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Abstract

The characterization of the dynamics of traffic states remains fundamental to seeking for the solutions of diverse traffic
problems. To gain more insights in traffic dynamics in the temporal domain, this paper explored traffic patterns in higher-
dimensional state spaces, where we attempted to map the one-dimensional traffic series into appropriate multidimensional
spaces by Takens’ algorithm. After such a state space reconstruction, we then made use of the largest Lyapunov exponent
to depict the rate of expansion or contraction of traffic state trajectories in the reconstructed spaces. The correlation dimen-
sion was further estimated to examine if the traffic state trajectories exhibited chaotic-like or stochastic-like motions. An
empirical study using flow, speed, and occupancy time-series data as well as the speed-flow, speed-occupancy, and flow-
occupancy paired data collected from dual-loop detectors on a freeway of Taiwan was conducted. The numerical results
revealed that different nonlinear traffic patterns could emerge depending on the observed time-scale, history data and time-
of-day. In addition, with consideration of sequential order and spatiotemporal features, more information about traffic
dynamical evolution was extracted.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Traffic patterns are those characteristics of vehicle groups passing a point or short segment during a spec-
ified span or traveling over longer sections of highway. Various applications of cooperative driving or any
kind of driver information and assistance systems are strongly dependent on actual and predicted traffic pat-
terns. In terms of temporal features, traffic time series data measured in different time scales or intervals serve
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different purposes. In planning, for instance, one might wish to estimate the annual traffic volume over the
planned horizon for proposed infrastructure alternatives. The annual volume is then used for estimating
the expected saving in travel time for economic feasibility studies. For design purposes, however, hourly traffic
volume is often required to determine the facilities’ capacity. Thus, accurately predicting the hourly flow vari-
ations would become essential to avoid an over- or under-design of new facilities. For operational purposes,
much shorter-term traffic information, such as minute-flow, is essential for real-time traffic management and
control. In addition to flow, other traffic data in temporal perspectives such as occupancy and speed are also
crucial for various practical purposes.On the other hand, traffic occurs in space and time, i.e., spatiotemporal
features. If we explore the spatiotemporal traffic patterns, more insightful information may provide us an
understanding of freeway traffic that can be used for effective traffic management, traffic control, organization
and other engineering applications, which should increase freeway capacity, improve traffic safety and result in
high-quality mobility. In particular, surveying the congested traffic patterns could give us necessary informa-
tion for efficient collective management strategies, including such well-know methods as ramp metering and
traffic assignment. Varaiya (2005) pointed out that effective management on highway congestion through
investigation of traffic patterns can significantly reduce congestion. As such, disclosure of the freeway traffic
patterns deserves in-depth exploration.

Most of the early paradigms have employed stochastic processes to depict the traffic time series by using
some presumed mathematical (probabilistic) distributions. Taking headways as an example, May (1990) cat-
egorized their features into random, constant, and intermediate states. Wherein, headways categorized as the
intermediate case is the most difficult to model, although it is the most frequently encountered case in a real-
world situation. Likewise, traffic flows are often modeled by different stochastic processes. For instance, Pois-
son distributions are widely acknowledged in low-volume conditions where the mean and the variance of
counting traffic are about the same. Such traffic conditions can be associated with random headway states.
In contrast, binomial distributions are often utilized for near-capacity conditions where the mean of flow rates
is typically larger than its variance. These traffic conditions correspond to nearly constant headway states. The
intermediate flow count between these two boundary states can be very complex, and has been modeled by
different probabilistic distributions. In the late 1970s, autoregressive integrated moving average (ARIMA)
processes had become very popular in the study of linear stochastic time series (Box et al., 1976; Jenkins
and Alavi, 1981). Moreover, a large amount of literature has extended analytical tasks from pure time series
models to dynamically generalized linear models (Ansley et al., 1977; Clarke, 1983; Maravall, 1983; Liu and
Lin, 1991; Chang and Miaou, 1999; Lee and Fambro, 1999; Lingras et al., 2000; Williams, 2001; Williams and
Hoel, 2003), and to multivariate time-series state space models (Stathopoulos and Karlaftis, 2003) assuming
that the dynamics of traffic flow may follow a linear system or can be modeled with a time invariant linear
filter by Wold’s decomposition.

A certain number of previous studies also have aimed at the trajectories of traffic patterns varying in the
spatial domain for specific purposes such as geometric design of traffic systems and advanced traffic control.
Such spatial traffic patterns, which vary transversely across the highway between lanes and direction of travel
and longitudinally along the highway or street, may also provide useful information for control and design
purposes, such as incident detection, accident investigation, roadway design, etc. For example, Sheu et al.
(2004) presented a discrete-time nonlinear stochastic model to characterize the traffic states under the condi-
tion of lane-blocking incidents on surface street. In the late 1990s, a ‘‘three-phase traffic theory’’ was developed
to depict the spatiotemporal traffic patterns (Kerner, 1998, 1999, 2002a,b). Subsequently, several models,
including Kerner–Klenov model, CA model, FOTO and ASDA models, were presented to recognize and track
traffic breakdown and spatiotemporal congested patterns (Kerner and Klenov, 2002; Kerner et al., 2002,
2004). In addition, Kerner (2004) and Kerner et al. (2006) further pointed out a few drawbacks of fundamental
diagram approaches in describing of spatiotemporal congested freeway patterns. By Kerenr’s three-phase traf-
fic theory, the spatiotemporal relationship among traffic variables has been elaborately illustrated.

Other paradigms treat traffic series as a nonlinear system. For instance, Disbro and Frame (1989) utilized
chaos theory, a nonlinear system with aperiodic determinism, to describe traffic flow phenomena, and Dend-
rinos (1994), Zhang and Jarrett (1998), Lan et al. (2003) and Shang et al. (2005) in their analysis of traffic data
also found that chaotic characteristics exist in traffic systems. In addition, Smith et al. (2002) stated that the
presence of ‘‘chaotic like’’ behavior cannot be completely dismissed, especially during congestion when traffic
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flow is unstable and a stronger causative link may be operating in the time dimension. In reality, at times it is
very difficult to make such a spatiotemporal analysis of empirical data extracted from ‘‘isolated’’ stationary
detectors. Under such restriction – only temporal traffic patterns were investigated, nonlinear phenomena such
as equilibrium (stable) fixed points, periodic, quasi-periodic motions or chaotic characteristics, and stochastic
or random behaviors could be analyzed in a traffic dynamical system. Therefore, it may not be appropriate to
view any traffic series as a pure deterministic or complete random time-series. Instead, traffic flow dynamics
may be characterized in a comprehensive spectrum featured in the range between random and deterministic.
Only through sufficient evidence from field observations can we be sure of the dynamical behaviors of traffic
series, thereby in turn, enabling modeling (elucidating or predicting) the traffic series in a more accurate man-
ner for practical applications.

In view of the scarcity of information provided by one-dimensional traffic time-series, and the lack of con-
sidering sequential order in fundamental diagrams proposed by traffic stream models, the main objective of
this study was to characterize evolutional state trajectories in appropriately reconstructed state spaces and
chronological relationship for paired- and three-traffic variables in multiple dimensions at an isolated station
as well as between two nearby stations. From successive days with coarse scales to within a day using subtle
observation (20-s, 1-min, etc.), then to several days with different time intervals, we have attempted to gain in-
depth insights into the evolution of traffic time-series. By investigating the temporal patterns of traffic dynam-
ics in reconstructed state spaces, we can understand the characteristics of traffic series and further develop
effective managements, such as incident detection, extended delay prevention and ramp metering other than
those known in one-dimensional space. Furthermore, a close look at traffic time-series not only provides use-
ful information for application in ITS, but improves upon the shortage of linear models for conventional sto-
chastic processes. Aside from the above temporal patterns, we believe that this analysis may have a sense as
the first step for understanding of complex behavior of spatiotemporal features of congested traffic patterns.
The following content of the paper begins with the description of our rationales for methodology develop-
ment, followed by a brief of data acquisition and discussion of analytical results. We conclude with an elab-
oration of the research and suggestions for future research.

2. Reconstruction of state spaces

Reconstruction of state spaces involves two main steps: (1) determination of appropriate time delay and (2)
embedding dimension. In the study, the fundamentals of Takens’ method were utilized to determine appropri-
ate time delay. Note that Takens’ method has been extensively applied to many disciplines of science and engi-
neering (Abarbanel, 1996; Kants and Schreiber, 2004). In Takens (1981), it was proved that, under fairly
general conditions, the underlying dynamical system could be faithfully reconstructed from time series, in
the sense that a one-to-one correspondence can be established between the reconstructed and the true but
unknown dynamical systems. Details about the developmental procedures and rationales for state space
reconstruction were depicted in the following, including determination of time delay, embedding dimension
and how to measure the motion of trajectories in reconstructed spaces via largest Lyapunov exponent and
attractor dimension.

2.1. Determination of time delay

First, let us specify a dynamic system to elaborate traffic dynamics and its properties. In the study, traffic
dynamics (including flow, speed and occupancy) is named interchangeably as traffic time series or traffic series
referring to the temporal evolution of any traffic variable or its state trajectories measured in a chronological
sequence with equal time interval. Now, let x(t) denote the traffic series describing the time evolution in phase
space, then it can be expressed by on ordinary differential equation _xðtÞ ¼ F ðxðtÞÞ, t 2 R; or in discrete time
t = nDt by maps of the form xn+1 = f(xn), n 2 Z, where x is a state vector that is finite dimensional x 2 Rn,
and f and F are referred to as vector fields explicitly depending on n and t. The space Rn in which x evolves
is called a state space. A traffic time series can also be considered as a sequence of observations {St = s(xn)}
performed with some measurement function s(Æ), wherein the one-dimensional traffic time series embedded
into multiple dimensions reconstructed spaces is denoted as St = (st, st+s, st+2s, . . ., st+(m�1)s), t = 1, 2, . . ., N



Fig. 1. The concept of traffic series time delay in 1-D and 3-D spaces.
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where the parameter s is called time delay and the integer m is called embedding dimension. In space, geomet-
ric objects with non-integer dimensions are called fractals, whereas a geometric object, which characterizes the
long-term behavior of a system in the phase space, is called an attractor. Correlation dimension is a measure of
the extent to which the presence of a data point affects the position of the other point lying on the attractor.

Accordingly, time delay for any traffic series can be conceptualized with Fig. 1. In the top panel, the red,
blue and black circles3 represent the value of series at time t; t + s and t + 2s respectively; in contrast to the
low panel, one can find their corresponding circles in the multidimensional spaces through reconstruction. If
the time delay is different, the portrait in multidimensional spaces will change immediately. Thus, it is impor-
tant to decide a proper time delay when one map a time series into a multidimensional space, that is the quality
of reconstructed portraits for a traffic time series depends on the value of s. For small s, st and st+s are very
close to each other, whereas for a large value of s, st and st+s can be completely independent of each other, and
any connection between them is random. Consequently, we need a criterion for an intermediate choice that is
large enough so that st and st+s are independent but not completely independent in a statistical sense.

There are two alternatives to estimate the time delay required by the embedding theorem from an observed
traffic time series. The first one is calculating the linear autocorrelation function (ACF) of the data points and
selecting s as the time of its first zero-crossing. The rationale behind this approach is that the time when ACF
reaches a zero value marks the point beyond which the st+s sample is completely de-correlated from st. How-
ever, this approach is suitable only for linear time series. The second one involves the calculation of data from
a nonlinear autocorrelation function called average mutual information (AMI), which is proposed by Fraser
and Swinney (1986) and can be expressed as hij in Eq. (1):
3 Fo
hij ¼ �
X

i;j

pijðsÞ ln
pijðsÞ
pipj

ð1Þ
where for some partition on the real numbers, pij is the probability of finding a time series value in the ith
interval, and pij(s) is the joint probability that an observation falls into the ith interval and an observation time
r interpretation of the references to color in Fig. 1, the reader is referred to the web version of this article.
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s later falls into the jth interval. In theory, this expression has no systematic dependence on the size of the
partition elements and can be quite easily computed. There exist good arguments that if the time delayed mu-
tual information exhibits a marked minimum at a certain value of s, then this is a good candidate for a rea-
sonable time delay. In practice, one may not be interested in the absolute values of mutual information but
rather in its first minimum, and thus the first minimum of AMI usually signal a proper time delay for the time
series. Compared with ACF that only measures linear correlations, AMI also takes into account nonlinear
correlations, therefore this paper will use the AMI approach by Fraser and Swinney (1986) to determine
the proper time delay for traffic time series.

2.2. Determination of embedding dimension

The purpose of the reconstructed state spaces is to find an Euclidean space that is large enough so that the
set of points describing the attractor can be unfolded without ambiguity. Kennel et al. (1992) proposed a false
nearest neighbor (FNN) algorithm to determine the minimal sufficient embedding dimension m. The FNN
algorithm is to search for point si in the time series and to look for its nearest neighbor sj in an m-dimensional
space, followed by calculating the distance ksi � sjk and iterating both the points, and then computing the
ratio ei,j of Eq. (2) in an m-dimensional space.
ei;j ¼
jsmþ1

i � smþ1
j j

ksm
i � sm

j k
; . . . i; j ¼ 1; 2; . . . ;N ð2Þ
If the ratio ei,j exceeds a given heuristic threshold et, this point si is marked as having a false nearest neighbor,
wherein in general, the value of the threshold et is recommended as lying between 10 and 15 (Nayfeh and Bal-
achandran, 1995; Abarbanel, 1996). The criterion that the embedding dimension is high enough is that the
fraction of points for which ei,j > et is zero, or at least sufficiently small.
Fig. 2. The concept of measuring the distance of traffic time series by FNN algorithm.
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Fig. 2 illustrates an example depicting the FNN algorithm. In the top panel, the black circle is the nearest
point to the red circle4 within 500 points in one-dimension, wherein their Euclidean’s distance is 0.02. A simple
method is used to project the red circle and the black circle to the y-axis, whereafter it is apparent that the
distance between the two circles is very close. However, the value becomes 10.01 if one calculates the Euclid-
ean distance in a two-dimensional plane (middle panel) according to proper time delay. Because the ratio of
10.01 divided by 0.02 is greater than the threshold, et, thus, the black circle is a false neighbor of the red circle.
If one further calculates the ratio of distances between a two-dimensional plane and a three-dimensional space
(low panel), then it demonstrates that the ratio dropped drastically because the Euclidean distance is 10.4 in
the three-dimensional space. Since the ratio is no longer greater than the threshold, et, it suggests that an
embedding dimension of m = 2 is sufficient. After we examine every point in this time series according to
the above algorithm, the proper embedding dimension can be decided. However, if there are a multitude of
identical values in a realistic time series, then FNN algorithm probably cannot work precisely. In that case,
the embedding dimension would be determined approximately by correlation dimension instead.

3. Motions of traffic state trajectories

Once the appropriate time delay and embedding dimension for a traffic series are determined, one can map
the one-dimensional traffic series into m-dimensional reconstructed spaces. After that, one is interested in
knowing how traffic state trajectories moved in this space over time. Note that traffic state trajectories in this
paper refer to traffic variables (flow, time-mean-speed, percent occupancy), which were tracked and recorded
in reconstructed state spaces over time rather than vehicles changing their position with time evolution. This
paper makes use of the Lyapunov exponent to measure the rate of expansion or contraction of traffic state
trajectories and is described hereinafter.

3.1. Estimation of the largest Lyapunov exponent

If we take two points si and sj in the reconstructed spaces, and indicate the distance between them as
jsi � sjj = d0, then, after a time span Dt, it is expected that the new distance d will be equal to d = d0ekDt, where
k is called the Lyapunov exponent. For an m-dimensional space, the rate of expansion or contraction of tra-
jectories is described for each direction by one Lyapunov exponent, resulting in m different ks. Of the m dif-
ferent ks, the largest value k0 (largest Lyapunov exponent) is of main interest since it can be easily calculated
even without the explicit construction of a model for the traffic time series. If k0 is negative, the traffic state
trajectories will converge to a fixed point. If k0 is zero, the traffic state trajectories are periodic motions. If
k0 is positive, the traffic state trajectories may exhibit other motions such as an aperiodically deterministic
chaos or stochastic randomness (Hilborn, 2000; Kants and Schreiber, 2004).

In theory, the largest Lyapunov exponent can be used to identify the traffic state trajectories moving in the
reconstructed state spaces. However, in practice, there will be fluctuations in the calculation of the largest
Lyapunov exponent due to noisy traffic data. For instance, in a true state space, distances do not always grow
everywhere on the attractor at the same rate, and in fact they may even shrink locally. To minimize the influ-
ence of noisy field traffic data on calculating the largest Lyapunov exponent, one can employ an appropriate
averaging statistic when computing the average exponential growth of distance. To realize this, the following
procedures are proposed: (1) choosing a point si of the traffic time series in the reconstructed spaces and select
all neighbors with a distance smaller than r. (2) Computing the average over the distance of all neighbors to
the reference part of the trajectories as a function of the relative time. The logarithm of the average distance at
time t is some effective expansion rate over the time span Dt (plus the logarithm of the initial distance) con-
taining all the deterministic fluctuations due to projection and dynamics. (3) Repeating this for many values of
i, thereby averaging out the fluctuations of the effective expansion rates (Kants and Schreiber, 2004).

The above procedures can be represented as Eq. (3), wherein the curves of stretching factor f(Dt) exhibit a
robust linear increase, slope of which is an estimate of the largest Lyapunov exponent k0 per time step.
4 Fo
r interpretation of the references to color in Fig. 2, the reader is referred to the web version of this article.
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fðDtÞ ¼ 1

N

XN

i¼1

ln
1

jWðsiÞj
X

sj2WðsiÞ
jsiþDt � sjþDtj

0
@

1
A; i; j ¼ 1; 2; . . . ;N ð3Þ
where W(si) is the neighborhood of si with diameter r.

3.2. Estimation of the correlation dimension

Correlation dimension is a measure of the extent to which the presence of a data point affects the position of
other points lying on the attractor. Among the number of methods available for distinguishing between cha-
otic motions and stochastic motions of a time series trajectories, the correlation dimension is perhaps the most
fundamental one (Shang et al., 2005). A seemingly irregular phenomenon arising from any deterministic time
series dynamics will have a limited number of degrees of freedom equal to the smallest number of first-order
differential equations that capture the most important features of the time series. Thus, when one reconstructs
spaces with increasing dimensions for an infinite data set, a point will be reached where the dimensions are
equal to the number of degrees of freedom, and beyond which increasing the dimension of the representation
will not have any significant effect on the correlation dimension. Under this circumstance, we view the corre-
lation dimension of the attractor as saturated. If the attractor dimension is saturated in low-dimensions (nor-
mally, five-dimensions), then it signalizes that the time series trajectories exhibit aperiodic motions, which is
essentially deterministic chaos. In contrast, if an attractor dimension cannot reach saturation or is saturated in
very high-dimensions, then the trajectories of that time series could be stochastic.

Grassberger and Procaccia (1983) showed that correlation dimension d can be evaluated by using the cor-
relation integral l(r), which is the probability that a pair of points (si, sj) chosen randomly in the reconstructed
spaces are separated by a distance less than r. If N is the number of points in the reconstructed vector time
series St, the correlation integral can be approximated by the following sum in Eq. (4) (Grassberger and Pro-
caccia, 1983):
lN ðm; rÞ ¼
2

NðN � 1Þ
XN

j¼1

XN

i¼jþ1

Hðr � jsi � sjjÞ ð4Þ
where H denotes the Heaviside step function and jsi � sjj stands for the distance between points si and sj;
H(r � jsi � sjj) = 0, if r � jsi � sjj 6 0 and H(r � jsi � sjj) = 1, for r � jsi � sjj > 0. In the limit of an infinite
amount of data (N!1) and for small r, we expect lN to scale like a power law:
lðm; rÞ / ard ð5Þ
where a is a constant and d is the correlation dimension or the slope of the lnl(r) vs. ln r plot given by
d ¼ lim
r!0

lim
N!1

o ln lNðm; rÞ
o ln r

ð6Þ
To observe whether a time series exhibits deterministic features, the correlation dimension (or local slope) val-
ues are plotted against the corresponding embedding dimension values. If the value of the correlation dimen-
sion is finite, low and non-integer, then the system is possibly exhibiting as low-dimensional chaos. The
saturation value of the correlation dimension is defined as the correlation dimension of the attractor, or so-
called attractor dimension. In general, an embedding dimension (m) is no less than double the attractor dimen-
sion (2d) plus one. In contrast, if the correlation dimension increases without bound with increase in the
embedding dimension, then the system is considered as stochastic.

4. Empirical study

To illustrate the proposed model’s potential advantages in analyzing traffic dynamics, an empirical study
was conducted, where the main procedures of data acquisition and analytical results were provided in the
following.
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4.1. Data

In this study, traffic time-series were directly extracted from dual-loop detectors installed at a given 3–4-lane
mainline segment of the northbound Sun Yat-Sen Freeway of Taiwan, located in the northern area of Taipei
County. In order to discover the features of traffic time-series in different situations, we divided the collected
raw data into three groups. Data in the first group was counted aggregately by average flow, time-mean-speed
and percent occupancy per 5-min per approach. The data was extracted from station N27.9 near station 433,
collected from traffic inbounds to Taipei City. Data in the second group contained flow, time-mean-speed and
percent occupancy per 20-s per lane recorded in median lane. The data was collected from stations 402, 404,
421 and 433. Stations 402 and 404 are outbound from Taipei City, whereas stations 421 and 433 are inbound
to the City. Data in the third group was a processed data set, i.e., we combined 10-workday time-series, which
every workday time-series was come from the second group data. Then, we divided the combined time-series
into four subgroups according to four time-of-day intervals, i.e., 00:00–03:00, 06:00–09:00, 12:00–15:00 and
18:00–21:00. The purpose of processing the traffic time-series was to compare different features of traffic series
between four time-of-day intervals. Similarly, in order to examine the features between traffic time-series with
various time scales, in the second group, we further accumulated the 20-s traffic series into longer-term data,
including 1-min, 3-min and 9-min series, of which, flows were directly summed from each 20-s flow, speeds
were the weighted average of each 20-s time-mean-speed multiplied by its corresponding flow and occupancies
were the arithmetic mean of each 20-s occupancy. Likewise, in the first group, the 5-min approach data sets
were accumulated into 15-min, 30-min and one hour time-series via the above method. In addition, variation
in the traffic time-series is similar for the three groups and the traffic patterns change on different days, but
never exactly repeat. Fluctuations in the 20-s time series is the most severe, as the measured time interval gets
larger, the degrees of variation decline. It is noted that the traffic series extracted from ‘‘isolated’’ stations can
only provide us to explore the temporal patterns of traffic dynamics, not spatiotemporal features over several
adjacent segments. This is the restriction of our empirical investigation.
4.2. Higher-dimensional traffic patterns

The following demonstrates more interesting features of our empirical traffic series mapped in a recon-
structed state space. First, the 20-s traffic series for a typical workday at station 433 is reconstructed into
Fig. 3. Comparison of 1-D, 2-D and 3-D 20-s traffic series on a typical workday (station 433).



Fig. 4. Three-dimensional 1-min traffic series for five workdays (station 433).
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two- and three-dimensional state spaces with appropriate time delays. Fig. 3 compares the same traffic series
plotted in 1-D, 2-D and in 3-D spaces. With reference to time delay, it can be seen that points in 1-D numer-
ically change with time evolution, while in the 2-D diagram points not only change with time evolution but
also composed of st and st+s. Similarly, in the 3-D diagram every point is composed of st, st+s and st+2s. Con-
sequently, variation in 1-D correspond to the degree of spread in 2-D and 3-D spaces, in addition, the steep
fluctuations in 1-D correspond to different areas in 2-D or in 3-D spaces. On the other hand, the state trajec-
tories in the 2-D and 3-D diagrams change with time enabling the state trajectories to move back and forth.
However, the curves always move forward with time.

Fig. 4 presents the three-dimensional 1-min traffic series for five workdays at station 433. The different fea-
tures of traffic series in three-dimensional spaces from day to day are similar but not exactly the same. To see
the effect of time scale, Fig. 5 demonstrates the traffic patterns in three-dimensional reconstructed state spaces
measured in 20-s, 1-min, 3-min and 9-min intervals respectively for one workday at station 433. It is noticed
Fig. 5. Three-dimensional traffic series measured in various time scales (station 433).



Fig. 6. Three-dimensional 20-s traffic series in different times of day (station 433).
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that the traffic features become more explicit as the time scale gets coarser. Fig. 6 further compares the features
of 20-s traffic series over 24 h and within various times of day arranged from midnight to evening peak-hour
period, i.e., 00:00–03:00, 06:00–09:00, 12:00–15:00 and 18:00–21:00. Investigating the dynamical behaviors at
different times of day, one can find that the conspicuous dynamics of traffic state trajectories come mainly
from periods 06:00–09:00 and 18:00–21:00. In the early hours, when traffic is very calm, the occupancy trajec-
tories shrink to very low values, but the speed trajectories can vary rather significantly, which fully explains
heterogeneous driver characteristics. Under free flow conditions, some aggressive drivers may move very fast
while some conservative drivers may not, causing the wide diversity of speed dynamics. In contrast, during the
morning peak-hour period, speed trajectories tend to shrink to some low values while flow trajectories can
vary largely in a wide-range domain.
4.3. Illustrations of traffic state trajectory evolution

Let us take the 9-min traffic series as an example to further explore the dynamical behaviors of trajectories
in more detail. In order to trace the sequential order, we only illustrate a limited number of points of the
dynamics, as shown in Fig. 7, which clearly indicates the dynamical behaviors of state trajectories in the recon-
structed spaces. For a typical workday, the flow state trajectories move around the lowest corner, i.e., at the
coordinate (0, 0, 0) with less fluctuation at midnight (00:00–03:00). In the morning peak-hours (06:00–09:00),
however, the state trajectories advance along the diagonal direction and sometimes move back and forth as
time evolves, which continue to advance until the later morning peak-hours. During off-peak-hours (12:00–
15:00), the state trajectories fluctuate in the middle of the 3-D spaces. After evening peak-hours (18:00–
21:00), the state trajectories move back to the original place. The whole sequence of features of the traffic flow
series within a day are demonstrated in Fig. 8, which similarly shows that the motion of occupancy trajectories
advances along the diagonal direction from bottom to top in the reconstructed space. The difference between
the occupancy and flow state trajectories is that the range of motion for occupancy is smaller than that for
flow. Compared with flow and occupancy, the direction of motion for speed state trajectories is just the oppo-
site, i.e., from top to bottom. It can be concluded that the direction of traffic state trajectories in multidimen-
sional spaces corresponds to the trend of the traffic series in 1-D space, especially when the data is measured
on a coarse scale.

Fig. 9 shows a comparison between 1-D and 3-D spaces for successive traffic flow series. In the top panel,
the flow series goes from left to right with time evolution while the direction of traffic state trajectories goes
anti-clockwise with time evolution in reconstructed spaces. Four data points have been selected and marked



Fig. 7. The dynamics of 9-min traffic trajectories in various time-of-day in 3-D spaces (station 433).

Fig. 8. The whole-day dynamics of 9-min flow trajectories in 3-D spaces (station 433).
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with Arabic numerals 1, 2, 3, and 4 in the top panel, wherein time delays between paired points i.e., point 1 vs.
point 2; point 3 vs. point 4, are equal. After reconstruction, the four points were projected into the bottom
panel and correspondingly marked with the same Arabic numerals 1, 2, 3, and 4. From Fig. 9, it is found that,
in the top panel, the difference in flow between points 1 and 2 is lower than between points 3 and 4, therefore,
in the bottom panel the distance between points 3 and 4 is larger than between points 1 and 2. In addition, in



Fig. 9. Successive flow time-series in 1-D and its trajectories in 3-D reconstructed spaces (flow: vehicles per hour per approach).
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the bottom panel, one circle distance of trajectories going around the space approximately equals the variety
of flow from 00:00 to 24:00 in the top panel. However, it is noticed that not every circle moves smoothly, but
heads for one direction with variation and the degrees of variation increase by the time scale shortening.
4.4. Diverse patterns for traffic state trajectories

In this section, we employ the methodologies introduced in Sections 2 and 3 to further compute the related
parameters that can disclose the features of traffic series. The results are summarized in Tables 1–5. From
Table 1, it is found that the relationship between time delay and time interval is an inverse proportion. The
values of embedding dimension are five or six, which illustrate that the successive traffic series are not com-
posed of a disorder data set, but rather, some state trajectories are dominated by an intrinsic attractor, which
may be called as a ‘‘deterministic-like’’ feature. Furthermore, the numerals in the last column (correlation
dimension) represent attractor dimension changing with embedding dimension increasing. Further observing
the tendency for correlation dimension, it is easily noticed that the slope of curve is much smoother with
increasing embedding dimension, and as the time scale gets larger, the degree of smoothness becomes more
obvious. In addition, although the largest Lyapunov exponents are positive; however, they are almost nearly
equal to zero, which means that the successive traffic series in reconstructed spaces should be periodic trajec-
tories or they recur regularly day after day.

From Tables 2 to 4, it is found that the proper embedding dimensions for 20-s flow, speed and occupancy
state trajectories are around 9 and 10, which are rather high. It suggests that these 20-s traffic state trajectories
exhibit much more stochastic motions than deterministic-like motions, if observed within a typical workday.
Furthermore, the reason that the time delays of traffic series on different workdays, stations and time scales are
always equal to one is that the AMI exhibits a fairly low value at (t + 1) step, then the value does not drop
down to zero abruptly at following steps but gradually decrease. In other words, the time delays at (t + 1),
(t + 2), . . ., (t + m � 1) steps are relatively small corresponding to the time delay at t = 0, thus the time delays
(Table 1) can be considered as ‘‘one’’. From Table 3, however, it is found that the proper embedding dimen-



Table 1
Four parameters of successive one-month traffic series

Traffic
variable

Time
scales

Time delay
(s)

Embedding
dimension (m)

The largest Lyapunov
exponent

Correlation dimension (d)

Flow 5-min 61 6 0.002 (0.87, 1.64, 2.12, 2.56, 2.85, 3.01, 3.28,
3.36, 3.64, 3.89)

15-min 20 6 0.002 (0.87, 1.62, 2.06, 2.46, 2.80, 3.17, 3.60,
3.59, 3.87, 3.72)

30-min 10 5 0.005 (0.88, 1.66, 2.22, 2.72, 2.83, 3.16, 3.44,
3.46, 3.59, 3.72)

60-min 5 5 0.005 (0.88, 1.65, 2.10, 2.40, 2.46, 2.74, 2.71,
2.86, 2.74, 2.78)

Speed 5-min 84 6 0.001 (0.76, 1.49, 2.17, 2.74, 3.11, 3.33, 3.53,
3.76, 3.96, 4.13)

15-min 27 6 0.001 (0.79, 1.53, 2.15, 2.58, 3.14, 3.14, 3.18,
3.42, 3.65, 3.89)

30-min 13 5 0.005 (0.85, 1.64, 2.30, 2.65, 3.02, 3.13, 3.45,
3.72, 3.52, 3.70)

60-min 6 5 0.005 (0.86, 1.65, 2.17, 2.59, 2.62, 2.75, 2.87,
3.01, 3.16, 3.17)

Occupancy 5-min 61 6 0.002 (0.52, 0.99, 1.38, 1.73, 2.03, 2.25, 2.37,
2.42, 2.45, 2.48)

15-min 20 6 0.002 (0.70, 1.32, 1.84, 2.23, 2.48, 2.74, 3.14,
3.01, 3.01, 3.11)

30-min 10 6 0.003 (0.81, 1.51, 2.12, 2.69, 2.55, 2.91, 3.19,
3.05, 3.25, 3.41)

60-min 5 5 0.005 (0.79, 1.50, 2.07, 2.21, 2.45, 2.43, 2.67,
2.61, 2.76, 2.67)

Table 2
Parameters of 20-s traffic trajectories at different stations on a typical workday

Station Variable Time delay (s) Embedding dimension (m) The largest Lyapunov exponent Correlation dimension (d)

402 Flow 1 10 0.104 Not saturated
Time-mean-speed 1 9 0.044 Not saturated
Percent occupancy 1 9 0.101 Not saturated

404 Flow 1 9 0.085 Not saturated
Time-mean-speed 1 9 0.097 Not saturated
Percent occupancy 1 9 0.085 Not saturated

421 Flow 1 10 0.112 Not saturated
Time-mean-speed 1 9 0.066 Not saturated
Percent occupancy 1 9 0.036 Not saturated

433 Flow 1 10 0.081 Not saturated
Time-mean-speed 1 9 0.039 Not saturated
Percent occupancy 1 9 0.021 Not saturated
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sions for 1-min flow, speed and occupancy state trajectories are reduced to 6 and 7, lower than those of 20-s
measurements, in addition, in Table 4 the proper embedding dimensions have further reduced to 3 or 4 for the
9-min traffic state trajectories, which indicates that an initial deterministic-like pattern would have been
observed if the measured time interval gets longer.

From Table 5, the time delays of flow and occupancy, in contrast to those of a typical workday, are no
longer equal to one. Instead, like successive time-series, they show different values with various time scales.
In addition, the time delay declines with increasing time scale. Such change in time delays from one to specific
values indicates that the pattern of traffic series has probably changed. For instance, road users can drive



Table 3
Parameters of 1-min traffic trajectories for five workdays (station 433)

Date Variable Time
delay (s)

Embedding
dimension (m)

The largest Lyapunov
exponent

Correlation dimension (d)

2004. 02.02 Flow 1 7 0.108 Not saturated
Time-mean-speed 1 6 0.076 Not saturated
Percent occupancy 1 6 0.067 Not saturated

2004. 02.04 Flow 1 7 0.121 Not saturated
Time-mean-speed 1 6 0.085 Not saturated
Percent occupancy 1 6 0.057 Not saturated

2004. 02.06 Flow 1 7 0.134 Not saturated
Time-mean-speed 1 6 0.085 Not saturated
Percent occupancy 1 6 0.073 Not saturated

2004. 02.11 Flow 1 7 0.127 Not saturated
Time-mean-speed 1 6 0.077 Not saturated
Percent occupancy 1 6 0.075 Not saturated

2004. 02.12 Flow 1 6 0.164 Not saturated
Time-mean-speed 1 6 0.078 Not saturated
Percent occupancy 1 6 0.062 Not saturated

Table 4
Parameters of traffic trajectories measured with various time scales on a typical workday (station 433)

Time
scale

Variable Time delay
(s)

Embedding dimension
(m)

The largest Lyapunov
exponent

Correlation dimension
(d)

20-s Flow 1 10 0.081 Not saturated
Time-mean-speed 1 9 0.039 Not saturated
Percent
occupancy

1 9 0.021 Not saturated

1-min Flow 1 7 0.121 Not saturated
Time-mean-speed 1 6 0.085 Not saturated
Percent
occupancy

1 6 0.057 Not saturated

3-min Flow 1 4 0.198 Not saturated
Time-mean-speed 1 4 0.201 Not saturated
Percent
occupancy

1 4 0.120 Not saturated

9-min Flow 1 4 0.216 Not saturated
Time-mean-speed 1 3 0.320 Not saturated
Percent
occupancy

1 3 0.273 Not saturated
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freely in the early hours as long as they do not speed, i.e., the speed state trajectory is random so that the time
delay of speed-series is equal to one; embedding dimension is larger than five; the largest Lyapunov exponent
is positive and correlation dimension is not saturated. However, aside from midnight (00:00–03:00), in the
morning peak-hours 06:00–09:00, for example, commuters’ speeds are mainly confined by heavy traffic vol-
umes, thereby the time delay is no longer equal to one, instead diverse time delays together with evidence
of other parameters are exhibited. Hence, we are convinced that the random features must have disappeared.

Apart from time delay, Table 5 also provides additional details regarding embedding dimension. According
to the various embedding dimension in Table 5, the characteristics of very short-term traffic time-series (e.g.,
20-s and 1-min) seemingly should be stochastic because of relatively high dimensions. In addition, like the suc-
cessive traffic time-series, parts of the curve for correlation dimension in Table 5 gradually become smooth



Table 5
Parameters of 10-workday traffic trajectories measured in various time scales and intervals (station 433)

Time
interval

Time
scale

Time
delay

Embedding
dimension (m)

k0 Correlation
dimension

Flow 00:00–03:00 20-s 234 (6–7) �0.002 (0.4,0.9,1.3,1.7,2.1,2.6,3.0,3.3,3.3,3.3)
1-min 77 (6–7) 0.003 (0.4,0.8,1.2,1.6,2.0,2.4,2.5,2.8,3.1,3.5)
3-min 26 (5–6) 0.005 (0.5,0.9,1.3,1.7,2.1,2.6,2.7,2.9,3.0,3.1)
9-min 9 4 0.009 (0.5,0.9,1.2,1.5,1.6,1.8,1.9,2.1,2.4,2.5)

06:00–09:00 20-s 129 (10–11) 0.004 (0.8,1.5,2.1,2.7,3.3,3.8,4.3,4.5,4.9,5.5)
1-min 42 (8–9) 0.006 (0.8,1.6,2.2,2.8,3.4,3.8,4.0,4.5,4.7,4.8)
3-min 14 5 0.009 (0.8,1.5,2.1,2.4,2.6,2.8,2.8,3.0,3.2,3.4)
9-min 4 4 0.010 (0.8,1.4,1.9,2.0,2.4,2.6,2.7,2.8,3.1,3.3)

12:00–15:00 20-s 246 (12–13) 0.002 (0.7,1.4,2.0,2.6,3.3,3.9,4.6,5.1,5.4,6.0)
1-min 82 (10–11) 0.005 (0.8,1.6,2.3,2.8,3.3,3.6,4.4,4.7,4.8,5.3)
3-min 28 (8–9) 0.011 (0.8,1.6,2.4,3.1,3.9,4.0,4.4,4.6,4.7,4.9)
9-min 10 (8–9) 0.014 (0.9,1.8,2.6,3.2,3.6,3.9,4.1,4.1,4.2,4.4)

18:00–21:00 20-s 182 (10–11) 0.005 (0.7,1.5,2.2,2.9,3.3,4.0,4.3,4.5,5.1,5.6)
1-min 62 (10–11) 0.007 (0.8,1.6,2.4,3.1,3.6,4.3,4.6,4.8,5.2,5.3)
3-min 21 7 0.009 (0.9,1.7,2.2,2.5,2.8,2.9,3.2,3.3,3.6,3.7)
9-min 7 6 0.012 (0.8,1.5,2.0,2.2,2.5,2.7,2.8,3.1,3.3,3.5)

Speed 00:00–03:00 20-s 1 12 0.02 Not saturated
1-min 1 8 0.08 Not saturated
3-min 1 6 0.04 Not saturated
9-min 1 5 0.05 Not saturated

06:00–09:00 20-s 115 8 0.006 (0.6,1.2,1.7,2.3,2.8,3.3,3.8,4.1,4.4,4.5)
1-min 38 6 0.007 (0.6,1.1,1.6,2.1,2.6,3.1,3.4,3.5,3.6,3.9)
3-min 13 5 0.008 (0.6,1.1,1.5,2.0,2.4,2.7,2.8,2.9,3.0,3.0)
9-min 5 5 0.009 (0.6,1.0,1.3,1.6,1.9,2.1,2.2,2.2,2.2,2.2)

12:00–15:00 20-s 92 10 0.001 (0.5,0.9,1.4,1.8,2.3,2.8,3.2,3.6,4.0,4.6)
1-min 32 7 0.003 (0.5,0.9,1.3,1.7,2.2,2.6,3.0,3.3,3.7,4.0)
3-min 10 6 0.005 (0.4,0.7,1.0,1.4,1.7,2.0,2.3,2.6,2.7,2.8)
9-min 5 5 0.006 (0.3,0.6,0.8,1.1,1.3,1.5,1.6,1.9,2.1,2.2)

18:00–21:00 20-s 149 10 0.009 (0.7,1.4,2.1,2.8,3.5,4.1,4.8,5.0,5.6,5.8)
1-min 60 8 0.013 (1.0,1.4,2.1,2.8,3.6,4.2,4.7,5.0,5.2,5.6)
3-min 20 4 0.028 (0.8,1.6,2.4,3.2,3.8,4.1,4.6,4.9,5.2,5.5)
9-min 8 4 0.029 (0.8,1.8,2.7,3.5,3.7,4.1,4.,0,4.1,4.2,4.2)

Occupancy 00:00–03:00 20-s 231 (7–8) �0.001 (0.6,0.9,1.5,1.9,2.2,2.7,3.2,3.2,3.2,3.2)
1-min 77 (7–8) 0.003 (0.5,0.8,1.4,1.7,2.1,2.5,3.0,3.2,3.5,3.7)
3-min 26 (6–7) 0.004 (0.5,0.8,1.4,1.7,2.3,2.6,3.1,3.2,3.5,3.9)
9-min 9 5 0.010 (0.5,0.8,1.4,1.6,2.2,2.8,2.9,3.1,3.4,3.8)

06:00–09:00 20-s 115 (8–9) 0.004 (0.8,1.6,2.2,2.6,3.3,3.7,4.1,4.3,4.6,4.9)
1-min 39 (7–8) 0.006 (0.8,1.6,2.2,2.8,3.4,3.8,3.9,4.3,4.7,4.8)
3-min 13 6 0.011 (0.8,1.5,2.4,2.7,3.2,3.3,3.3,3.4,3.5,3.6)
9-min 5 5 0.013 (0.7,1.4,1.8,2.2,2.5,2.8,3.0,3.0,3.1,3.3)

12:00–15:00 20-s 89 (8–9) 0.002 (0.7,1.4,1.7,2.2,2.3,2.8,3.4,3.7,3.9,4.0)
1-min 30 (6–8) 0.004 (0.8,1.5,1.8,2.2,2.4,2.6,3.2,3.4,3.4,3.5)
3-min 10 5 0.009 (0.8,1.4,1.7,2.1,2.3,2.5,2.6,2.8,3.1,3.4)
9-min 5 4 0.010 (0.6,0.8,1.6,1.8,2.3,2.4,2.6,2.6,2.6,2.7)

18:00–21:00 20-s 182 (9–10) 0.009 (0.7,1.5,2.2,2.5,3.2,3.4,3.6,3.8,3.9,4.2)
1-min 60 6 0.011 (0.8,1.5,1.8,2.4,2.6,2.8,3.4,3.6,3.8,3.9)
3-min 20 5 0.02 (0.8,1.6,1.9,2.3,2.5,2.7,3.2,3.3,3.6,3.7)
9-min 7 5 0.02 (0.6,1.3,1.6,1.8,2.2,2.5,2.6,2.8,2.8,2.9)
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with increasing embedding dimension, which indicates that an initial attractor has been developing to make
correlation dimension be saturated. Finally, the negative values of k0 for flow and occupancy in the early
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hours suggest that flows and occupancy at such times measured in 20-s intervals should be equivalent to fixed
point under steady state. Such pattern could result from the fact that traffic flow and occupancy are so lulled
(very few travelers going into City) that the state trajectories eventually converge to fixed points in recon-
structed state spaces.
5. Some observed details for paired- and three-variable traffic evolutions

The above empirical study has not only demonstrated the traffic patterns by mapping the 1-D traffic series
into 3-D state spaces, but has also estimated the most appropriate time delay and embedding dimensions for
real-world traffic series. Apart from these, the present paper further compares the paired (speed-flow, speed-
occupancy, and flow-occupancy) traffic features with and without relation to the sequential order. Fig. 10
illustrates the 9-min paired-traffic features on a typical workday (station 421). From the upper panel (without
sequential order), one can at most figure out the relationships between speed-flow, speed-occupancy and flow-
occupancy. However, these relationships do not explain the detailed evolution of traffic behaviors. From the
lower panel (with sequential order), in contrast, we can trace the detailed evolution of traffic behaviors. Obvi-
ously, sequential order is taken into consideration and more detailed information on traffic evolution dynam-
ics can be found, which could help understand the possible causes of formation of congested traffic phase in
such a way that one could propose more effective traffic managements, e.g., regulation of low-speed vehicles in
free-flow phase, determination of start-up for ramp metering, and so on.

To illustrate the more detailed information, we trace some selected points to elucidate the daily evolution of
the 9-min paired-traffic by observing the chronological order of speed-flow diagram. We start with the first
point in the early hours at time 01:12 (flow: 7 vehicles/9-min, speed: 101 kph) at the upper left corner indicat-
ing a free traffic phase. As time evolves, the dynamics of speed-flow advances along a southeast direction to the
second point in the morning peak hours at time 08:25 (289 vehicles/9-min, 80 kph), which moves southbound
to the third point near noon at time 11:58 (313 vehicles/9-min, 60 kph) indicating a congested traffic phase.
After that, the dynamics moves back and forth in the middle of diagram, representing phase transitions, dur-
ing the day-time off-peak-hours, e.g., the fourth point at time 15:12 (129 vehicles/9-min, 87 kph). After the
Fig. 10. The paired-traffic relationship and dynamics (station 421, 2004.02.04).



Fig. 11. The paired-traffic relationship and dynamics (station 433, 2004.02.04).
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afternoon peak-hours the dynamics of speed-flow returns to the original upper left corner (free traffic phase);
e.g., the fifth point at time 23:08 (48 vehicles/9-min, 97 kph).

In the light of the sequential order of speed-flow dynamics, we can see that congestion or near congestion
can easily formulate as traffic switches from a high-speed, low-volume free-flow phase to an irregular moder-
ate-speed, moderate-volume synchronized phase or the low-speed, low-volume congested phase. In reality, the
transition occurs whenever the occupancy has exceeded a critical level. Once the traffic dynamics enters the
congestion phase, it takes a long time for traffic to return to free-flow, and meanwhile delay accumulates.
We also notice that from Fig. 10 there is a sixth point in the early hours at time 02:22 (136 vehicles/9-min,
53 kph) which indicates a relatively slow traffic flow, an outlier for free flow. It could have arisen from erratic
driver behaviors, heterogeneous vehicle performances and any incident all the time. In contrast to Fig. 10, the
paired-traffic in Fig. 11 seems to be quite fluent. From the locations at station 433 and station 421, one can
definitely know that commuters regularly drive vehicles to work from their origin through station 433 to the
destination (station 421) in the morning peak-hour. Such situations have caused congestion or near congestion
traffic phase at station 421. Although a congestion traffic phase, i.e., high volume (235 vehicles/9-min), low
speed (30 kph), high occupancy (33.1%) can also be seen at station 433 at rush hour, the congested traffic
phase disappears after morning peak-hours. Compared with station 433, the congested traffic phase at station
421 does not disappear instantaneously but get worse because of the tremendous number of vehicles contin-
uously coming from on-ramps. Hence, for seriously congested locations, such as station 421, had a rapid
detection system successfully diagnosed the recurring congestions and a smart control measure actuated
accordingly, the congestions have been immediately mitigated or alleviated.

In a similar way, three-variable traffic (flow–speed–occupancy) dynamics in three-dimensions is shown in
Fig. 12. The trajectory moves from the coordinate (flow = 0, speed = 100, occupancy = 0), advances along
a diagonal direction, i.e., coordinate (flow = 350, speed = 40, occupancy = 50) till morning peak-hours, when
it moves back and forth as time evolves. Finally, similar to the one-day dynamics, the trajectory moves back to
the original coordinate. In order to understand the progression in traffic dynamics, the purple lines in Fig. 125
5 For interpretation of the references to color in Fig. 12, the reader is referred to the web version of this article.



Fig. 12. The flow-speed-occupancy dynamics in three-dimensions.
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represent those speeds less than 70 kph, and they appear intermittently among the blue lines which speed is
over than 70 kph. It suggests that the quality of traffic flow progresses in a moderately dense platoon, in which
traffic cannot move smoothly, but moves in a stop and go motion. If traffic data is collected from upstream
ahead of a bottleneck, some trajectories of purple lines would probably not appear intermittently, but show
together in some part of space. Obviously, from traffic control and management practice perspectives, depict-
ing traffic characteristics with three variables simultaneously and with sequential order in three dimensional
spaces is more subtle than just presenting any of these three variables in one-dimensional space.

Summarizing, the speed-flow dynamical graphs with sequential order can not only interpret the conven-
tional speed-flow relationship but also present details of traffic phase-transition, which could provide more
useful information for management and control purposes. Similarly, Figs. 10 and 11 have been used to com-
pare graphical data for the dynamics without sequential order and with sequential order. From the above
observations, we have learned that there are various traffic phases under normal circumstance: a free flow
phase, which typically takes place in the early hours; a moving jam phase, which typically happens in the peak
periods; and a synchronized traffic phase, a repeated back and forth transition, which more likely coexists with
a moving jam.
6. Discussions

In this study, real world traffic variable (flow, speed, and occupancy) patterns extracted from isolated
detecting stations have been characterized with varied trends and drastic fluctuations in reconstructed state
spaces. Meanwhile, some traffic evolutions for paired- and three-variable were observed. After comparing
the diverse features of traffic time series in reconstructed state spaces, we summarize some important findings
and explain their nature here.
6.1. Temporal patterns

According to the parameters of successive one-month vs. one-day traffic time-series, the former state tra-
jectories, which exhibit distinct time delay, unchangeable embedding dimension, near zero largest Lyapunov
exponent and saturated correlation dimension, are characterized as having periodic-like patterns, which is as
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anticipated. In contrast, the latter state trajectories of very short times (i.e., 20-s and 1-min) display random
motions, and since their time delay is equal to one, embedding dimension is larger with increasing quantity of
data, and correlation dimension is not saturated. Both state trajectories exhibit nonlinear dynamic features,
one is the periodic-like dynamic and the other is the random dynamic. Following the above, we investigated
a 10-workday traffic time-series at various times of day and inspected their parameters. The diversity of pat-
terns which contain fixed point, deterministic-like patterns and stochastic patterns were explored. In other
words, different nonlinear phenomena were found to emerge depending on the measured time scales, time-
of-day and history data. However, the chaotic feature was not obtained in traffic time-series extracted from
dual-loop detectors. Perhaps, further inspecting spatiotemporal features of congested traffic patterns can
answer the question about chaotic or other complex behavior traffic characteristic.

We regard those traffic patterns attributed to deterministic-like dynamics as having some intrinsic rules gov-
erning the regularity. What do the real meanings or phenomena imply for such intrinsic rules in our daily life?
We may assume that most trip makers get to work by 9 am and finish work at 5 pm on workdays, that is, they
leave their homes or work places at approximately the same times, using the same modes, and/or choosing the
same routes everyday. Such macroscopic regularities have caused ‘‘similar but not exactly the same’’ trends
(i.e., slight fluctuations still exist) from day to day. Moreover, due to the constraints of travel demand, road-
way capacity, speed limit, and so on, the observed traffic flows would not go beyond two extreme values: zero
(free or jam) flow and maximum (capacity) flow. The speed and occupancy dynamics are also bounded within
two extreme values (from free-flow speed or near zero occupancy to near zero speed or jammed occupancy).
Thus, if we investigate the traffic time-series on successive days, many recurrent curves are expected to be
exhibited in 1-D plot, and cyclic patterns would appear in 3-D spaces. The macroscopic regularities indeed
dominate the shape (trend) of such deterministic-like traffic patterns.

However, it is noticed that not every driver is completely confined by such macroscopic regularities. The
majority of drivers always control his/her vehicle at a desired speed and safe spacing and clearance so as to
best interact with roadway environments and neighboring vehicles. The presence of human behavior is per-
haps a key factor making traffic dynamics more complicated than many other physical systems that do not
involve human behavior. Besides, roadway traffic is essentially composed of heterogeneous vehicles with
diverse powers or maneuver capabilities. Hence, due to the heterogeneity across drivers and vehicles, the
microscopic traffic dynamics will always fluctuate and surge along with the macroscopic traffic trend. Namely,
the heterogeneity of drivers and vehicles not only elucidates the random feature of one-workday traffic series
but also explains the phenomenon of ‘‘similar but not exactly the same’’ patterns for successive (many-work-
day) traffic series.

6.2. Spatiotemporal patterns

Although our research attempt only aimed at characterizing the evolutional trajectories of time-varying
traffic features, we also probed the traffic phases between upstream and downstream stations in this paper.
For example, we found congested traffic at station 421 in the morning peak-hour. According to three-phase
traffic theory, congested traffic occurs most at freeway bottlenecks where can be a result of road-works, on-
and off-ramps, a decrease in the number of freeway lanes, road curves and road gradients, etc. For an isolated
bottleneck, there are two types of patterns in congested traffic: ‘‘synchronized flow pattern (SP)’’ and ‘‘general
pattern (GP).’’ The GP is a congested pattern, which consists of synchronized flow upstream of an effectual
bottleneck and wide moving jams that emerge spontaneously in that synchronized flow. For two or more adja-
cent bottlenecks, then an expanded congested pattern (EP) can be formed. In the EP, a synchronized flow
phase or a complex interactive process among various moving jams could be anticipated. However, conven-
tional theories, such as shock wave theory and queuing theories, and those models based on the fundamental
diagram approach or a few results simulated by cellular automata (CA) models are hampered by lack of capa-
bility of predicting fundamental empirical features of phase transitions and spatiotemporal congested pattern
features of real traffic. This is because spatiotemporal solutions of these models are in a fundamental quali-
tative contradiction with empirical (measured) traffic breakdown and the resulting congested patterns. Only
the main spatiotemporal pattern features are fully understood, additional study of some nonlinear pattern fea-
tures can be performed (Kerner, 2004).
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By contrast, in the example of our paired-traffic features, speed and flow can transform from a free-flow
phase in the early hours to a synchronized or congested phase in the morning peak-hours, during which
the 9-min lane-flow rates can range from 7 vehicles to 289 vehicles and the corresponding time-mean-speed
can drop from 101 kph to 80 kph. This suggests that an influx of vehicles in the morning peak-hour pushes
the occupancy over a critical level, forcing the free-traffic phase into the moving jam or synchronized phase.
The onset of traffic congestion is accompanied by a sharp drop in average vehicle speed, known as ‘‘the break-
down phenomenon’’. Even near noon, the flow rates remain high and the congested traffic does not disappear
until around 14:00 pm. Unfortunately, the afternoon peak-hour arrives quickly thereafter thus the traffic state
does not return to free-flow. Such irregular back-and-forth speed-flow features in the real world indicate that
the synchronized traffic phase and the moving jams are alternative, which is similar to general pattern (GP).
For such recurrent congestion, if a smart ramp metering instantaneously holds back the incoming vehicles in
such a way that occupancy is kept below its critical value, traffic would flow freely and congestion could be
avoided altogether. In sum, our observed paired- and three-variable traffic evolutions at the isolated detectors
in effect provide evidence in support of Kerner’s three-phase traffic theory and tackle the field problems.
7. Concluding remarks

In this paper, we have conceptualized the reconstruction of traffic series by creating appropriate embedding
spaces to investigate the temporal traffic patterns. According to our empirical results, the proposed analytical
method permits extracting more information on traffic series in reconstructed state spaces, particularly,
unfolding the motions of flow, speed, and occupancy state trajectories, which could converge, diverge, or per-
form periodic motions. However, in contrast with temporal traffic patterns that occur only in time at specific
locations, spatiotemporal traffic patterns that occur in both time and space can also be investigated. Different
methodologies having certain advantages may achieve some purposes and thus we intend to further investigate
more spatiotemporal patterns in future research.

In reality, it remains difficult to reproduce the reconstructed traffic time series by mathematical forms to
serve as a dynamic traffic forecasting application in shorter time scales, such as 20-s and 1-min. Therefore,
one challenge for further study is to develop logical basis for predictive models and control tactics by utilizing
such processed traffic information from the reconstructed state spaces.
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