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Abstract
Classically the non-parametric coverage interval is estimated by empirical quantiles. We
introduce an alternative way for estimating the coverage interval by symmetric quantiles given
by Chen and Chiang (1996 J. Nonparametric Stat. 7 171–85). We further show that this
alternative has a better precision in the sense that its asymptotic variances are smaller than the
classical one.

1. Introduction

The coverage interval, called the reference interval in
laboratory chemistry, refers to population-based reference
values obtained from a well-defined group of reference
individuals. This is an interval with two confidence limits
which covers the measurement values in the population in some
probabilistic sense. Laboratory test results are commonly
compared with a coverage interval before caregivers make
physiological assessments, medical diagnoses or management
decisions. An individual who is being screened for a
disorder based on a measurement is suspected to be abnormal
if his/her measurement value lies outside the coverage
interval.

The coverage interval can be estimated either para-
metrically or non-parametrically. The parametric method
classically assumes that the underlying distribution of the mea-
surement variable is normal whereas, recently, Chen et al
(2007) have proposed a technique for constructing cover-
age intervals for asymmetric distributions. On the other
hand, the non-parametric approach estimates the quantiles
(percentile) directly; the most popular technique for estimat-
ing the unknown quantiles is through the empirical quantile.
Most authorities now recommend the non-parametric method
because it makes no assumptions concerning the type of ref-
erence variable. It is easy and reliable whether the reference
variable follows normal or non-normal distribution (see these
points in Reed et al (1971) and Solberg (2006)).

It is vitally important to establish a coverage interval
so that users can diagnose diseases with precision. Some
factors that may increase the precision have been considered.
The number of 120 or more of healthy subjects required

for the determination of coverage interval has been
recommended by the International Federation of Clinical
Chemistry. The determination of the confidence interval
of the quantile, that is, the limits within which a true
quantile is located with a specified confidence, is strongly
recommended. However, Friedberg et al (2007) have observed
that analytic imprecision is a very important factor for
the quality of an established coverage interval. Hence,
the search for an alternative technique in developing a
coverage interval to increase the analytic precision of the
computed coverage interval is an interesting and important
topic.

We consider a non-parametric approach in constructing a
coverage interval. Is there an alternative quantile such that its
produced coverage interval may gain precision better than a
quantile constructed empirically?’ To improve the efficiency
of the trimmed mean for estimating the location parameter,
Kim (1992) and Chen and Chiang (1996) introduced the
symmetric quantile to construct an alternative trimmed mean.
Basically a symmetric quantile pair is a parameter plus and
minus a classical quantile defined for an absolute value of
the error variable defined as the measurement variable minus
the parameter. They observed that this trimmed mean can
have asymptotic variances very close to the Cramer–Rao lower
bounds for several distributions, including heavy tail ones.
Then, from the point of robust estimation, the symmetric
quantile is efficient in the detection of outliers. We then
consider the question whether it can be more accurate than the
empirical quantiles to detect the central part of the underlying
distribution for establishing the coverage interval. Our aim in
this research is to construct an alternative coverage interval
by symmetric quantiles and show that it does gain better
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Figure 1. Folded distribution function and symmetric coverage interval for Gamma distribution �(2, 2).

(This figure is in colour only in the electronic version)

precision than the classical version constructed by empirical
quantiles.

2. Symmetric coverage interval

For random variable y with cumulative distribution function
F , the λth quantile is defined as

F−1(λ) = inf{c : F(c) � λ}.

The classical 1 − α coverage interval is defined as

C(1 − α) =
(
F−1

(α

2

)
, F−1

(
1 − α

2

))
.

Suppose that we now have a random sample y1, ..., yn from
distribution F . The corresponding empirical 1 − α coverage
interval is

Cn(1 − α) =
(
F−1

n

(α

2

)
, F−1

n

(
1 − α

2

))
, (2.1)

where we let F−1
n be the empirical quantile, a quantile function

with distribution function of the sample type as Fn(y) =
1
n

∑n
i=1 I (yi � y).
Unlike the way in which the empirical quantile is

constructed based on the cumulative distribution function, the
so-called symmetric quantile of Chen and Chiang (1996) is
formulated based on a folded distribution function. Let us
consider the folded cumulative function about µ, known or
unknown, as

Fs(a) = P(|y − µ| � a), a � 0.

Extending from that given by Chen and Chiang (1996), we
define the 1 − α symmetric coverage interval as

Cs(1 − α) = (µ − F−1
s (1 − α), µ + F−1

s (1 − α)),

where F−1
s (λ) = inf{a : Fs(a) � λ}. If F is continuous,

the 1 − α symmetric coverage interval satisfies 1 − α =
P(µ − F−1

s (1 − α) � y � µ + F−1
s (1 − α)). If we further

assume that F is symmetric at µ, it can be seen that

Cs(1 − α) = C(1 − α), (2.2)

the classical one and the symmetric one are identical
in the sense of containing the same set of reference
individuals.

We interpret the folded cumulative function and the
symmetric coverage interval through a picture (see figure 1).
Considering the Gamma distribution �(2, 2) which has the
probability density function (pdf) as the curve in the figure,
we consider the folded distribution about the median. With
this distribution, the median µ is 3.36. For a given a > 0, the
value of this folded distribution at a represents the probability
of a region as a part of a shadow. Suppose that our interest
is to construct an 80% coverage interval. For this continuous
distribution, we search for F−1

s (0.8) = a∗ such that 0.8 =
P(µ − a∗ � y � µ + a∗) with y ∼ �(2, 2), which indicates
that a∗ = 2.21. Hence the 80% symmetric coverage interval is

Cs(0.8) = (µ − F−1
s (0.5), µ + F−1

s (0.5)) = (1.15, 5.57)

(see the limits µ − F−1
s (0.5) and µ + F−1

s (0.5) in figure 1).
Let µ̂ be an estimate of µ. We may define the sample type

1 − α symmetric coverage interval as

Csn(1 − α) = (µ̂ − F−1
sn (1 − α), µ̂ + F−1

sn (1 − α)), (2.3)

where Fsn(a) = 1
n

∑n
i=1 I (|yi − µ̂| � a) is the sample type

folded cumulative distribution function and F−1
sn (1 − α) =

inf{a : Fsn(a) � 1 − α}.
Let us give a simple example to describe the construction

of the sample symmetric coverage interval. Suppose that we
have a set of observations that are ordered as

− 5, −3, −2, −1, −0.5, 0.5, 1, 3, 50, 100.

We want to construct 80% empirical and symmetric coverage
intervals. With F−1

n (0.1) = −5 and F−1
n (0.9) = 50, the 80%

empirical coverage interval is

Cn(0.8) = (−5, 50). (2.4)

For construction of a symmetric coverage interval, we choose
the sample median as the estimate of µ. That is,

µ̂ = F−1
n (0.5) = inf

{
a :

1

10

10∑
i=1

I (yi � a) � 0.5

}
= −0.5.
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Let us denote residuals ei = yi − µ̂, i = 1, ..., 10. The
residuals are

− 4.5, −2.5, −1.5, −0.5, 0, 1, 1.5, 3.5, 50.5, 100.5.

The sample type folded cumulative distribution function is

Fsn(a) = 1

10

10∑
i=1

I (|ei | � a).

For examples, Fsn(0) = 1
10 , Fsn(1) = 1

10

[
I (| − 0.5| � 1)

+I (|0| � 1) + I (|1| � 1)
] = 3

10 . Then we have

F−1
sn (0.8) = inf

{
a :

1

10

10∑
i=1

I (|ei | � a) � 0.8

}
= 4.5.

This indicates that the 80% symmetric coverage interval is

Csn(0.8) = (µ̂ − F−1
sn (0.8), µ̂ + F−1

sn (0.8))

= (−0.5 − 4.5, −0.5 + 4.5) = (−5, 4). (2.5)

Comparing the resulting sample empirical and symmetric
coverage intervals in (2.4) and (2.5), the benefit of using the
latter one that is shorter than the former one is seen. This
will happen very often when the observations are drawn from
asymmetric distributions.

3. Precision study of symmetric coverage interval

The equality of (2.2) does not hold when the underlying
distribution F is not symmetric so that there is no fair criterion
to compare their corresponding sample coverage intervals.
Hence, we may set the case that F is symmetric to compare
the precision of these two coverage intervals through the
asymptotic variances of their sample type coverage intervals.

We consider that µ is the median parameter and let µ̂ be
the sample median as

µ̂ = arginfµ∈R

n∑
i=1

|yi − µ|.

Suppose that we assume that F is continuous and symmetric
at µ. From Ruppert and Carroll (1980), we have a Bahadur
representation for this sample median as

n1/2(µ̂ − µ) = n−1/2 1

f (µ)

n∑
i=1

(0.5 − I (yi � µ)) + op(1).

(3.1)

On the other hand, a Bahadur representation for F−1
sn (1 − α)

developed by Chen and Chiang (1996) is

n1/2
(
F−1

sn (1 − α) −
(
F−1

(
1 − α

2

)
− µ

))

= 1

2f
(
F−1

(
1 − α

2

))n−1/2

×
n∑

i=1

{
1 − α − I

(
F−1

(α

2

)
� yi � F−1

(
1 − α

2

))}

+ op(1). (3.2)

The assumption of a symmetric distribution indicates that
µ̂ − F−1

sn (1 − α) and µ̂+F−1
sn (1−α) have the same asymptotic

variance and, from (3.1) and (3.2), we have a Bahadur
representation for µ̂ − F−1

sn (1 − α) as

n1/2
(
(µ̂ − F−1

sn (1 − α)) − F−1
(α

2

))

= n−1/2
n∑

i=1
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2f (µ)
− 1 − α

2f
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(
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2

))



× I
(
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(α

2

))

+


− 1

2f (µ)
+

α

2f
(
F−1

(
1 − α

2

))



× I
(
F−1

(α

2

)
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)

+


 1

2f (µ)
+

α

2f
(
F−1

(
1 − α

2

))



× I
(
µ < yi � F−1

(
1 − α

2

))

+


 1

2f (µ)
− 1 − α

2f
(
F−1

(
1 − α

2

))



× I
(
yi � F−1

(
1 − α

2

)) 
 + op(1). (3.3)

Since y1, ..., yn is a random sample from distribution F , we
may see that the asymptotic variance of n1/2(µ̂ − F−1

sn (1 −
α) − F−1( α

2 )) is

σ 2
s = α

2





 1

2f (µ)
+

1 − α
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(
1 − α

2
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2

+


 1

2f (µ)
− 1 − α

2f
(
F−1

(
1 − α

2
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2


+
(

1 − α

2
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− 1

2f (µ)
+

α

2f
(
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(
1 − α

2
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2

+


 1

2f (µ)
+

α

2f
(
F−1

(
1 − α

2

))



2
 . (3.4)

On the other hand, in this situation where y has a continuous
and symmetric distribution, we may see that n1/2(F−1

n ( α
2 ) −

F−1( α
2 )) and n1/2(F−1

n (1 − α
2 ) − F−1(1 − α

2 )) also have the
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Table 1. The efficiencies, Eff, of the symmetric coverage interval.

0.6 0.8 0.9 0.95 0.98

N(0, 1) 0.87 0.87 1.02 1.21 1.48
t (r)
r = 1 0.98 1.78 2.13 2.1 2.04
r = 5 0.89 1.01 1.31 1.61 1.85
r = 10 0.88 0.94 1.16 1.42 1.7

Cauchy(s) 0.98 1.78 2.13 2.1 2.04
s = 1, 5, 10

Lap(b) 1.2 1.6 1.8 1.9 1.96
b = 1, 5, 10

same asymptotic variance (see, for example, Sen and Singer
(1993, p 168)) as

σ 2
e = α

2

(
1 − α

2

)
f −2

(
F−1

(
1 − α

2

))
. (3.5)

Since these two sample coverage intervals estimate the same
population coverage interval, it is fair that we evaluate the
efficiency of the symmetric type coverage interval defined as
the following:

Eff = σ 2
e

σ 2
s

. (3.6)

Let us consider several distributions for the computation of
asymptotic variances of (3.4) and (3.5) to compare their
corresponding efficiencies of (3.6) where distributions include
the standard normal distribution N(0, 1), the t-distribution
t (r), where r is the degrees of freedom, the Cauchy distribution
(Cauchy(s), s > 0) with pdf

f (y) = 1

π

s

y2 + s2
, y ∈ R

and the Laplace distribution (Lap(b)) with pdf

f (y) = 1

2b
e− |y|

b , y ∈ R.

We display the resulting efficiencies in table 1.
It is relatively efficient to use the empirical quantile to

construct the coverage interval when the quantile percentage
is close to 0.5 in either direction. This means that when we
want a 1 − α coverage interval with coverage probability
1 − α of value 0.6 or even smaller, the one estimated by
empirical quantiles is the right choice. On the other hand,
we see that it gains more precision to use a symmetric

quantile to construct the coverage interval when 1 − α has
a value of 0.8 or more. This alternative coverage interval is
then attractive since it is common that we apply the coverage
interval only for large 1−α; for example, the reference interval
in medical diagnosis chooses a value of 0.95. In fact, in the
case where the underlying distribution is the Laplace one the
coverage interval constructed by symmetric quantiles totally
dominates the one by empirical quantiles.

This interesting result is not surprising. The surprising fact
is that, unlike the estimation of location and scale parameters
that have received much attention in the statistical literature for
proposing techniques and developing theories in gaining better
precision, not much attention has been paid to developing
alternative ways for constructing coverage intervals for gaining
better precision than the classical one in the statistical and
metrological literature.
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