}$-closed (0,1)-forms on X. We shall see that every K invariant Kaehler structure ω on X can be written as

$$
\omega=\partial \alpha+\overline{\partial \alpha}
$$

where $\alpha \in Z_{K}^{0,1}(X, \mathbf{C})$. Therefore, we now develop some machineries to calculate $Z_{K}^{0,1}(X, \mathbf{C})$.

Let $\mathfrak{g}, \mathfrak{k}, \mathfrak{a}, \mathfrak{n}, \mathfrak{t}$ be the Lie algebras of G, K, A, N, T respectively. Let $n=\operatorname{rank} G=$ $\operatorname{dim}_{\mathbf{C}} H$. Let $\lambda_{ \pm 1}, \ldots, \lambda_{ \pm m} \in \Delta$ be the root system of \mathfrak{g}, where $\lambda_{1}, \ldots, \lambda_{n}$ are positive simple roots, and $n \leq m$. Let

$$
\begin{equation*}
\left\{\xi_{j}, \xi_{-j}\right\} \subset \mathfrak{g} / \mathfrak{h}, \xi_{ \pm j} \in \mathfrak{g}_{ \pm \lambda_{j}} \tag{2.1}
\end{equation*}
$$

be a Weyl basis ([4], p. 421) of $\mathfrak{g} / \mathfrak{h}$. Then

$$
\begin{equation*}
\zeta_{j}=\xi_{j}-\xi_{-j}, \gamma_{j}=\sqrt{-1}\left(\xi_{j}+\xi_{-j}\right) \in \mathfrak{k} ; j=1, \ldots, m \tag{2.2}
\end{equation*}
$$

In fact, under the image of $\mathfrak{k} \longrightarrow \mathfrak{k} / \mathfrak{t},\left\{\zeta_{j}, \gamma_{j}\right\}$ form a basis of $\mathfrak{k} / \mathfrak{t}$. By Iwasawa, $\mathfrak{g} / \mathfrak{n} \cong \mathfrak{k}+\mathfrak{a}$, which induces an almost complex structure J on $\mathfrak{k}+\mathfrak{a}$. Then

$$
\begin{equation*}
J \zeta_{j}=\gamma_{j} ; J \gamma_{j}=-\zeta_{j} \tag{2.3}
\end{equation*}
$$

The Killing form identifies these vectors with $\zeta_{j}^{*}, \gamma_{j}^{*} \in \mathfrak{k}^{*}$. Consider

$$
\begin{equation*}
q_{j}=\zeta_{j}+\sqrt{-1} \gamma_{j} \in \wedge^{0,1}(\mathfrak{k}+\mathfrak{a}), v_{j}=\zeta_{j}^{*}-\sqrt{-1} \gamma_{j}^{*} \in \wedge^{0,1}(\mathfrak{k}+\mathfrak{a})^{*} \tag{2.4}
\end{equation*}
$$

for $j=1, \ldots, m$. By Iwasawa, $X=G / N=K A$. Therefore, we may identify $\wedge^{0,1}(\mathfrak{k}+\mathfrak{a})$ and $\wedge^{0,1}(\mathfrak{k}+\mathfrak{a})^{*}$ with the $K \times A$-invariant anti-holomorphic vector fields and complex (0,1)-forms on X.

Let $\xi \in \mathfrak{t}$, and $a d_{\xi}^{*}: \mathfrak{k}^{*} \longrightarrow \mathfrak{k}^{*}$. Then

$$
\begin{align*}
a d_{\xi}^{*} \zeta_{j}^{*} & =a d_{\xi}^{*}\left(\xi_{j}^{*}-\xi_{-j}^{*}\right) \\
& =\lambda_{j}(\xi) \xi_{j}^{*}+\lambda_{j}(\xi) \xi_{-j}^{*} \tag{2.5}\\
& =-\sqrt{-1} \lambda_{j}(\xi) \gamma_{j}^{*}
\end{align*}
$$

and

$$
\begin{align*}
a d_{\xi}^{*} \gamma_{j}^{*} & =a d_{\xi}^{*} \sqrt{-1}\left(\xi_{j}^{*}+\xi_{-j}^{*}\right) \\
& =\sqrt{-1}\left(\lambda_{j}(\xi) \xi_{j}^{*}-\lambda_{j}(\xi) \xi_{-j}^{*}\right) \tag{2.6}\\
& =\sqrt{-1} \lambda_{j}(\xi) \zeta_{j}^{*}
\end{align*}
$$

Note that, in (2.5) and (2.6), the root λ_{j} satisfies $\sqrt{-1} \lambda_{j}(\xi) \in \mathbf{R}$ for $\xi \in \mathfrak{t}$.
For $\xi \in \mathfrak{t}$, the action of $a d_{\xi}^{*}$ on $\wedge^{0,1}(\mathfrak{g})^{*}$ preserves $\wedge^{0,1}(\mathfrak{n})^{*}$. Therefore $a d_{\xi}^{*}$ acts on $\wedge^{0,1}(\mathfrak{g} / \mathfrak{n})^{*}=\wedge^{0,1}(\mathfrak{k}+\mathfrak{a})^{*}$. Let $v_{j} \in \wedge^{0,1}(\mathfrak{k}+\mathfrak{a})^{*}$ be the (0,1)-form given in (2.4). Then (2.5) and (2.6) give

$$
\begin{equation*}
a d_{\xi}^{*} v_{j}=\lambda_{j}(\xi) v_{j} \tag{2.7}
\end{equation*}
$$

We now go from Lie algebra representation to group representation; so consider

$$
A d_{t}^{*}: \wedge^{0,1}(\mathfrak{k}+\mathfrak{a})^{*} \longrightarrow \wedge^{0,1}(\mathfrak{k}+\mathfrak{a})^{*}
$$

for $t \in T$. Also, for each root λ_{j}, we define the character $\chi_{j}: T \rightarrow \mathbf{C}^{*}$ which satisfies

$$
\begin{equation*}
\chi_{j}(\exp \xi)=\exp \left(\lambda_{j}, \xi\right) \tag{2.8}
\end{equation*}
$$

for all $\xi \in \mathfrak{t}$. Then (2.7) implies that

$$
\begin{equation*}
A d_{t}^{*} v_{j}=\chi_{j}(t) v_{j} \tag{2.9}
\end{equation*}
$$

for all $t \in T$.
Since T normalizes N, there is a right T action on $X=G / N$, which induces T representation on the $K \times A$-invariant (0,1)-forms $\wedge^{0,1}(\mathfrak{k}+\mathfrak{a})^{*}$. For $t \in T$, let L_{t} and R_{t} denote the left and right T actions on X respectively. Then, by (2.9),

$$
\begin{align*}
R_{t}^{*} v_{j} & =R_{t}^{*} L_{t}^{*} v_{j} \\
& =A d_{t}^{*} v_{j} \tag{2.10}\\
& =\chi_{j}(t) v_{j} .
\end{align*}
$$

Let $\left\{\zeta_{j}, \gamma_{j}\right\}$ be the vectors in (2.2), and let

$$
\begin{equation*}
V=\oplus_{1}^{m} \mathbf{R}\left(\zeta_{j}, \gamma_{j}\right) \subset \mathfrak{k} \tag{2.11}
\end{equation*}
$$

Then (2.3) says that V is preserved by the almost complex structure on $\mathfrak{k}+\mathfrak{a}=\mathfrak{g} / \mathfrak{n}$. In fact,

$$
\begin{equation*}
\mathfrak{k}+\mathfrak{a}=V \oplus \mathfrak{h} \tag{2.12}
\end{equation*}
$$

is a decomposition of $\mathfrak{k}+\mathfrak{a}$ into complex vector subspaces. This decomposition is orthogonal with respect to the Killing form on $\mathfrak{k}+\mathfrak{a}=\mathfrak{g} / \mathfrak{n}$. It induces the inclusions

$$
\wedge^{0, k}(V)^{*}, \wedge^{0, k}(\mathfrak{h})^{*} \subset \wedge^{0, k}(\mathfrak{k}+\mathfrak{a})^{*}
$$

where $\wedge^{0, k}(V)^{*}$ annihilates $\wedge^{0, k}(\mathfrak{h})$ and $\wedge^{0, k}(\mathfrak{h})^{*}$ annihilates $\wedge^{0, k}(V)$. Note that the ($0, k$)-forms in $\wedge^{0, k}(\mathfrak{h})^{*}$ are $K \times T$-invariant: If $\xi \in \wedge^{0, k}(\mathfrak{h})^{*}$, then $a d_{v}^{*} \xi=0$ for all $v \in \mathfrak{h}$. Hence $A d_{t}^{*} \xi=\xi$ for all $t \in T$. It follows that

$$
\begin{equation*}
R_{t}^{*} \xi=R_{t}^{*} L_{t}^{*} \xi=A d_{t}^{*} \xi=\xi \tag{2.13}
\end{equation*}
$$

for all $t \in T$.
Let v_{1}, \ldots, v_{m} be the $K \times A$-invariant (0,1)-forms in (2.4). We want to consider the $K \times A$-invariant (0,2)-forms $\left\{\bar{\partial} v_{j}\right\} \subset \wedge^{0,2}(\mathfrak{k}+\mathfrak{a})^{*}$. Fix $j \in\{1, \ldots, m\}$, and the general expression for $\bar{\partial} v_{j}$ is

$$
\begin{equation*}
\bar{\partial} v_{j}=w+\sum_{k} u_{k} \wedge v_{k}+\sum_{r<s} b_{r s} v_{r} \wedge v_{s} \tag{2.14}
\end{equation*}
$$

for some $w \in \wedge^{0,2}(\mathfrak{h})^{*}, u_{k} \in \wedge^{0,1}(\mathfrak{h})^{*}, b_{r s} \in \mathbf{C}$. The following lemma describes w, u_{k} and $b_{r s}$. Recall that $\lambda_{1}, \ldots, \lambda_{n}$ are simple, among the positive roots $\lambda_{1}, \ldots, \lambda_{m}$. Then,

Lemma 2.1. In (2.14), $w=0$; and $u_{k}=0$ if and only if $k \neq j$. Finally, all $b_{r s}$ vanish if and only if $j=1, \ldots, n$.

Proof. In view of (2.10),

$$
R_{t}^{*} \bar{\partial} v_{j}=\bar{\partial} R_{t}^{*} v_{j}=\chi_{j}(t) \bar{\partial} v_{j}
$$

for all $t \in T$. Therefore, we also need RHS of (2.14) to transform by χ_{j} under the right T action. But

$$
\begin{align*}
R_{t}^{*}\left(u_{k} \wedge v_{k}\right) & =R_{t}^{*} u_{k} \wedge R_{t}^{*} v_{k} \\
& =L_{t^{-1}}^{*} u_{k} \wedge \chi_{k}(t) v_{k} \tag{2.15}\\
& =\chi_{k}(t) u_{k} \wedge v_{k}
\end{align*}
$$

and

$$
\begin{equation*}
R_{t}^{*}\left(v_{r} \wedge v_{s}\right)=R_{t}^{*} v_{r} \wedge R_{t}^{*} v_{s}=\chi_{r}(t) \chi_{s}(t) v_{r} \wedge v_{s} \tag{2.16}
\end{equation*}
$$

Since the non-zero elements of $\left\{w, u_{k} \wedge v_{k}, v_{r} \wedge v_{s}\right\} \subset \wedge^{0,2}(\mathfrak{k}+\mathfrak{a})^{*}$ are linearly independent, the vectors that do not transform by χ_{j} have to vanish. Therefore, (2.13) and (2.15) imply that

$$
w=0, \text { and } u_{k}=0 \text { if } k \neq j .
$$

However, $u_{j} \neq 0$ in (2.14): Let q_{j} be the vector in (2.4). By arguments similar to the ones in (2.5) and (2.6), we see that $\left[\xi, q_{j}\right]=\lambda_{j}(\xi) q_{j}$ for all $\xi \in \wedge^{0,1}(\mathfrak{h})$. Choose ξ such that $\lambda_{j}(\xi) \neq 0$. Then

$$
\begin{aligned}
0 \neq \lambda_{j}(\xi)\left(v_{j}, q_{j}\right) & =\left(v_{j},\left[\xi, q_{j}\right]\right) \\
& =\left(\bar{\partial} v_{j}, \xi \wedge q_{j}\right)
\end{aligned}
$$

Since $\wedge^{0,1}(V)^{*}$ annihilates $\wedge^{0,1}(\mathfrak{h}),\left(w, \xi \wedge q_{j}\right)=\left(b_{r s} v_{r} \wedge v_{s}, \xi \wedge q_{j}\right)=0$. It follows that $\left(u_{j} \wedge v_{j}, \xi \wedge q_{j}\right) \neq 0$, i.e. $u_{j} \neq 0$.

We next compute the $b_{r s}$, and show that they all vanish if and only if $j=1, \ldots, n$. If $j=1, \ldots, n$, then λ_{j} is simple so $\chi_{r} \chi_{s} \neq \chi_{j}$ for all $r, s \in\{1, \ldots, m\}$. Hence by (2.16), all $b_{r s}=0$.

On the other hand, consider $j=n+1, \ldots, m$, so that λ_{j} is not simple. There exist some roots λ_{k}, λ_{l} such that $\lambda_{k}+\lambda_{l}=\lambda_{j}$, and $\xi_{k}, \xi_{l}, \xi_{j}$ be the eigenvectors in (2.1) such that

$$
\begin{equation*}
\left[\xi_{k}, \xi_{l}\right]=c \xi_{j} \tag{2.17}
\end{equation*}
$$

where $c \in \mathbf{C}$ is non-zero. Let p_{k}, p_{l}, v_{j} be the $K \times A$-invariant vector fields and differential form given in (2.4). With some computations following (2.4), we can conclude from (2.17) that

$$
\left(v_{j},\left[p_{k}, p_{l}\right]\right) \neq 0
$$

$\operatorname{But}\left(\bar{\partial} v_{j}, p_{k} \wedge p_{l}\right)=\left(v_{j},\left[p_{k}, p_{l}\right]\right)$, which means that $b_{k l} \neq 0$ in (2.14). This completes the proof of the lemma.

Let $\Omega_{K}^{0,1}(X, \mathbf{C})$ be the space of K-invariant (0,1)-forms on X. Since we identify $\wedge^{0,1}(\mathfrak{k}+\mathfrak{a})^{*}$ with the $K \times A$-invariant (0,1)-forms on X, it follows that

$$
\Omega_{K}^{0,1}(X, \mathbf{C})=C_{K}^{\infty}(X, \mathbf{C}) \otimes \wedge^{0,1}(\mathfrak{k}+\mathfrak{a})^{*}
$$

However, by Iwasawa $X=K A$, so a K-invariant function on X is simply a function on A. Therefore,

$$
\begin{equation*}
\Omega_{K}^{0,1}(X, \mathbf{C})=C^{\infty}(A, \mathbf{C}) \otimes \wedge^{0,1}(\mathfrak{k}+\mathfrak{a})^{*} \tag{2.18}
\end{equation*}
$$

We are interested in

$$
Z_{K}^{0,1}(X, \mathbf{C})=\left\{\alpha \in \Omega_{K}^{0,1}(X, \mathbf{C}) ; \bar{\partial} \alpha=0\right\}
$$

For all positive simple roots $\lambda_{1}, \ldots, \lambda_{n}$ with their characters χ_{j} defined in (2.8), let

$$
Z_{K, \lambda_{j}}^{0,1}(X, \mathbf{C})=\left\{\alpha \in Z_{K}^{0,1}(X, \mathbf{C}) ; R_{t}^{*} \alpha=\chi_{j}(t) \alpha \text { for all } t \in T\right\}
$$

Similarly, let $Z_{K T}^{0,1}(X, \mathbf{C})$ denote the elements in $Z_{K}^{0,1}(X, \mathbf{C})$ that are invariant under the right T action. Then
Proposition 2.2. (i) For every positive simple root $\lambda_{j}, Z_{K, \lambda_{j}}^{0,1}(X, \mathbf{C})$ is one dimensional ;
(ii) $\quad Z_{K}^{0,1}(X, \mathbf{C})=Z_{K T}^{0,1}(X, \mathbf{C}) \oplus\left(\oplus_{1}^{n} Z_{K, \lambda_{j}}^{0,1}(X, \mathbf{C})\right)$.

Proof. Let $\alpha \in \Omega_{K}^{0,1}(X, \mathbf{C})$. By (2.18), we have

$$
\begin{equation*}
\alpha=w+\sum_{1}^{m} f_{j} v_{j} \tag{2.19}
\end{equation*}
$$

where $w \in C^{\infty}(A, \mathbf{C}) \otimes \wedge^{0,1}(\mathfrak{h})^{*}, f_{j} \in C^{\infty}(A, \mathbf{C})$, and $v_{j} \in \wedge^{0,1}(V)^{*}$ are the $(0,1)$ forms in (2.4).

Clearly $C^{\infty}(A, \mathbf{C})$ is $K \times T$-invariant. It follows from (2.13) that w is $K \times T$ invariant, and from (2.10) that each $f_{j} v_{j}$ transforms by χ_{j} under the right T action.

Since R_{t}^{*} commutes with $\bar{\partial}$,

$$
\bar{\partial} w \in \Omega_{K T}^{0,2}(X, \mathbf{C}), \bar{\partial}\left(f_{j} v_{j}\right) \in \Omega_{K, \lambda_{j}}^{0,2}(X, \mathbf{C})
$$

for all $j=1, \ldots, m$. Therefore, in (2.19), $\bar{\partial} \alpha=0$ if and only if $\bar{\partial} w=\bar{\partial}\left(f_{1} v_{1}\right)=$ $\ldots=\bar{\partial}\left(f_{m} v_{m}\right)=0$; so we can investigate these components separately. Clearly if $\bar{\partial} \alpha=0$, then $w \in Z_{K T}^{0,1}(X, \mathbf{C})$.

Suppose that $\bar{\partial}\left(f_{j} v_{j}\right)=0$, for $j=1, \ldots, n$. By Lemma 2.1, $\bar{\partial} v_{j}=u_{j} \wedge v_{j}$, for some $u_{j} \in \wedge^{0,1}(\mathfrak{h})^{*}$. Then

$$
\begin{align*}
0=\bar{\partial}\left(f_{j} v_{j}\right) & =\left(\bar{\partial} f_{j}\right) \wedge v_{j}+f_{j} \bar{\partial} v_{j} \tag{2.20}\\
& =\left(\bar{\partial} f_{j}+f_{j} u_{j}\right) \wedge v_{j}
\end{align*}
$$

If $0 \neq \bar{\partial} f_{j}+f_{j} u_{j} \in \wedge^{0,1}(\mathfrak{h})^{*}$, then $\bar{\partial} f_{j}+f_{j} u_{j}$ and v_{j} are linearly independent, which contradicts (2.20). Therefore,

$$
\begin{equation*}
\bar{\partial} f_{j}+f_{j} u_{j}=0 \tag{2.21}
\end{equation*}
$$

We claim that the solutions f_{j} of (2.21) form a one dimensional vector space: We make the identification

$$
f_{j} \in C_{K}^{\infty}(X, \mathbf{C})=C^{\infty}(A, \mathbf{C}), u_{j} \in \wedge^{0,1}(\mathfrak{h})^{*}=\operatorname{Hom}(\mathfrak{a}, \mathbf{C})=\Omega_{A}^{1}(A, \mathbf{C}),
$$

so that f_{j} and u_{j} are a complex function and an invariant form on A respectively. However, the Lie group A is isomorphic to its Lie algebra \mathfrak{a} via the exponential map, and by a choice of Euclidean coordinates, $\mathfrak{a}=\mathbf{R}^{n}$. Let $d x_{1}, \ldots, d x_{n}$ be the standard 1-forms on \mathbf{R}^{n}. Then, under these identifications, u_{j} becomes a complex linear 1-form on \mathbf{R}^{n}. Namely, $u_{j}=\sum_{k} c_{j k} d x_{k}$ for some $c_{j k} \in \mathbf{C}$. Also, the operator $\bar{\partial}$ on $C_{K}^{\infty}(X, \mathbf{C})$ is identified with the operator d on $C^{\infty}(A, \mathbf{C})$. Therefore, (2.21) becomes

$$
0=d f_{j}+f_{j} u_{j}=\sum_{k} \frac{\partial f_{j}}{\partial x_{k}} d x_{k}+c_{j k} f_{j} d x_{k}
$$

which means that

$$
\frac{\partial f_{j}}{\partial x_{k}}=-c_{j k} f_{j}
$$

for all $k=1, \ldots, n$. This equation can be solved with

$$
f_{j}(x)=a \exp \left(-\sum_{k} c_{j k} x_{k}\right)
$$

and is unique up to the constant $a \in \mathbf{C}$. Hence the space of solutions of (2.21) is one dimensional, as claimed. This proves part (i) of the proposition.

In order to complete the proof, we need to show that $f_{n+1}, \ldots, f_{m}=0$ in (2.19). Since $\bar{\partial} \alpha=0, \bar{\partial}\left(f_{j} u_{j}\right)=0$ for all j. Let $j \in\{n+1, \ldots, m\}$. Then

$$
\begin{align*}
0=\bar{\partial}\left(f_{j} v_{j}\right) & =\left(\bar{\partial} f_{j}\right) \wedge v_{j}+f_{j}\left(\bar{\partial} v_{j}\right) \\
& =\left(\bar{\partial} f_{j}\right) \wedge v_{j}+f_{j} u_{j} \wedge v_{j}+f_{j} x \tag{2.22}\\
& =\left(\bar{\partial} f_{j}+f_{j} u_{j}\right) \wedge v_{j}+f_{j} x,
\end{align*}
$$

where $u_{j} \in \wedge^{0,1}(\mathfrak{h})^{*}$, and $0 \neq x \in \wedge^{0,2}(V)^{*}$ by Lemma 2.1. But $\left(\bar{\partial} f_{j}+f_{j} u_{j}\right) \wedge v_{j}$ and $f_{j} x$ are linearly independent if they are both non-zero. So (2.22) implies $f_{j} x=0$, and hence $f_{j}=0$. This proves the proposition.

We have shown that every $\alpha \in Z_{K}^{0,1}(X, \mathbf{C})$ can be uniquely written as

$$
\alpha=\alpha_{0}+\alpha_{1}+\ldots+\alpha_{n},
$$

where α_{0} is $K \times T$-invariant and $R_{t}^{*} \alpha_{j}=\chi_{j}(t) \alpha_{j}$ for all $j=1, \ldots, n$. With this result, we now consider a K-invariant Kaehler structure ω on X. Since K is semi-simple,

$$
H^{2}(X, \mathbf{R})=H^{2}(K A, \mathbf{R})=H^{2}(K, \mathbf{R})=0 .
$$

Therefore ω, being closed, can be written as

$$
\omega=d \beta,
$$

for some real 1-form β on X. Let

$$
\beta=\alpha+\bar{\alpha}
$$

be its Dolbeault decomposition, where α and $\bar{\alpha}$ are (0,1) and (1,0)-forms respectively. Averaging by K if necessary, we may assume that $\beta, \alpha, \bar{\alpha}$ are K-invariant. Since ω is of type (1,1),

$$
\begin{equation*}
\omega=\partial \alpha+\overline{\partial \alpha} \tag{2.23}
\end{equation*}
$$

and

$$
\bar{\partial} \alpha=\partial \bar{\alpha}=0
$$

Therefore, $\alpha \in Z_{K}^{0,1}(X, \mathbf{C})$. We apply Proposition 2.2 and write

$$
\begin{equation*}
\alpha=\sum_{0}^{n} \alpha_{j} \tag{2.24}
\end{equation*}
$$

where $\alpha_{0} \in Z_{K T}^{0,1}(X, \mathbf{C})$ and $\alpha_{j} \in Z_{K, \lambda_{j}}^{0,1}(X, \mathbf{C})$ for $j=1, \ldots, n$. We claim that α_{0} is $\bar{\partial}$-exact:

Recall from (2.19) that α_{0} can be written as an element of $C^{\infty}(A, \mathbf{C}) \otimes \wedge^{0,1}(\mathfrak{h})^{*}$. We make the natural identification

$$
\begin{aligned}
\alpha_{0} & \in C^{\infty}(A, \mathbf{C}) \otimes \wedge^{0,1}(\mathfrak{h})^{*} \\
& =C^{\infty}(A, \mathbf{C}) \otimes \operatorname{Hom}(\mathfrak{a}, \mathbf{C}) \\
& =C^{\infty}(A, \mathbf{C}) \otimes \Omega_{A}^{1}(A, \mathbf{C}) \\
& =\Omega^{1}(A, \mathbf{C}),
\end{aligned}
$$

so that α_{0} is identified with a complex 1-form on A. Then α_{0}, being a $\bar{\partial}$-closed $(0,1)$-form, is identified with a closed 1-form on A. Since

$$
H^{1}(A, \mathbf{C})=0
$$

it means that α_{0} is identified with an exact 1 -form on A. Hence

$$
\begin{equation*}
\alpha_{0}=\bar{\partial} f \in C^{\infty}(A, \mathbf{C}) \otimes \wedge^{0,1}(\mathfrak{h})^{*} \tag{2.25}
\end{equation*}
$$

for some $f \in C^{\infty}(A, \mathbf{C})$, as claimed.
Set $F=\sqrt{-1}(\bar{f}-f)$ and $\beta_{j}=\alpha_{j}+\bar{\alpha}_{j}$. Then (2.23), (2.24) and (2.25) imply that

$$
\omega=\sqrt{-1} \partial \bar{\partial} F+\sum_{1}^{n} d \beta_{j}
$$

which satisfies the decomposition for ω described in Theorem I.
Let $\iota: H \hookrightarrow X$ be the natural holomorphic imbedding of the Cartan subgroup H into X. Then each $\iota^{*} \beta_{j}$ is a T-invariant form that transforms by χ_{j} under the right T action. Since H and T are abelian, $L_{t}=R_{t^{-1}}$. Therefore

$$
\begin{equation*}
\iota^{*} d \beta_{j}=d \iota^{*} \beta_{j}=0 \tag{2.26}
\end{equation*}
$$

which means that each $d \beta_{j}$ degenerates along H. Hence if $\omega=\sqrt{-1} \partial \bar{\partial} F+\sum d \beta_{j}$ is Kaehler, then $\sqrt{-1} \partial \bar{\partial} F$ cannot vanish. We shall show that more is true: $\sqrt{-1} \partial \bar{\partial} F$ has to be Kaehler.

Let $\mathfrak{k}+\mathfrak{a}=V \oplus \mathfrak{h}$ be the decomposition of $\mathfrak{k}+\mathfrak{a}$ into complex subspaces V and \mathfrak{h}, given in (2.12). Note that

$$
\begin{equation*}
\mathfrak{k}=V+\mathfrak{t} . \tag{2.27}
\end{equation*}
$$

For each positive simple root λ_{j}, we let $\chi_{j}: H \longrightarrow \mathbf{C}^{*}$ be its corresponding character. We then say that a differential form β transforms by χ_{j} if $R_{t}^{*} \beta=\chi_{j}(t) \beta$. The following proposition completes the proof of Theorem I.

Proposition 2.3. Let $\omega=\sqrt{-1} \partial \bar{\partial} F+\sum d \beta_{j}$ be a K-invariant Kaehler structure, where $\sqrt{-1} \partial \bar{\partial} F$ is $K \times T$-invariant, and each β_{j} transforms by χ_{j} under the right T action. Then $\sqrt{-1} \partial \bar{\partial} F$ is necessarily Kaehler.

Proof. For simplicity, we write $\omega=\omega^{\prime}+\omega^{\prime \prime}$, where $\omega^{\prime}=\sqrt{-1} \partial \bar{\partial} F$ and $\omega^{\prime \prime}=\sum d \beta_{j}$. Since X is diffeomorphic to $K A$, the points on X can be written as $k a, k \in K, a \in A$.

Suppose that ω^{\prime} is not Kaehler. Since it is K-invariant, ω_{a}^{\prime} is degenerate for some $a \in A$. Given $\xi \in \mathfrak{k}$, let ξ^{\sharp} be the infinitesimal vector field on X generated by the K action. Let $V \subset \mathfrak{k}$ be the subspace given in (2.11), generated by the basis $\left\{\zeta_{j}, \gamma_{j}\right\}$ in (2.2). Then

$$
\left(V^{\sharp}\right)_{a} \oplus\left(\mathfrak{t}^{\sharp}\right)_{a} \oplus J\left(\mathfrak{t}^{\sharp}\right)_{a}=T_{a} X .
$$

Further, $\left(V^{\sharp}\right)_{a}$ and $\left(\mathfrak{t}^{\sharp}\right)_{a} \oplus J\left(\mathfrak{t}^{\sharp}\right)_{a}$ are complementary with respect to ω_{a}^{\prime} (see [1]). Therefore, one of the following two cases is valid:

Case 1. ω_{a}^{\prime} is degenerate on $\left(\mathfrak{t}^{\sharp}\right)_{a} \oplus J\left(\mathfrak{t}^{\sharp}\right)_{a}$. Then, together with (2.26), we see that ω_{a} is degenerate.
Case 2. ω_{a}^{\prime} is degenerate on V^{\sharp}. There exists a non-zero vector

$$
\eta=\sum_{1}^{m} a_{j} \zeta_{j}+b_{j} \gamma_{j} \in V
$$

such that $\omega^{\prime}\left(\eta^{\sharp}, J \eta^{\sharp}\right)_{a} \leq 0$. Let

$$
\pi: \mathfrak{k}=V \oplus \mathfrak{t} \longrightarrow \mathfrak{t}
$$

be the projection onto the second factor, and let

$$
\Phi: X \longrightarrow \mathfrak{k}^{*}
$$

be the moment map associated to the K action on $\left(X, \omega^{\prime}\right)$. Then

$$
\begin{array}{rlr}
0 & \geq \omega^{\prime}\left(\eta^{\sharp}, J \eta^{\sharp}\right)_{a} & \\
& =(\Phi(a),[\eta, J \eta]) & \\
& =(\Phi(a), \pi[\eta, J \eta]) & \text { as } \Phi(a) \in \mathfrak{t}^{*}[1], \\
& =\sum_{1}^{m}\left(a_{j}^{2}+b_{j}^{2}\right)\left(\Phi(a), \lambda_{j}\right) . &
\end{array}
$$

Since η is non-zero, there exists some positive root λ_{j} such that

$$
\begin{equation*}
\left(\Phi(a), \lambda_{j}\right) \leq 0 \tag{2.28}
\end{equation*}
$$

For this λ_{j}, we see that

$$
\begin{equation*}
\omega\left(\zeta_{j}^{\sharp}, J \zeta_{j}^{\sharp}\right)_{a}=\omega\left(\zeta_{j}^{\sharp}, \gamma_{j}^{\sharp}\right)_{a}=\left(\Phi(a), \lambda_{j}\right)+\left(\sum_{i} \beta_{i},\left[\zeta_{j}, \gamma_{j}\right]^{\sharp}\right)_{a} . \tag{2.29}
\end{equation*}
$$

But in view of (2.26) and $\left[\zeta_{j}, \gamma_{j}\right] \in \mathfrak{t}$,

$$
\begin{equation*}
\left(\sum_{i} \beta_{i},\left[\zeta_{j}, \gamma_{j}\right]^{\sharp}\right)_{a}=0 . \tag{2.30}
\end{equation*}
$$

Combining equations (2.28), (2.29) and (2.30), we get

$$
\omega\left(\zeta_{j}^{\sharp}, J \zeta_{j}^{\sharp}\right)_{a} \leq 0,
$$

i.e. ω is not Kaehler. This solves the situation of Case 2, hence Proposition 2.3.

We have thus proved Theorem I. The $K \times T$-invariant component, $\sqrt{-1} \partial \bar{\partial} F$, has been studied carefully in [1], and we briefly state it here: By K-invariance and the exponential map, F becomes a function on \mathfrak{a}. Then $\sqrt{-1} \partial \bar{\partial} F$ is Kaehler if and only if the following conditions hold.
(i) $F: \mathfrak{a} \longrightarrow \mathbf{R}$ is strictly convex.
(ii) Let $\Phi: X \longrightarrow \mathfrak{k}^{*}$ be the moment map corresponding to the K action on $(X, \sqrt{-1} \partial \bar{\partial} F)$. Then the image of Φ intersects \mathfrak{t}^{*} inside the positive Weyl chamber.

Hence this result, together with Theorem I, classifies all the K-invariant Kaehler structures on X.

3. Line bundles on $K_{\mathbf{C}} / N$

Let ω be a K-invariant Kaehler structure on $X=K_{\mathbf{C}} / N$. We write ω in the canonical form

$$
\omega=\sqrt{-1} \partial \bar{\partial} F+\sum_{1}^{n} d \beta_{j}
$$

as expressed in Theorem I.
We claim that ω is $K \times T$-invariant if and only if it has a potential function:
Since each β_{j} transforms by the character χ_{j}, we know that ω is $K \times T$-invariant if and only if $\sum d \beta_{j}$ vanishes. This will imply that ω has a potential function F. Conversely, suppose that ω has a potential function F . Then, averaging by K if necessary, we may assume that F is K-invariant. But by Iwasawa, $X=K A$; so the K-invariant function F is just a function on A. Consequently F, and hence ω, are $K \times T$-invariant. We have shown that the first two properties of Theorem II, the $K \times T$-invariance and the existence of a potential function, are equivalent.

As we shall see, this is the desired property to perform geometric quantization. The above formula proves that ω is exact, and hence is in particular integral. Therefore, there exists a complex line bundle \mathbf{L} whose Chern class is $[\omega]=0$; it is equipped with a connection ∇ whose curvature is ω. There is a natural \mathfrak{k} representation on the smooth sections of \mathbf{L} given by the operators

$$
\nabla_{\xi^{\sharp}}+\sqrt{-1} \phi^{\xi}, \xi \in \mathfrak{k},
$$

where ϕ is the moment map corresponding to the K action on X ([2], [5]). We shall assume that this representation is induced from a holomorphic K action on L. With nice topological conditions, this assumption is always valid. For instance, it is always possible to do this if K is simply-connected [5]. This way, we get a K representation on $\mathcal{O}(\mathbf{L})$, the space of holomorphic sections of \mathbf{L}. In [1], we see that if ω is $K \times T$-invariant, then $\mathcal{O}(\mathbf{L})$ contains every irreducible K representation with multiplicity one. We shall show that $\mathcal{O}(\mathbf{L})$ is not so nice if ω is not invariant under the right T action. Therefore, the most appropriate setting to perform geometric quantization is a $K \times T$-invariant Kaehler manifold.

Proposition 3.1. Suppose ω is not invariant under the right T action. Then there is no non-vanishing holomorphic section on \mathbf{L}.

Proof. As in (2.23), we write

$$
\omega=\partial \alpha+\overline{\partial \alpha}
$$

where α is a $(0,1)$-form and $\bar{\partial} \alpha=0$. Since ω is not $K \times T$-invariant, it has no potential function; hence α is not $\bar{\partial}$-exact. Write

$$
\begin{equation*}
\beta=\alpha+\bar{\alpha} \tag{3.1}
\end{equation*}
$$

so that $d \beta=\omega$.
Suppose s is a non-vanishing holomorphic section of \mathbf{L}. Then

$$
\begin{equation*}
\gamma=\sqrt{-1} \frac{\nabla s}{s} \tag{3.2}
\end{equation*}
$$

is a complex 1-form, and, by the definition of curvature, $d \gamma=\omega$. This means that $\gamma-\beta$ is closed. Since K is semi-simple,

$$
H^{1}(X, \mathbf{C})=H^{1}(K A, \mathbf{C})=H^{1}(K, \mathbf{C})=0
$$

Therefore, there exists a complex-valued function h such that

$$
\gamma-\beta=d h
$$

From (3.2), we see that

$$
\begin{equation*}
\sqrt{-1} \nabla s=(\beta+d h) s \tag{3.3}
\end{equation*}
$$

Let J be the almost complex structure on X. Since s is holomorphic,

$$
\begin{equation*}
\nabla_{\sqrt{-1} \xi-J \xi} s=0 \tag{3.4}
\end{equation*}
$$

for every real vector field ξ. Combining (3.3) and (3.4), we get

$$
(\beta+d h, \xi+\sqrt{-1} J \xi) s=0
$$

But s is non-vanishing, so $(\beta+d h, \xi+\sqrt{-1} J \xi)=0$. Since $\xi+\sqrt{-1} J \xi$ is antiholomorphic,

$$
\beta+d h \in \Omega^{1,0}(X, \mathbf{C})
$$

From (3.1),

$$
\alpha+\bar{\alpha}+\partial h+\bar{\partial} h \in \Omega^{1,0}(X, \mathbf{C})
$$

We end up with

$$
\alpha+\bar{\partial} h \in \Omega^{1,0}(X, \mathbf{C})
$$

where α is a (0,1)-form that is not $\bar{\partial}$-exact. This is a contradiction, and hence the proposition.

Using this result, we now show that if ω is not right T invariant, then the trivial (one dimensional) representation does not occur in $\mathcal{O}(\mathbf{L})$ as a subrepresentation. This is because, if the trivial representation occurs in $\mathcal{O}(\mathbf{L})$, then it contains some K-invariant holomorphic sections other than the zero section. However:

Proposition 3.2. Suppose ω is not right T invariant. Then the only K-invariant holomorphic section of \mathbf{L} is the zero section.

Proof. Suppose s is a K-invariant holomorphic section. By the previous proposition, $s_{p}=0$ for some $p \in X$. Let $K p$ denote the K orbit through p. Then s, being K-invariant, vanishes on $K p$. However, the orbit $K p$ contains some totally real subspace of X, as can be seen from (2.12) and (2.27). Hence s, being holomorphic, has to be the zero section.

This completes the proof of Theorem II. We conclude that $\mathcal{O}(\mathbf{L})$ serves the purpose of geometric quantization best when X is a $K \times T$-invariant Kaehler manifold.

Acknowledgement

The author would like to thank Victor Guillemin, for discussing the problem of Kaehler structures and geometric quantization of $K_{\mathbf{C}} / N$. Also, Reyer Sjamaar, I-Hsun Tsai and David Vogan have provided many helpful suggestions.

References

1. M.K. Chuah and V. Guillemin, Kaehler structures on $K_{\mathbf{C}} / N$, Contemporary Math. 154 : The Penrose transform and analytic cohomology in representation theory (1993), 181-195. MR 94k:22028
2. V. Guillemin and S. Sternberg, Geometric quantization and multiplicities of group representations, Invent. Math. 67 (1982), 515-538. MR 83m:58040
3. I.M. Gelfand and A. Zelevinski, Models of representations of classical groups and their hidden symmetries, Funct. Anal. Appl. 18 (1984), 183-198. MR 86i:22024
4. S. Helgason, Differential Geometry, Lie groups, and symmetric spaces, Academic Press, 1978. MR 80k:53081
5. B. Kostant, Quantization and unitary representations, Lecture Notes in Math. 170, Springer 1970, 87-208. MR 45:3638
6. H.S. La, P. Nelson, A.S. Schwarz, Virasoro Model Space, Comm. Math. Phys. 134 (1990), 539-554. MR 92c:22041

Department of Applied Mathematics, National Chiao Tung University, Hsinchu, TaiWAN

E-mail address: chuah@math.nctu.edu.tw

[^0]: Received by the editors December 5, 1994 and, in revised form, April 24, 1995.
 1991 Mathematics Subject Classification. Primary 53C55.

