
WIRELESS COMMUNICATIONS AND MOBILE COMPUTING
Wirel. Commun. Mob. Comput. 2008; 8:245–253
Published online 25 September 2006 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/wcm.458

SIPv6 analyzer: an analysis tool for 3GPP IMS services

Whai-En Chen, Yueh-Hsin Sung and Yi-Bing Lin*,y

Department of Computer Science and Information Engineering, National Chiao Tung University, Taiwan,

Republic of China

Summary

The 3rd Generation Partnership Project (3GPP) defines IP Multimedia Core Network Subsystem (IMS) to support

IP-based multimedia services. IMS utilizes protocols such as IP version 6 (IPv6), Session Initiation Protocol (SIP),

and Real-time Transport Protocol (RTP) to deliver the multimedia content. This paper proposes an analysis tool

referred to as SIPv6 Analyzer to investigate the IMS-related protocols during IMS service deployment. The SIPv6

Analyzer not only dissects the protocol headers but also provides user-friendly functions such as message flow

generation and audio/video replay for IPv6, SIP, and RTP. We describe the design of the SIPv6 Analyzer and use

examples to illustrate how it works. Copyright # 2006 John Wiley & Sons, Ltd.

KEY WORDS: 3GPP; IMS; IPv6; SIP; RTP

1. Introduction

The 3rd Generation Partnership Project (3GPP) de-

fines IP Multimedia Core Network Subsystem (IMS)

to support IP-based multimedia services [1]. 3GPP

IMS utilizes Session Initiation Protocol (SIP) [2] and

Real-time Transport Protocol (RTP) [3] to transfer the

Voice over IP (VoIP) signaling and multimedia in-

formation. IP version 6 (IPv6) is also employed in

IMS to provide large address space and new features

not found in IPv4, including security, Quality of

Service (QoS), and Plug-and-play [4].

During IMS service deployment, it is essential to

utilize analysis tools for debugging and investigation

of the IMS-related protocols. A potential analysis tool

is Ethereal [5], an open-source analyzer which can

dissect more than 700 protocol headers including

IPv6, SIP, and RTP. However, Ethereal has the follow-

ing disadvantages: (1) Ethereal only provides limited

SIP message flow illustration capability (see Section 4

for a complete illustration supported in our solution).

(2) Ethereal does not provide audio/video replay for

IMS services. (3) Ethereal cannot automatically re-

trieve SIP messages that are not delivered in default

port number 5060.

To support these functions for IMS service inves-

tigation, this paper develops a tool called SIPv6

Analyzer. This tool provides the following functions.

� The SIP dialog list function organizes the related

SIP messages in the same SIP dialogs. For an SIP

dialog, the SIP message flow generation function

plots message flow and therefore provides effective

message path tracking for IMS multimedia calls.

� The audio/video replay function organizes the RTP

packets into the RTP connections and plays the

audio or the video delivered in these RTP connec-

tions. Through this function, the users can evaluate

*Correspondence to: Yi-Bing Lin, Department of Computer Science, National Chiao Tung University, 1001 Ta Hsueh Rd.,
Hsinchu, Taiwan 300, Republic of China.
yE-mail: liny@cs.nctu.edu.tw

Copyright # 2006 John Wiley & Sons, Ltd.



the quality of the captured IMS calls. Moreover, the

audio/video replay function can be used to wiretap

the IMS calls for lawful interception.

� The statistic function collects the packet counts, the

inter-arrival distributions, and the jitter statistics for

the IMS protocols.

This paper is organized as follows. The system archi-

tecture of the SIPv6 Analyzer is described in Section

2. Section 3 presents the design and operation of the

key component (i.e., the SIP/RTP Processor) of the

SIPv6 Analyzer. Section 4 demonstrates the SIP

message flow and RTP replay functions through an

IMS call example.

2. System Architecture

Figure 1 illustrates the SIPv6 Analyzer architecture

that consists of three major modules. The WinPcap

Module (Figure 1(1)) utilizes the open-source

Windows Packet Capture (WinPcap) library [1] to

capture the packets in the kernel level. The Packet

Processing Module (Figure 1(2)) obtains the packets

from the kernel-level WinPcap Module, classifies the

packets, and provides an interface for the user-level

applications to analyze the captured packets.TheUser

Interface(UI)Module(Figure1(3))presents the captured

packet information through dialog/session list, mes-

sage flow, audio, and video.

2.1. The Packet Processing Module

The Packet Processing Module consists of five com-

ponents. Upon receipt of a packet from the WinPcap

Module, the Packet Preprocessor (Figure 1 ) re-

trieves the IP address and the port number information

from the headers and stores this information together

with the original packets into the Packet Buffer

(Figure 1 ). The Packet Preprocessor maintains a

Filtering Rule Table (Figure 1 ) and invokes the

WinPcap Module to filter the specific packets based

on the filtering rules. For a captured packet, the Packet

Preprocessor forwards the packet pointer to the

Ethereal Packet Processor (Figure 1 ) and SIP/RTP

Processor (Figure 1 ). The Ethereal library [5] is

utilized to implement the Ethereal Packet Processor

for packet header dissection. The SIP/RTP Processor

retrieves the SIP and the RTP packets from the

captured IP packets and organizes them into the

corresponding sessions. The Statistic Processor

(Figure 1 ) collects the packet counts, the inter-

arrival distributions, and the jitter statistics of the

captured packets.

Most analyzers (e.g., Ethereal and Sniffer) set the

filters ‘udp port 5060’ and ‘udp port 9000’ to capture

the SIP and the RTP packets, respectively. However, a

SIP User Agent (UA; i.e., an IMS user equipment)

may use TCP to transmit SIP messages. The SIP UA

may also utilize an arbitrary port number for SIP

message delivery. Therefore, if the fixed-port filter

(i.e., udp port 5060) is used to capture the SIP

messages, the SIP messages carried by TCP and/or

flexible port numbers will be ignored and ‘wrong

packets’ may be captured for IMS service analysis.

The above issue can be resolved as follows. We

note that the first portion of a SIP message is the

request-line or the status-line. The last word in

the request-line and the first word in the status-line

are the ASCII keyword ‘SIP/2.0’ that is used to

identify the SIP version. To prevent mis-filtering any

of the SIP messages, the SIP/RTP Processor checks

the TCP or UDP payload to see if the first line con-

tains the keyword. If so, an SIP message is identified.

Similarly, setting the fixed filters (e.g., udp port

9000) may capture non-RTP packets that use port

number 9000 or ignore the RTP packets that do

not use port number 9000. We resolve this issue as

follows. Since the RTP connection information is

exchanged through the SIP messages, the SIP/RTP

Processor retrieves the correct IP address and port

number information of the RTP packets from the

Session Description Protocol (SDP) [7] c and m fields

in a SIP message. Then the SIP/RTP Processor can

accurately recognize the RTP packets based on this

information. After a RTP packet is identified, the SIP/

RTP Processor organizes it into the correspondingFig. 1. System architecture of the SIPv6 Analyzer.

246 W.-E. CHEN, Y.-H. SUNG AND Y.-B. LIN

Copyright # 2006 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2008; 8:245–253



RTP connection based on the SDP fields and the

Synchronization Source (SSRC) value [3].

2.2. The User Interface Module

The UI Module consists of three components. The

Input Component (Figure 1 ) receives the instruc-

tions from the user and requests the Action Processor

(Figure 1 ) to execute the instructions. In the Action

Processor, the Command Interpreter (Figure 1 )

invokes the Ethereal Packet Processor, SIP/RTP Pro-

cessor, Statistic Processor, or Packet Preprocessor to

execute the instructions from the Input Component.

After a command execution, the Action Processor

may obtain the packet and session information

through the Packet Viewer (Figure 1 ) and the Ses-

sion Viewer (Figure 1 ). It then invokes the Output

Component (Figure 1 ) to present the results through

Windows-based multimedia tools. For example,

the Audio Player (Figure 1 ) and Video Player

(Figure 1 ) replay the RTP voice and the video.

The Flow Generator (Figure 1 ) plots the SIP mes-

sage flows based on the IP addresses or the SIP header

fields. The Statistic Generator (Figure 1 ) displays

the packet related statistics by using tables, tree views,

and bar charts.

Through the above components, the UI Module

provides the following convenient functions.

� Since the captured SIP messages of various ses-

sions are usually interleaved, the UI Module ob-

tains the SIP dialogs form the SIP/RTP Processor

and lists them into a table (Figure 6 ). Through

this function, a user can conveniently observe the

sorted SIP messages in a SIP dialog instead of the

interleaved messages.

� For each SIP dialog, the UI Module can generate a

SIP message flow (Figure 6 ) based on the IP

addresses or the SIP header fields. Through this

function, a user can identify all network nodes that

are visited in the SIP signaling path.

� The UI Module supports the H.263 video codec and

the audio codecs including G.711u, G.711a, and

GSM. Therefore, one can replay the audio or the

video carried in the selected RTP connection

(Figure 6 ).

3. The SIP/RTP Processor

This section describes the SIP/RTP Processor, which

is the major component of the SIPv6 Analyzer.

As illustrated in Figure 2, the SIP/RTP Proces-

sor consists of a SIP Session List (Figure 2 ), a

SIP Parser (Figure 2 ), a RTP Connection List

(Figure 2 ), and a Dispatcher (Figure 2 ).

The SIP Session List is a linked-list structure that

stores the SIP session information (see Figure 3). Each

entry in the SIP Session List includes a Session

Identifier (Figure 3 ) to indicate the SIP session

and a linked list which stores the pointers to the

packet associated with that session (Figure 3 – ).

The Session Identifier of a SIP session consists of the

SIP From, To, and Call-ID header fields.

An SIP call setup transaction consists of an INVITE

message (Figure 3 ), zero or more provisional mes-

sages (e.g., 100 Trying message and 180 Ringing

message; see Figure 3 and ), a 200 OK message

(Figure 3 ), and an ACK message (Figure 3 ). In

this transaction, both the INVITE and the 200 OK

messages contain the destination IP address and port

number information in the SDP c and m fields. When

the call setup transaction is complete, the RTP con-

nections between the calling party and the called party

are established.

An RTP session consists of two one-way connec-

tions. The RTP Connection List (Figure 4(a)) maps

the RTP packets to the corresponding RTP connec-

tions. Each connection entry in the RTP Connection

List includes a source (SRC) IP field, a destination

(DST) IP field, an SRC Port field, a DST Port field,

a SSRC field, and a linked list which stores the

packet pointers belonging to the corresponding RTP

Fig. 2. The SIP/RTP Processor.

Fig. 3. A SIP Session List example.

SIPv6 ANALYZER 247

Copyright # 2006 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2008; 8:245–253



connection. The SRC IP, the DST IP, and the DST port

fields are used to check if a packet is for RTP, and all

above five fields are used to classify the RTP packets

into their corresponding connections.

Two RTP transmission methods, asymmetric and

symmetric, are defined in Internet-Drafts [8]. In

Figure 4(a), Entries 1 and 2 represent the pair of

two connections for an asymmetric RTP session, and

Entries 3 and 4 represent the pair of two connections

for a symmetric RTP session. In an asymmetric

connection, an SIP UA uses a port (e.g., 9000) to

receive RTP packets and another port (e.g., 9002) to

send RTP packets. In a symmetric connection, a SIP

UA uses the same port (e.g., 9000) to send and receive

the RTP packets.

The SIP Parser (Figure 2 ) cannot determine

whether a connection is asymmetric or symmetric

based on the SIP messages. Therefore, before the first

packet of a RTP connection is captured, the SIP Parser

inserts a void ‘*’ mark into the SRC Port fields (see

Figure 4(b), Entries 1 and 2) of the RTP Connection

List. The ‘*’ mark represents that the source port

number is not specified and should be retrieved from

the first captured packet of the RTP connection. Since

SIP messages do not contain the SSRC value,

the SSRC field is also filled by ‘*’. After receiving

the first RTP packet of a connection, the Dispatcher

fills these values into the SRC Port and the SSRC

fields.

Consider the following SIP/RTP packet handling

example. Assume that the IP address of the calling

party (i.e., wechen@cs.nctu.edu.tw) is 3ffe:3600:1::1,

and that of the called party (i.e., liny@cs.nctu.edu.tw)

is 3ffe:3600:1::2. The calling party and the called

party use port number 5060 to send and receive SIP

messages. Assume that the calling party and the called

party use port number 9000 to receive RTP packets

and port number 9002 to send RTP packets. After

initialization of the SIP/RTP Processor, the SIP

Session List (Figure 2 ) and the RTP Connection

List (Figure 2 ) are empty. The INVITE message

handling is described as follows.

Step 1.1. (Figure 2 ) Upon receipt of the INVITE

message, the Packet Preprocessor forwards the

packet pointer to the Dispatcher.

Step 1.2. (Figure 2 ) The Dispatcher retrieves the

source IP address (3ffe:3600:1::1), the destination

IP address (3ffe:3600:1::2), the source port number

(5060), and the destination port number (5060)

from the IP and UDP headers of the packet. This

information is used to search the RTP Connection

List. The Dispatcher does not find any matched

entry, which implies that this packet is not an RTP

packet.

Step 1.3. (Figure 2 ) The Dispatcher forwards the

packet pointer to the SIP Parser to verify that this

packet carries an SIP message (i.e., an INVITE

message). The SIP Parser then generates a session

identifier by combining the From (i.e., wechen

@cs.nctu.edu.tw), To (i.e., liny@cs.nctu.edu. tw),

and Call-ID (i.e., 46F8Eb78621) header fields. To

obtain the RTP connection information of the

calling party, the SIP Parser retrieves the IP address

3ffe:3600:1::1 from the SDP c field and the port

number 9000 from the SDP m field. At this point,

the call setup transaction is not complete. The SIP

Parser keeps the IP address and port number

information in a temporary buffer. This informa-

tion will be stored in the RTP Connection List at

Step 2.4.

Step 1.4. (Figure 2 ) The SIP Parser returns the ses-

sion identifier information (i.e., {wechen@cs.nctu.

edu.tw}{liny@cs.nctu.edu.tw}{46F8Eb78621}) to

the Dispatcher.

Step 1.5. (Figure 2 ) The Dispatcher uses the identi-

fier to search the SIP Session List. Since this packet

is for a new SIP session, no matched session

is found. A new SIP session entry is created

(Figure 3 ) and the pointer of the INVITEmessage

is inserted into the linked list (Figure 3 ) of this

SIP session.

At this point, a new SIP session has been created

and the SIP/RTP Processor proceeds to process

next packet pointer. The subsequent SIP provisional

messages (e.g., 100 Trying message and 180 Ringing

message) are inserted into the SIP Session List

(Figure 3 and ) following Steps 1.1–1.5. Sup-

pose that the 200 OK message corresponding to

the INVITE message is captured by the Packet

Fig. 4. A RTP Connection List example; (a) The RTP
Connection List after receiving the RTP Packets; (b) The
RTP Connection List after processing of SIP 200 OK

Message.

248 W.-E. CHEN, Y.-H. SUNG AND Y.-B. LIN

Copyright # 2006 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2008; 8:245–253



Preprocessor, the SIP/RTP Processor takes the follow-

ing actions.

Steps 2.1 and 2.2. These steps are the same as Steps

1.1 and 1.2.

Step 2.3. (Figure 2 ) The SIP Parser detects that the

packet is a SIP message. The SIP Parser then

retrieves the IP address 3ffe:3600:1::2 from the

SDP c field and the port number 9000 from the

SDP m field to obtain the RTP connection informa-

tion of the called party.

At this point, the SIP Parser has obtained the IP

address and port number information for the RTP

connections. For the calling party, the IP address

3ffe:3600:1::1 and the port number 9000 are obtained

at Step 1.3. For the called party, the IP address

3ffe:3600:1::2 and the port number 9000 are obtained

at Step 2.3.

Step 2.4. (Figure 2 ) The SIP Parser inserts the IP

addresses and the port numbers into the RTP

Connection List (see Entries 1 and 2 in Figure

4(b)). The IP address 3ffe:3600:1::1 is inserted in

the SRC IP field in Entry 1 and the DST IP field

in Entry 2. The IP address 3ffe:3600:1::2 is inserted

in the SRC IP field in Entry 2 and the DST IP

field in Entry 1. The port number 9000 and the ‘*’

mark are inserted into the DST Port and SRC Port

fields of Entries 1 and 2. The ‘*’ mark is inserted

into the SSRC field of Entries 1 and 2.

Step 2.5. (Figure 2 ) The SIP Parser returns the

session identifier to the Dispatcher.

Step 2.6. (Figure 2 ) The Dispatcher uses the session

identifier to search the SIP Session List. A matched

session (created at Step 1.5) is found. The Dis-

patcher then inserts the pointer of the 200 OK

message into the linked list of the matched SIP

session (Figure 3 ).

At this point, the SIP 200 OK message handling is

complete. The SIPACK message corresponding to the

200 OK message is inserted into the SIP Session List

(Figure 3 ) following Steps 1.1–1.5. Suppose that the

calling party starts to send the first RTP packet to

the called party. This RTP packet is captured, and the

SIP/RTP Processor takes the following actions.

Step 3.1. This step is the same as Step 1.1.

Step 3.2. (Figure 2 ) The Dispatcher searches the

RTP Connection List and finds the matched entry

(i.e., Entry 1 in Figure 4(b) created at Step 2.4). In

this entry, the source port number is ‘*’ and the

SSRC value is ‘*’. The Dispatcher retrieves the

SSRC value (i.e., 29696) from the RTP header of

the packet, and then replaces the void port number

‘*’ and the SSRC value ‘*’ by ‘9002’ and ‘29696’,

respectively. The modified RTP Connection List is

shown in Figure 4(a) . The Dispatcher then inserts

the packet pointer into the linked list of the

matched entry (Figure 4(a) ).

Step 3.3. (Figure 2 ) After the Dispatcher success-

fully stores the packet pointer into the RTP Con-

nection List, it proceeds to retrieve the next packet

pointer.

Upon receipt of a RTP packet sent from the called

party (i.e., 3ffe:3600:1::2) to the calling party (i.e.,

3ffe:3600:1::1), the SIP/RTP Processor executes Steps

3.1–3.3. After the RTP packet is processed, the source

port number and the SSRC values in entry

Figure 4(b) are determined and the values are shown

in Figure 4 (a) . The RTP packet is inserted into the

RTP Connection List (Figure 4(a) ).

During a packet pointer processing, if the Dis-

patcher cannot find a matched entry in the RTP

Connection List and the SIP Parser indicates that

this packet does not carry any SIP message, the SIP/

RTP Processor drops this packet pointer and proceeds

to retrieve the next packet.

4. SIPv6 Analyzer Demonstration

Figure 5 illustrates an IMS environment for SIPv6

Analyzer demonstration, where UA1 (Figure 5 ) is

the calling party and UA2 (Figure 5 ) is the called

party with the IP addresses 3ffe:3600:1::1 and

3ffe:3600:1::2, respectively. These two UAs commu-

nicate through Universal Mobile Telecommunications

System (UMTS; Figure 5 ), IMS (Figure 5 ), and

Packet Data Network (PDN; Figure 5 ). UA1 and

UA2 register the accounts wechen@cs.nctu.edu.tw

and liny@cs.nctu.edu.tw, to the Call Session Control

Function (CSCF; Figure 5 ) in the IMS network.

After a call is set up, the RTP packets are transmitted

through the Media Gateway (MGW; Figure 5 ). The

SIPv6 Analyzer (Figure 5 ) can be inserted in either

IMS or PDN to analyze the SIP and the RTP mes-

sages. In this demonstration, the SIPv6 Analyzer and

UA2 connect to the PDN through a hub (Figure 5 ).

The SIPv6 Analyzer captures all packets sent from/

to UA2 through the hub, organizes the SIP messages

by following Steps 1.1–1.5 and Steps 2.1–2.5, and

SIPv6 ANALYZER 249

Copyright # 2006 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2008; 8:245–253



classifies the RTP packets into the corresponding

sessions following Steps 3.1–3.5. After the capturing

process, a user can analyze the SIP message flow and

replay the multimedia content.

The user can request the SIPv6 Analyzer to draw

the SIP message flow by selecting the ‘Draw Message

Flow’ or the ‘Draw Message Flow from Headers’

items (Figure 6 ). If the first item (i.e., Draw Mes-

sage Flow) is selected, the SIPv6 Analyzer plots the

SIP message flow based on the source and destination

IP addresses. If the second item (i.e., Draw Message

Flow from Headers) is selected, the SIPv6 Analyzer

plots the SIP message flow based on the SIP header

fields (e.g., SIP Via or Route header field). Figure 6

shows the SIP message flow that is plotted by using

the SIP Via header field. In this message flow, the

dashed lines represent the SIP message deliveries that

are generated based on the SIP Via header field. For

example, the Via header field of the SIP INVITE

message, which is captured by the SIPv6 Analyzer,

contains two Uniform Resource Identifiers (URIs

[7])—3ffe:3600:1::1 and 3ffe:3600:1::5. The SIPv6

Analyzer plots a dashed line from 3ffe:3600:1::1 (i.e.,

UA1) to 3ffe:3600:1::5 (i.e., CSCF) based on this

information. Through this unique function not pro-

vided in Ethereal, the SIPv6 Analyzer can provide

message interaction (dashed lines) between UA1 and

CSCF even if the analyzer is not connected to these

two nodes.

To analyze the captured RTP packets, the user

selects the ‘RTP Viewer’ tab (Figure 6 ) to enable

the Statistic Generator (Figure 1 ) to present the RTP

Session List (Figure 6 ). To play the audio or video,

the user adds the corresponding entry (Figure 6 ) to

the Media Instance (Figure 6 ). Then the user plays

the content carried in the RTP packets by pressing

a control button (i.e., Play/Hold/Stop buttons in

Figure 6 ). Figure 6 shows the video generated

by the Video Player (Figure 1 ). Through this func-

tion, the user can evaluate the quality of the audio/

video carried by the captured RTP packets.

To evaluate the voice/video quality under different

jitter buffer sizes, the user clicks the configuration

button (Figure 6 ) to set up the length of the jitter

buffer (Figure 6 ). The status line of the RTP Viewer

(Figure 6 ) presents the current jitter buffer length

(i.e., 100ms), the number of dropped packets (i.e.,

0 packets), and the mean jitter (i.e., 60.09ms) of the

selected RTP connection. Increasing the length of

jitter will decrease the number of dropped packets,

but will increase the communication delay. The user

can observe the effects of different jitter buffer sizes

through this function.

5. Conclusions

This paper describes the SIPv6 Analyzer, a tool that

investigates the IMS-related protocols during IMS

service deployment. The SIPv6 Analyzer provides

the SIP dialog list, the SIP message flow generation,

and the audio/video replay functions for evaluating

the IMS-related protocols. Through these unique

functions, the users can effectively observe the SIP

message flows and the audio/video qualities of the

IMS calls. We demonstrate these functions by using

an IMS call example. The SIPv6 Analyzer won the top

prize at the Japan’s IPv6 Appli-Contest in 2004.

Acknowledgment

This work was sponsored in part by NSC Excellence

project NSC 94-2752-E-009-005-PAE, NSC 94-2219-

E-009-001, NSC 94-2213-E-009-104, NTP VoIP Pro-

ject under grant number NSC 94-2219-E-009-002,

NTP Service IOT Project under grant number

NSC 94-2219-E-009-024, Chung Hwa Telecom, IIS/

Fig. 5. An IMS environment for VoIP calls.

250 W.-E. CHEN, Y.-H. SUNG AND Y.-B. LIN

Copyright # 2006 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2008; 8:245–253



Fig. 6. The snapshot of the SIP Viewer, the SIP Message Flow, and the RTP Viewer.

SIPv6 ANALYZER 251

Copyright # 2006 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2008; 8:245–253



Academia Sinica, ITRI/NCTU Joint Research Center,

and MoE ATU.

References

1. 3GPP. 3rd Generation Partnership Project; Technical Specifica-
tion Group Services and Systems Aspects; IP Multimedia
Subsystem Stage 2. Technical Specification 3G TS 23.228
version 5.1.0 (2001-06), 2001.

2. Rosenberg J, Schulzrinne H, Camarillo G, et al. SIP: Session
Initiation Protocol. RFC 3261, IETF, June 2002.

3. Schulzrinne H, Casner S, Frederick R, Jacobson V. RTP: A
Transport Protocol for Real-Time Applications. IETF RFC-
3550, July 2003.

4. Deering S, Hinden R. Internet Protocol, Version 6 (IPv6)
Specification. IETF RFC 2460, December 1998.

5. Ethereal: A Network Protocol Analyzer. http://www.ethereal.-
com/.

6. WinPcap: The Free Packet Capture Library for Windows. http://
winpcap.polito.it/.

7. Handley M, Jacobson V. SDP: Session Description Protocol.
RFC 2327, IETF, April 1998.

8. Wing D. Common Local Transmit and Receive Ports (Sym-
metric RTP). IETF Internet-Draft draft-wing-behave-sym-
metric-rtprtcp-01, June 2005.

Appendix

A Comparison of VoIP Analysis and Test Tools

In this appendix, we compare the SIPv6 Analyzer with

several existing VoIP analysis and test tools including

Ethereal, SIP Scenario Generator, WinSIP and RTP

Tools.

Ethereal is a protocol dissector, which can analyze

more than 700 protocols. Ethereal provides the VoIP

analysis functions including the SIP message flow

illustration and the RTP packet statistics (e.g., the

jitter statistics). SIP Scenario Generator processes a

trace file that can be created by Ethereal or the SIPv6

Analyzer. Based on this file, SIP Scenario Generator

retrieves the SIP messages and then generates the SIP

message flows. WinSIP establishes the bulk SIP calls

for performance evaluation of VoIP devices. RTP

Tools include the rtpdump, the rtpsend, and the rtpplay

tools. rtpdump listens on a specific IP address and port

pair to receive the RTP packets, and then stores these

packets into an output file. rtpsend and rtpplay gen-

erate the received RTP packets based on the output

file. We compare these tools with the SIPv6 Analyzer

as follows.

SIP Message Flow Illustration: The SIPv6 Analy-

zer can plot the SIP message flow based on the IP

addresses or the SIP header fields. Through this

function, a user can identify all network nodes that

are visited in the SIP signaling path. In Ethereal and

SIP Scenario Generator, the SIP message flows are

generated based on the source IP address and the

destination IP address. Therefore, only the source and

the destination of the captured SIP message can be

identified. Both WinSIP and RTP Tools do not support

the SIP message flow illustration function.

Audio/Video Replay: The SIPv6 Analyzer can play

the audio/video carried in the RTP payload for eval-

uating the quality of the captured calls. Other tools do

not provide this function.

IPv6 Support: The SIPv6 Analyzer and Ethereal

can capture and analyze IPv6 packets. On the other

hand, SIP Scenario Generator, WinSIP and RTP Tools

do not support IPv6.

Packet Generation: The SIPv6 Analyzer, Ethereal,

and SIP Scenario Generator do not include the packet

generation function. On the other hand, WinSIP gen-

erates the bulk SIP calls including the SIP and the RTP

packets to test a VoIP device. Like WinSIP, RTP Tools

can test VoIP devices except that the packets for

testing are collected by RTP Tools.

Authors’ Biographies

Whai-En Chen received a Bachelor
of Science degree in Electric Engi-
neering from Tam Kang University
in 1997, and received a Ph.D. in
Computer Science from National
Tsing Hua University (NTHU) in
2002. He began serving as a
Research Assistant Professor in
National Chiao Tung University
(NCTU) and joined National Tele-
communications Program (NTP) to

deploy a SIP-based VoIP Platform from 2002. His research
interests include 3GPP IP core-network Multimedia Sub-
system (IMS), SIP-based VoIP services, IPv6 translation
mechanisms, Mobile IP and high-speed lookup/classifica-
tion engines.

Yi-Bing Lin is Chair Professor and
Vice President of Research and
Development, National Chiao Tung
University. His current research
interests include wireless communi-
cations and mobile computing. Dr.
Lin has published over 190 journal
articles and more than 200
conference papers. Lin is the co-
author of the book Wireless and
Mobile Network Architecture (with
Imrich Chlamtac; published by John

252 W.-E. CHEN, Y.-H. SUNG AND Y.-B. LIN

Copyright # 2006 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2008; 8:245–253



Wiley & Sons). Lin is an IEEE Fellow, an ACM Fellow, an
AAAS Fellow, and an IEE Fellow.

Yueh-Hsin Sung received the
B.S. degree from the Department
of Computer Science and Informa-
tion Engineering, National Chiao
Tung University (NCTU), Hsinchu,
Taiwan, R.O.C., in 2005. His
research interests include design
and analysis of a VoIP network,
Internet telephony integration, and
mobile computing.

SIPv6 ANALYZER 253

Copyright # 2006 John Wiley & Sons, Ltd. Wirel. Commun. Mob. Comput. 2008; 8:245–253


