
On VLSI Design of Rank-Order Filtering using DCRAM
Architecture

Meng-Chun Lin and Lan-Rong Dung
Dept. of Electrical and Control Engineering, National Chiao Tung University, Hsinchu City, Taiwan
300, ROC

Abstract
This paper addresses on VLSI design of rank-order filtering (ROF) with a maskable memory for real-
time speech and image processing applications. Based on a generic bit-sliced ROF algorithm, the
proposed design uses a special-defined memory, called the dual-cell random-access memory
(DCRAM), to realize major operations of ROF: threshold decomposition and polarization. Using the
memory-oriented architecture, the proposed ROF processor can benefit from high flexibility, low
cost and high speed. The DCRAM can perform the bit-sliced read, partial write, and pipelined
processing. The bit-sliced read and partial write are driven by maskable registers. With recursive
execution of the bit-slicing read and partial write, the DCRAM can effectively realize ROF in terms
of cost and speed. The proposed design has been implemented using TSMC 0.18 μm 1P6M
technology. As shown in the result of physical implementation, the core size is 356.1 × 427.7μm2

and the VLSI implementation of ROF can operate at 256 MHz for 1.8V supply.

Keywords
CMOS memory integrated circuits; Coprocessors; Image processing; Median filters; Nonlinear
filters

1 Introduction
Rank-order filtering (ROF), or order-statistical filtering, has been widely applied for various
speech and image processing applications [1]–[6]. Given a sequence of input samples {xi−k,
xi−k+1, …, xi, …, xi+l}, the basic operation of rank order filtering is to choose the r-th largest
sample as the output yi, where r is the rank-order of the filter. This type of ROF is normally
classified as the non-recursive ROF. Another type of ROF is called the recursive ROF. The
difference between the recursive ROF and the non-recursive ROF is that the input sequence
of the recursive ROF is {yi−k, yi−k+1, …; yi−1, xi, …, xi+l} Unlike linear filtering, ROF can
remove sharp discontinuities of small duration without blurring the original signal; therefore,
ROF becomes a key component for signal smoothing and impulsive noise elimination. To
provide this key component for various signal processing applications, we intend to design a
configurable rank-order filter that features low cost and high speed.

Email addresses: asurada.ece90g@nctu.edu.tw, lennon@cn.nctu.edu.tw (Meng-Chun Lin, Lan-Rong Dung).
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting
proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could
affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Integration (Amst). Author manuscript; available in PMC 2009 October 27.

Published in final edited form as:
Integration (Amst). 2008 February 1; 41(2): 193–209. doi:10.1016/j.vlsi.2007.05.002.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Many approaches for hardware implementation of rank-order filtering have been presented in
the past decades [8,10–24]. Many of them are based on sorting algorithm [11,22,23,25–28].
They considered the operation of rank-order filtering as two steps: sorting and choosing. Papers
[10,19] have proposed systolic architectures for rank-order filtering based on sorting
algorithms, such as bubble sort and bitonic sort. These architectures are fully pipelined for high
throughput rate at the expense of latency, but require a large number of compare-swap units
and registers. To reduce the hardware complexity, papers [8,12,14,15,29–32] present linear-
array structures to maintain samples in sorted order. For a sliding window of size N, the linear-
array architectures consist of N processing elements and require three steps for each iteration:
finding the proper location for new coming sample, discarding the eldest one, and moving
samples between the newest and eldest one position. The three-step procedure is called delete-
and-insert (DI). Although the hardware complexity is reduced to O(N), they require a large
latency for DI steps. Paper [31] further presents a micro-programmable processor for the
implementations of the median-type filters. Paper [20] presents a parallel architecture using
two-phase design to improve the operating speed. In this paper, they first modified the
traditional content-addressable memory (CAM) to a shiftable CAM (SCAM) processor with
shiftable memory cells and comparators. Their architecture can take advantages of CAM for
parallelizing the DI procedure. Then, they use two-phase design to combine delete and insert
operations. Thereafter, the SCAM processor can quickly finish DI operations in parallel.
Although the SCAM processor has significantly increased the speed of the linear-array
architecture, it can only process a new sample at a time and cannot efficiently process 2-D data.
For a window of size n-by-n, the SCAM processor needs n DI procedures for each filtering
computation. To have an efficient 2-D rank-order filter, papers [12,27] present solutions for
2-D rank-order filtering at the expense of area.

In addition to the sorting algorithm, the paper [35] applies the threshold decomposition
technique for rank-order filtering. To simplify the VLSI complexity, the proposed approach
uses three steps: decomposition, binary filtering, and recombination. The proposed approach
significantly reduce the area complexity from exponential to linear. Papers [10,13,16–18,21,
33,34] employ the bit-sliced majority algorithm for median filtering, the most popular type of
rank-order filtering. The bit-sliced algorithm [36,37] bitwisely selects the ranked candidates
and generates the ranked result one bit at a time. Basically, the bit-sliced algorithm for median
filtering recursively executes two steps: majority calculation and polarization. The majority
calculation, in general, dominates the execution time of median filtering. Papers [10], [17] and
[37] present logic networks for implementation of majority calculation. However, the circuits
are time-consuming and complex so that they cannot take full advantages of bit-sliced
algorithm. Some papers claim that this type of algorithm is impractical for logic circuit
implementation because of its exponential complexity [31]. Paper [21] uses an inverter as a
voter for majority calculation. It significantly improves both cost and processing speed, but
the noise margin will become narrow as the number of inputs increases. The narrow noise
margin makes the implementation impractical and limits the configurability of rank-order
filtering.

Instead of using logic circuits, this paper presents a novel memory architecture for rank-order
filtering based on a generic rank-order filtering algorithm. The generic rank-order filtering
algorithm uses the threshold decomposition to bitwisely determine the rank-order result from
the most significant bit (MSB) to the least significant bit (LSB) and applies the polarization
simultaneously to polarize impossible candidates. Using this algorithm, we can pick the result,
bit-by-bit, for a specific rank-order without sorting the numbers. Note that the sorting is the
most complex part in conventional ROF implementations. Basically, there are three major tasks
in the generic algorithm; they are parallel read, threshold decomposition, and parallel
polarization. This paper presents a maskable memory structure, motivated from CAM
architecture, to realize these tasks efficiently. The maskable memory structure, called dual-cell

Lin and Dung Page 2

Integration (Amst). Author manuscript; available in PMC 2009 October 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

random-access memory (DCRAM), is an extended SRAM structure with maskable registers
and dual cells. The maskable registers allow the architecture to selectively read or write bit-
slices, and hence speed up ”parallel read” and ”parallel polarization” tasks. The control of
maskable registers is driven by a long-instruction-word (LIW) instruction set. The LIW makes
the proposed architecture programmable for various rank-order filtering algorithms, such as
recursive and non-recursive ROFs. The proposed architecture has been implemented using
TSMC 0.18um 1P6M technology and successfully applied for 1-D/2-D ROF applications. For
9-point 1-D and 3-by-3 2-D ROF applications, the core size is 356.1 × 427.7um2. As shown
in the post-layout simulation, the DCRAM-based processor can operate at 290 MHz for 3.3V
supply and 256 MHz for 1.8V supply. For image processing, the performance of the proposed
processor can process video clips of SVGA format in real-time.

The rest of the paper is organized as follows. In Section 2, we will first introduce the generic
bit-sliced ROF algorithm with an example. Section 3 details the proposed architecture and its
implementation. Section 4 particularly emphasizes the essence of the proposed design,
DCRAM. Section 5 describes the instruction set with a programming example. Section 6 gives
examples for application of the proposed processor. Section 7 presents a fully-pipelined version
of the proposed ROF architecture at the expense of area. Section 8 demonstrates results of
physical implementation and post-layout simulation. Section 9 qualitatively compares the
proposed design with existing ROF architectures. Finally, Section 10 concludes our
contribution and merits of this work.

2 The generic bit-sliced rank-order filtering algorithm
Let Wi={xi−k, xi−k+1, …; xi, …, xi+l} be a window of input samples. The binary code of each

input xj is denoted as . The output yi of the r-th order filter is the r-th largest sample
in the input window Wi, denoted as . The algorithm sequentially determines the r-
th order value bit-by-bit starting from the most significant bit (MSB) to the least significant
bit (LSB). To start with, we first count 1’s from the MSB bit-slice of input samples and use
ZB−1 to denote the result. The b-th bit-slice of input samples is defined as

. If ZB−1 is greater than or equal to r, then is 1; otherwise, is 0.
Any input sample whose MSB has the same value as is considered as one of candidates
of the r-th order sample. On the other hand, if the MSB of an input sample is not equal to

, the input sample will be considered as a non-candidate. Non-candidates will be then
polarized to either the largest or smallest value. If the MSB of an input sample xj is 1 and

 is 0, the rest bits (or lower bits) of xj are set to 1’s. Contrarily, if the MSB of an input
sample xj is 0 and is 1, the rest bits (or lower bits) of xj are set to 0’s. After the polarization,
the algorithm counts 1’s from the consecutive bit-slice and then repeats the polarization
procedure. Consequently, the r-th order value can be obtained by recursively iterating the steps
bit-by-bit. The following pseudo code illustrates the generic bit-sliced rank-order filtering
algorithm:

Given the input samples, the window size N=l+k+1, the bitwidth B and the rank r, do:

Step 1: Set b=B−1.

Step 2: (Bit counting)

Calculate Zb from { }.

Step 3: (Threshold decomposition)

Lin and Dung Page 3

Integration (Amst). Author manuscript; available in PMC 2009 October 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

If Zb ≥ r, ; otherwise .

Step 4: (Polarization)

If for 0 ≤ m ≤ b − 1 and i − k ≤ j ≤ i + l

Step 5: b=b−1.

Step 6: If b ≥ 0 go to Step 2.

Step 7: Output yi.

Fig. 1 illustrates a bit-sliced ROF example for N =7, B =4, and r=1. Given that the input samples
are 7(01112), 5(01012), 11(10112), 14(11102), 2(00102), 8(10002), and 3(00112), the generic
algorithm will produce 14(11102) as the output result. At the beginning, the ”Bit counting”
step will calculate the number of 1’s at MSBs, which is 3. Since the number of 1’s is greater
than r, the ”Threshold decomposition” step sets the MSB of yi to ’1’. Then, the ”Polarization”

step will consider the inputs with as candidates of the ROF output and polarize the lower
bits of the others to all 0’s. After repeating the above steps with decreasing b, the output yi will
be 14(11102).

3 The dual-cell RAM architecture for rank-order filtering
As mentioned above, the generic rank-order filtering algorithm generates the rank-order value
bit-by-bit without using complex sorting computations. The main advantage of this algorithm
is that the calculation of rank-order filtering has low computational complexity and can be
mapped to a highly parallel architecture. In the algorithm, there are three main tasks: bit
counting, threshold decomposition, and polarization. To have these tasks efficiently
implemented, this paper presents an ROF processor based on a novel maskable memory
architecture, as shown in Fig. 2. The memory structure is highly scalable with the window size
increasing, by simply adding memory cells. Furthermore, with the instruction decoder and
maskable memory, the proposed architecture is programmable and flexible for different kinds
of ROFs.

The dual-cell random-access memory (DCRAM) plays a key role in the proposed ROF
architecture. In the DCRAM, there are two fields for reusing the input data and pipelining the
filtering process. For the one-dimensional (1-D) ROF, the proposed architecture receives one
sample at a time. For the n-by-n two-dimensional (2-D) ROF, the architecture reads n samples
into the input window within a filtering iteration. To speed up the process of rank-order filtering
and pipeline the data loading and filtering calculation, the data field loads the input data while
the computing field is performing bit-sliced operations. Hence, the execution of the architecture
has two pipeline stages: data fetching and rank-order calculation. In each iteration, the data
fetching first loads the input sample(s) into the data field and then makes copies from the data
field to the computing field. After having the input window in the computing field, the rank-
order calculation bitwisely accesses the computing field and executes the ROF tasks.

The computing field is in the maskable part of DCRAM. The maskable part of DCRAM
performs parallel reads for bit counting and parallel writes for polarization. The read-mask
register (RMR) is configured to mask unwanted bits of the computing field during read
operation. The value of RMR is one-hot-encoded so that the bit-sliced values can be read from
the memory in parallel. The bit-sliced values will then go to the Level-Quantizer for threshold
decomposition. When the ROF performs polarization, the write-mask register (WMR) is
configured to mask untouched bits and allow the polarization selector (PS) to polar lower bits

Lin and Dung Page 4

Integration (Amst). Author manuscript; available in PMC 2009 October 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

of noncandidate samples. Since the structure of memory circuits is regular and the maskable
scheme provides fast logic operations, the maskable memory structure features low cost and
high speed. It obviously outperforms logic networks on implementation of bit counting and
polarization.

To start with the algorithm, the RMR is one-hot-masked according to the value b in the generic
algorithm and then the DCRAM outputs a bit-sliced value { } on
“c_d”. The bit-sliced value will go to both the Level-Quantizer and PS. The Level-Quantizer
performs the Step 2 and Step 3 by summing up bits of the bit-sliced value to Zb and comparing
Zb with the rank value r. The rank value r is stored in the rank register (RR). The bitwidth w
of Zb is []. Fig. 3 illustrates the block diagram of the Level-Quantizer, where FA denotes
the full adder and HA denotes the half adder. The signals “S” and “C” of each FA or HA
represent sum and carry, respectively. The circuit in the dash-lined box is a comparator. The
comparator is implemented by a carry generator because the comparison result of Zb and r can
be obtained from the carry output of Zb plus the two’s complement of r. The carry output is
the quantized value of the Level-Quantizer.

Normally, the comparison can be made by subtracting r from Zb. Since Zb and r are unsigned
numbers, to perform the subtraction, both numbers have to reformat to two’s complement
numbers by adding a sign bit. In this paper, the reformated numbers of Zb and r are expressed
as Zb,S and rS, respectively. Since both numbers are positive, their sign bits are equal to ’0’. If
Zb,S is less than rS, the result of subtraction, Δ, will be negative; that is, the sign bit (or MSB)
of Δ is ’1’. Eq. 1 shows the inequation of the comparison, where denotes the one’s
complement of rS and 1 denotes (00 … 01)2. Because the MSB of Zb,S is ’0’ and the MSB of

 is ’1’, to satisfy Eq. 1, the carry of must be equal to ’0’ so that the sign bit of Δ
becomes ’1’. To simplify the comparison circuit, instead of implementing an adder, we use the

carry generator to produce the carry of . Each cell of the carry generator is a majority
(Maj) circuit that performs the boolean function shown in Eq. 2. Furthermore, we use an OR
gate at the LSB stage because of Eq. 3. Thus, the dash-lined box is an optimized solution for
comparison of Zb and r without implementing the bit-summation and signed-extension parts.

(1)

(2)

(3)

After the Level-Quantizer finishes the threshold decomposition, the quantized value goes to
the LSB of the shift register, “sr[0]”. Then, the polarization selector (PS) uses exclusive ORs
(XORs) to determine which words should be polarized, as shown in Fig. 4. Obviously, the

XORs can examine the condition of and select the word-under-polarization’s (WUPs)
accordingly. When “c_wl” is ’1’, the lower bits of selected words will be polarized; the lower

bits are selected by WMR. According to the Step 4, the polarized value is which is the
inversion of . Since is the value of sr[0], we inverse the value of “sr[0]” to “c_in”, as shown
in Fig. 2.

Lin and Dung Page 5

Integration (Amst). Author manuscript; available in PMC 2009 October 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

As seen in the generic algorithm, the basic ROF repeatedly executes Bit-counting, Threshold
decomposition, and Polarization until the LSB of the ROF result being generated. Upon
executing B times of three main tasks, the ROF will have the result in the Shift Register. A
cycle after, the result will then go to the output register (OUTR). Doing so, the proposed
architecture is able to pipeline the iterations for high-performance applications.

4 Implementation of Dual-Cell Random-Access Memory
Fig. 5 illustrates a basic element of DCRAM. Each element has two cells for data field and
computing field, respectively. The data cell is basically an SRAM cell with a pair of bitlines.
The SRAM cell is composed of INV1 and INV2 and stores a bit of input sample addressed by
the wordline “d_wl[i]”. The computing cell performs three tasks: copy, write, and read. When
the copy-line “cp” is high, through INV5 and INV6, the pair of INV3 and INV4 will have the
copy of the 1-bit datum in the data cell. The copy operation is unidirectional, and the pair of
INV5 and INV6 can guarantee this directivity. When the one-bit value stored in the computing
cell needs to be polarized, the “wm[j]” and “c_wl[i]” will be asserted, and the computing cell
will perform the write operation according to the pair of bitlines “c_bl[j]” and . When
the ROF reads the bit-sliced value, the computing cell uses an NMOS, gated by “rm[j]”, to
output the complement value of the stored bit to the dataline . The datalines of
computing cells of each word will be then merged as a single net. Since the RMR is one-hot
configured, each word has only a single bit being activated during the read operation.

As shown in Fig. 6, the dataline finally goes to an inverter to pull up the weak ’1’,
which is generated by the “rm[j]”-gated NMOS, and hence the signal “c_d[i]” has the value
of the i-th bit of each bit-slice. Because the ROF algorithm polarizes the non-candidate words
with either all zeros or all ones, the bitline pairs of computing cells are merged as a single pair
of “c_in” and .

Fig. 7 illustrates the implementation of DCRAM with the floorplan. Each Di–Ci pair is a
maskable memory cell where Di denotes D_cell(i) and Ci denotes C_cell(i). Each word is split
into higher and lower parts for reducing the memory access time and power dissipation [38].
The control block is an interface between control signals and address decoder. It controls
wordlines and bitlines of DCRAM. When the write signal “wr” is not asserted, the control
block will disassert all wordlines by the address decoder.

5 Instruction set of proposed ROF processor
The proposed ROF processor is a core for the impulsive noise removal and enabled by an
instruction sequencer. Fig. 8 illustrates the conceptual diagram of the ROF processor. The
instruction sequencer is used for the generation of instruction codes and the control of input/
output streams. The instruction sequencer can be a microprocessor or dedicated hardware.

Fig. 9 lists the format of the instruction set. An instruction word contains two subwords: the
data field instruction and the computing field instruction. Each instruction cycle can
concurrently issue two field instructions for parallelizing the data preparation and ROF
execution; hence, the proposed processor can pipeline ROF iterations. When one of the field
instructions performs “no operation”, DF_NULL or CF_NULL will be issued. All registers in the
architecture are updated a cycle after instruction issued.

The instruction SET resets all registers and set the rank register RR for a given rank-order r.
The instruction LOAD loads data from “d_in” by asserting “wr” and setting “addr”. The
instruction COPY/DONE can perform the “COPY” operation or “DONE” operation. When the
bit value of c is ’1’, the DCRAM will copy a window of input samples from the data field to

Lin and Dung Page 6

Integration (Amst). Author manuscript; available in PMC 2009 October 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

the computing field. When the bit value of d is ’1’, the DCRAM wraps up an iteration by
asserting “en” and puts the result into OUTR.

The instruction P_READ is issued when the ROF algorithm executes bit-sliced operations. The
field <mask> of P_READ is one-hot coded. It allows the DCRAM to send a bit-slice to the
Level-Quantizer and PS for the Threshold decomposition task. The instruction P_WRITE is
issued when the ROF algorithm performs the Polarization task. The field <mask> of
P_WRITE is used to set a consecutive sequence of 1’s. The sequence can mask out the higher
bits for polarization.

Given a 1-D rank order filter application with N =9 and r =3, for instance, the pseudo-code for
programming the ROF processor is as follows:

SET 3;

i=0; −− IS

start loop; −− IS

LOAD i, P_READ 00000001;

COPY, P_READ 10000000;

DONE, P_WRITE 01111111;

P_READ 01000000;

P_WRITE 00111111;

P_READ 00100000;

P_WRITE 00011111;

P_READ 00010000;

P_WRITE 00001111;

P_READ 00001000;

P_WRITE 00000111;

P_READ 00000100;

P_WRITE 00000011;

P_READ 00000010;

P_WRITE 00000001;

i++; −− IS

i=i mod 9; −− IS

end loop; −− IS

Lin and Dung Page 7

Integration (Amst). Author manuscript; available in PMC 2009 October 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

To generate instructions to the ROF processor, the complete 1-D non-recursive ROF circuit
includes an instruction sequencer, as shown in Fig. 10. Based on the pseudo-code of the 1-D
ROF, the instruction sequencer will generate the instruction codes to the ROF processor. In
the pseudo-code, the lines with the comment “ −−IS” are not parts of the instruction sequence,
but realized in the instruction sequencer. Given the above pseudo-code, the instruction
sequencer will generate instructions as shown below. The instructions other than “ SET 3;”
will be repeatedly sent to the instruction decoder.

SET 3;

LOAD 0000, P_READ 00000001;

COPY, P_READ 10000000;

DONE, P_WRITE 01111111;

P_READ 01000000;

P_WRITE 00111111;

P_READ 00100000;

P_WRITE 00011111;

P_READ 00010000;

P_WRITE 00001111;

P_READ 00001000;

P_WRITE 00000111;

P_READ 00000100;

P_WRITE 00000011;

P_READ 00000010;

P_WRITE 00000001;

LOAD 0001, P_READ 00000001;

COPY, P_READ 10000000;

DONE, P_WRITE 01111111;

P_READ 01000000;

P_WRITE 00111111;

P_READ 00100000;

P_WRITE 00011111;

P_READ 00010000;

Lin and Dung Page 8

Integration (Amst). Author manuscript; available in PMC 2009 October 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

P_WRITE 00001111;

P_READ 00001000;

P_WRITE 00000111;

P_READ 00000100;

P_WRITE 00000011;

P_READ 00000010;

P_WRITE 00000001;

… … …

LOAD 1000, P_READ 00000001;

COPY, P_READ 10000000;

DONE, P_WRITE 01111111;

P_READ 01000000;

P_WRITE 00111111;

P_READ 00100000;

P_WRITE 00011111;

P_READ 00010000;

P_WRITE 00001111;

P_READ 00001000;

P_WRITE 00000111;

P_READ 00000100;

P_WRITE 00000011;

P_READ 00000010;

P_WRITE 00000001;

LOAD 0000, P_READ 00000001;

COPY, P_READ 10000000;

DONE, P_WRITE 01111111;

… … …

Since the instruction set is in the format of long-instruction-word (LIW), the data fetching and
ROF computing can be executed in parallel. So, the generated instruction stream can pipeline

Lin and Dung Page 9

Integration (Amst). Author manuscript; available in PMC 2009 October 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

the ROF iterations, and the data fetching is hidden in each ROF latency. Fig. 11 shows the
reservation table of the 1-D ROF example. As seen in the reservation table, the first iteration
and the second iteration are overlapped at the seventeenth, eighteenth and nineteenth clock
steps. At the seventeenth clock step, the second iteration starts with loading a new sample while
the first iteration processes the LSB bit-slice. At the eighteenth clock step, the second iteration
copies samples from the data field to the computing field, and reads the MSB bit-slice. At the
same time, the first iteration prepares the first ROF result for OUTR. At the nineteenth clock
step, the first iteration sends the result out while the second iteration performs the first
polarization. Thus, the iteration period for each iteration is 15 cycles.

6 Application of the proposed ROF processor
In Section 5, we use 1-D non-recursive ROF as an example to show the programming of the
proposed ROF processor. Due to the programmable design, the proposed ROF processor can
implement a variety of ROF applications. The following subsections will illustrate the
optimized programs for three examples: 1-D RMF, 2-D non-recursive ROF, and 2-D RMF.

6.1 1-D recursive median filter
The recursive median filtering (RMF) has been proposed for signal smoothing and impulsive
noise elimination. It can effectively remove sharp discontinuities of small duration without
blurring the original signal. The RMF recursively searches for the median results from the most
recent median values and input samples. So, the input window of RMF can be denoted as
{yi−k, yi−k+1, …, yi−1, xi, …, xi+l}, where yi−k, yi−k+1, …, yi−1 are the most recent median values
and xi, …, xi+l are the input samples, and the result yi is the [(l + k + 1)/2]-th value of the input
window.

Fig. 12 demonstrates the implementation of the 1-D RMF. To recursively perform RMF with
previous median values, the i-th iteration of 1-D RMF loads two inputs to the DCRAM; one
is xi+l and the other is yi−1. As shown in Fig. 12, the 2-to-1 multiplexer is used to switch the
input stream to the data field, controlled by the instruction sequencer; the input stream is from
either “d_in” or “d_out”. When the proposed ROF processor receives the input stream, the
program will arrange the data storage as shown in Fig. 12. The date storage shows the data
reusability of the proposed ROF processor.

Given a 1-D RMF application with N =9 and r =5, the pseudo-code is written as follows:

SET 5;

i=0;

start loop; −− IS

set input_sel, 0; −− IS

LOAD i, CF_NULL;

DONE, CF_NULL;

set input_sel, 1; −− IS

LOAD ((i+4) mod 9), CF_NULL;

COPY, P_READ 10000000;

Lin and Dung Page 10

Integration (Amst). Author manuscript; available in PMC 2009 October 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

P_WRITE 01111111;

P_READ 01000000;

P_WRITE 00111111;

P_READ 00100000;

P_WRITE 00011111;

P_READ 00010000;

P_WRITE 00001111;

P_READ 00001000;

P_WRITE 00000111;

P_READ 00000100;

P_WRITE 00000011;

P_READ 00000010;

P_WRITE 00000001;

P_READ 00000001;

i++; −− IS

i=(i mod 9); −− IS

end loop; −− IS

As mentioned above, the input stream to the DCRAM comes from either “d_in”” or
“d_out””. The statements of “ set input_sel, 0;” and “ set input_sel, 1;” can assert
the signal “input_sel” to switch the input source accordingly. The statements of “ LOAD i,
CF_NULL; ” and “ LOAD i, CF_NULL; ” is employed for the data stream, as per Fig. 13.
As seen in Fig. 14, the throughput rate is limited by the recursive execution of the 1-D RMF;
that is, the second iteration cannot load the newest median value until the first iteration
generates the result to the output. However, we still optimized the throughput rate as much as
possible. At the twentieth clock step, the program overlaps the first iteration and the second
iteration so that the data fetching and result preparing can be run at the same time. As the result,
the sample period is 18 cycles.

Fig. 15 illustrates the block diagram for the 2-D non-recursive ROF. From Fig. 16, each
iteration needs to update three input samples (the pixels in the shadow region) for the 3 × 3
ROF; that is, only n input samples need to be updated in each iteration for the n × n ROF. To
reuse the windowing data, the data storage is arranged as shown in Fig. 17. So, for the 2-D
ROF, the data reusability of our process is high; each iteration updates only n input samples
for an n × n window. Given a 2-D n × n ROF application with n=3 and r =5, the optimized
reservation table can be scheduled as Fig. 18.

Lin and Dung Page 11

Integration (Amst). Author manuscript; available in PMC 2009 October 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

6.3 2-D recursive median filter
Similar to the 1-D RMF, the two-dimensional(2-D) n-by-n RMF finds the median value from
the window formed by some previous-calculated median values and input values. Fig. 19(a)
shows the content of the 3 × 3 window centered at (i, j). At the end of each iteration, the 2-D
3 × 3 RMF substitutes the central point of the current window with the median value. The
renewed point will then be used in the next iteration. The windowing for 2-D RMF iterations
is shown in Fig. 19(b), where the triangles represent the previous-calculated median values
and the pixels in the shadow region are updated at the beginning of each iteration. According
to the windowing, Fig. 20 illustrates the data storage for high degree of data reusability. Finally,
we can implement the 2-D RMF as the block diagram illustrated in Fig. 21. Given a 2-D 3 ×
3 RMF application, the optimized reservation table can be scheduled as Fig. 22.

7 The Fully-Pipelined DCRAM-based ROF Architecture
As seen in Section 6, the reservation tables are not tightly scheduled because the dependency
of bit-slicing read, threshold decomposition, and polarization forms a cycle. The dependency
cycle limits the schedulability of ROF tasks.

To increase the schedulability, we further extended the ROF architecture to a fully-pipelined
version at the expense of area. The fully-pipelined ROF architecture interleaves three ROF
iterations with triple computing fields. As shown in Fig. 23, there are three computing fields
which process three tasks alternatively. To have the tightest schedule, we pipelined the Level-
Quantizer into two stages, LQ1 and LQ2, so the loop (computing field, Level-Quantizer, Shift
Register) has three pipeline stages for the highest degree of parallelism. The LQ1 is the FA/
HA tree and the LQ2 is the carry generator.

Since there exists three iterations being processed simultaneously, a larger memory is required
for two more iterations. Hence, we extended the DCRAM to an (N + 2δ)-word memory, where
N is the window size of ROF and δ is the number of updating samples for each iteration. The
value of δ is 1 for 1-D ROF, and n for 2-D n-by-n ROF. To correctly access the right samples
for each iteration, the signal “cm” is added to mask the unwanted samples during the copy
operation. In each computing field, the unwanted samples are stored as all zeros. Doing so, the
unwanted samples will not affect the rank-order results. Fig. 24 illustrates the modified
computing cell for fully-pipelined ROF. The INV5 and INV6 are replaced with GATE1 and
GATE2. When “cm[i]” is ’0’ the computing cell will store ’0’; otherwise, the computing cell
will have the copy of the selected sample from the data cell. Finally, we use “cp”, “w_cf”, and
“r_cf” to selectively perform read, write, or copy on computing fields.

To efficiently program the fully-pipelined architecture, the instruction set is defined as shown
in Fig. 25. The fields <c_cf> of COPY,<w_cf> of P_WRITE, and <r_cf> of P_READ are used to
control “cp”, “w_cf”, and “r_cf”. Given a 1-D non-recursive rank order filter application with
N =9 and r =3, the reservation table can be optimized as shown in Fig. 26.

8 CHIP DESIGN AND SIMULATION RESULTS
To exercise the proposed architecture, we have implemented the ROF architecture, shown in
Fig. 2, using TSMC 0.18 μm 1P6M technology. First, we verified the hardware in VHDL at
the behavior level. The behavior VHDL model is cycle-accurate. As the result of simulation,
the implementations of the above examples are valid. Fig. 27 and Fig. 28 demonstrate the
results of VHDL simulations for the 2-D ROF and RMF, respectively. Fig. 27(a) is a noisy
“Lena” image corrupted by 8% of impulsive noise. After being processed by 2-D ROFs with
r=4, 5, and 6, the denoise results are shown in Fig. 27(b), (c), and (d), respectively. Fig. 28(a)
is a noisy “Lena” image corrupted by 9% of impulsive noise. After being processed by the 2-

Lin and Dung Page 12

Integration (Amst). Author manuscript; available in PMC 2009 October 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

D 3×3 RMF, the denoise result is shown in Fig. 28(b). The results are the same as those of
Matlab simulation.

Upon verifying the proposed ROF processor using the cycle-accurate behavior model, we then
implemented the processor in the fully-custom design methodology. Because of high regularity
of memory, the proposed memory-based architecture saves the routing area while comparing
with the logic-based solutions. Fig. 29(a) shows the overall chip layout and the dash-lined
region is the core. The die size is 1063.57 × 1069.21μm2 and the pinout count is 40. Fig. 29(b)
illustrates the detail layout of the ROF core. The core size is 356.1 × 427.7μm2 and the total
transistor count is 3942. Fig. 29(c) illustrates the floorplan and placement. The physical
implementation has been verified by the post-layout simulation. Table 1 shows the result of
timing analysis, obtained from NanoSim. As seen in the table, the critical path is the path 3
and the maximum clock rate can be 290 MHz at 3.3V and 256 MHz at 1.8V. As the result of
post-layout simulation, the power dissipation of the proposed ROF is quite low. For the 1-D/
2-D ROFs, the average power consumption of the core is 29mW at 290MHz or 7mW at
256MHz. The performance sufficiently satisfies the real-time requirement of video
applications in the formats of QCIF, CIF, VGA, and SVGA. The chip is submitting to Chip
Implementation Center (CIC), Taiwan for the fabrication.

Furthermore, We have successfully built a prototype which is composed of a FPGA board and
DCRAM chips to validate the proposed architecture before fabricating the custom designed
chip. The FPGA board is made by Altera and the FPGA type is APEX EP20K. The FPGA
board can operate at 60 MHz at the maximum. The DCRAM chip was designed by full-custom
CMOS technology. Fig. 30(a) shows the micrograph of the DCRAM chip. The chip implements
a subword part of DCRAM and the Fig. 30(b) illustrates the chip layout. The fabricated
DCRAM chip was layouted by full-custom design flow using TSMC 0.35 2P4M technology.
As shown in Fig. 31, with the supply voltage of 3.3V, the DCRAM chip can operate at 25 MHz.
Finally, we successfully integrated the FPGA board and the DCRAM chips into a prototype
as shown in Fig. 32 The prototype was validated with ROF algorithms mentioned above.

9 Comparison of existing ROF architectures
Since this paper is the first one that uses SRAM-like memory as the kernel of the ROF
processor, it is hard to quantitatively compare the proposed memory-based architecture with
existing logic-based architecture. Therefore, we qualitatively make comparisons with the other
ROF architectures. The follows will address on comparisons in terms of complexity, flexibility
and regularity.

A variety of ROF architectures have been published in literature. We classified them into three
types: 2-D sorting array, linear sorting array, and bit-serial logic network. The 2-D sorting array
is fast, but costly. This type of ROF requires a large number of compare-swap units and
registers. It has the hardware complexity of O(BN2), where N is the window size and B is the
bitwidth of input samples. The latency of the 2-D sorting array is proportional to N. Comparing
with the 2-D sorting array, the proposed ROF architecture has lower hardware complexity and
latency complexity because the hardware complexity and latency complexity of the proposed
ROF architecture are O(BN) and O(B), respectively.

The linear sorting array presents the linear structure to maintain samples in sorted order. For
a sliding window of size N, the linear sorting array consists of N processing elements and
repeatedly executes the delete-and-insert procedure, called DI. The DI contains three steps:
finding the proper location for new coming sample, discarding the eldest one, and moving
samples between the newest and eldest one position. Although the linear sorting array can
reduce the hardware complexity to O(N), it requires a large latency for DI steps and has the
latency complexity of O(N). Obviously, our architecture outperforms most of linear sorting

Lin and Dung Page 13

Integration (Amst). Author manuscript; available in PMC 2009 October 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

arrays. Paper [20] presents a shiftable memory, called SCAM, for reducing the the latency
complexity, but the reduction is true only when applying their architecture for 1-D applications.
For a window of size n-by-n, the SCAM processor needs n DI procedures for each filtering
computation because each iteration of the 2-D ROF updates at least n samples. To have an
efficient 2-D rank-order filter, papers [12,27] present the linear sorting arrays for 2-D rank-
order filtering at the expense of area. Comparing with them, our approach has higher degree
of flexibility for 1-D and 2-D applications while the hardware cost is low.

Based on the bit-sliced algorithm, the bit-serial logic network can bitwisely select the ranked
candidates and generates the ranked result one bit at a time. The bit-serial logic network
recursively executes two steps: majority calculation and polarization. This type of ROFs can
reduce the latency complexity to O(B); however, many of them use complex logic networks
to implement the majority calculation. Paper [21] uses an inverter as a voter for majority
calculation. It significantly improves both hardware cost and processing speed; nevertheless,
the noise margin will become narrow as the number of inputs increases.

The proposed architecture basically takes the advantages of the bit-sliced algorithm: (1) the
latency is independent of the window size, and (2) the result can be obtained without exhaustive
comparisons. Comparing with the bit-serial logic network, the proposed architecture has higher
degree of flexibility and regularity because of the DCRAM structure. The DCRAM structure
reduces not only the complexity of the majority calculation, but also the routing area between
components.

Another major strength of the proposed ROF processor is the programmability. Paper [31] is
one of the pioneer on programmable ROF processor; however their application is limited to
median filtering. Thanks to the DCRAM structure, the proposed ROF processor is flexible with
the variation of the rank order r and algorithms. As shown in Section 6, our ROF processor
can be programmed for any rank order r and diverse applications. Furthermore, the proposed
architecture can reuse input data as many as possible and hence reduce the power consumption
on memory access.

10 CONCLUSION
In this paper, we have proposed an architecture based on a maskable memory for rank-order
filtering. This paper is the first literature using maskable memory to realize ROF. Driving by
the generic rank-order filtering algorithm, the memory-based architecture features high degree
of flexibility and regularity while the cost is low and the performance is high. With the LIW
instruction set, this architecture can be applied for arbitrary ranks and a variety of ROF
applications, including recursive and non-recursive algorithms. As shown in the
implementation results, the core of the processor has high performance and low cost. The post-
layout simulation shows that the power consumption can be as low as 7 mW at 256 MHz. The
processing speed can meet the real-time requirement of image applications in the QCIF, CIF,
VGA, or SVGA formats.

Acknowledgments
This work was supported by the National Science Council, R.O.C., under the grant number NSC 94-2220-E-009-023.
We gratefully acknowledge the implementation work made by Shih-Jay Huang.

References
1. Kang DH, Choi JH, Lee YH, Lee C. Applications of a DPCM system with median predictors for image

coding. IEEE Trans Consumer Electronics Aug;1992 38(3):429–435.

Lin and Dung Page 14

Integration (Amst). Author manuscript; available in PMC 2009 October 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

2. Rantanen H, Karlsson M, Pohjala P, Kalli S. Color video signal processing with median filters. IEEE
Trans Consumer Electron Apr;1992 38(3):157–161.

3. Viero T, Oistamo K, Neuvo Y. Three-dimensional median-related filters for color image sequence
filtering. IEEE Trans Circuits Syst Video Technol Apr;1994 4(2):129–142.

4. Song, X.; Yin, L.; Neuvo, Y. Image sequence coding using adaptive weighted median prediction.
Signal Processing VI, EUSIPCO-92; Brussels. Aug; 1992. p. 1307-1310.

5. Oistamo K, Neuvo Y. A motion insensitive method for scan rate conversion and cross error cancellation.
IEEE Trans Consumer Electron Aug;1991 37:296–302.

6. Zamperoni, P. Variation on the rank-order filtering theme for grey-tone and binary image enhancement.
IEEE Int. Conf. Acoust., Speech, Signal Processing; 1989. p. 1401-1404.

7. Chen, CT.; Chen, LG. A self-adjusting weighted median filter for removing impulse noise in images.
Int. Conf. Image Processing; Sept; 1996. p. 16-19.

8. Yang D, Chen C. Data dependence analysis and bit-level systolic arrays of the median filter. IEEE
Trans Circuits and Systems for Video Technology Dec;1998 8(8):1015–1024.

9. Ikenaga T, Ogura T. CAM2: A highly-parallel two-dimensional cellular automation architecture. IEEE
Trans Computers July;1998 47(7):788–801.

10. Breveglieri L, Piuri V. Digital median filter. Journal of VLSI Signal Processing 2002;31:191–206.
11. Chakrabarti C. Sorting network based architectures for median filters. IEEE Trans Circuits ans

Systems II: Analog and Digital Signal Processing Nov;1993 40:723–727.
12. Chakrabarti C. High sample rate architectures for median filters. IEEE Trans Signal Processing

March;1994 42(3):707–712.
13. Chang L, Lin J. Bit-level systolic array for median filter. IEEE Trans Signal Processing Aug;1992

40(8):2079–2083.
14. Chen C, Chen L, Hsiao J. VLSI implementation of a selective median filter. IEEE Trans Consumer

Electronics Feb;1996 42(1):33–42.
15. Hakami MR, Warter PJ, Boncelet CC Jr. A new VLSI architecture suitable for multidimensional

order statistic filtering. IEEE Trans Signal Processing April;1994 42:991–993.
16. Hatirnaz, F.; Gurkaynak, K.; Leblebici, Y. A compact modular architecture for the realization of high-

speed binary sorting engines based on rank ordering. IEEE Inter. Symp. Circuits and Syst; Geneva,
Switzerland. May; 2000. p. 685-688.

17. Hiasat AA, Al-lbrahim MM, Gharailbeh KM. Design and implementation of a new efficient median
filtering algorithm. IEE Proc Image Signal Processing Oct;1999 146(5):273–278.

18. Hoctor RT, Kassam SA. An algorithm and a pipelined architecture for order-statistic determination
and L-filtering. IEEE Trans Circuits and Systems March;1989 36(3):344–352.

19. Karaman M, Onural L, Atalar A. Design and implementation of a general-purpose median filter unit
in CMOS VLSI. IEEE Journal of Solid State Circuits April;1990 25(2):505–513.

20. Lee C, Hsieh P, Tsai J. High-speed median filter designs using shiftable content-addressable memory.
IEEE Trans Circuits and Systems for Video Technology Dec;1994 4:544–549.

21. Lee CL, Jen C. Bit-sliced median filter design based on majority gate. IEE Proc-G Circuits, Devices
and Systems Feb;1992 139(1):63–71.

22. Lucke LE, Parchi KK. Parallel processing architecture for rank order and stack filter. IEEE Trans
Signal Processing May;1994 42(5):1178–1189.

23. Oazer K. Design and implementation of a single-chip 1-D median filter. IEEE Trans Acoust, Speech,
Signal Processing Oct;1983 ASSP-31(4):1164–1168.

24. Richards DS. VLSI median filters. IEEE Trans Acoust, Speech, and Signal Processing January;1990
38:145–153.

25. Boncelet, GG, Jr. Recursive algorithm and VLSI implementation for median filtering. IEEE Int. Sym.
on Circuits and Systems; June; 1988. p. 1745-1747.

26. Henning, C.; Noll, TG. Architecture and implementation of a bitserial sorter for weighted median
filtering. IEEE Custom Integrated Circuits Conference; May; 1998. p. 189-192.

27. Lin, CC.; Kuo, CJ. Fast response 2-D rank order filter by using max-min sorting network. Int. Conf.
Image Processing; Sept; 1996. p. 403-406.

Lin and Dung Page 15

Integration (Amst). Author manuscript; available in PMC 2009 October 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

28. Karaman, M.; Onural, L.; Atalar, A. Design and implementaion of a general purpose VLSI median
filter unit and its application. IEEE Int. Conf. Acoustics, Speech, and Signal Processing; May; 1989.
p. 2548-2551.

29. Hwang, J.; Jong, J. Systolic architecture for 2-D rank order filtering. Int. Conf. Application-Specific
Array Processors; Sept; 1990. p. 90-99.

30. Pitas I. Fast algorithms for running ordering and max/min calculation. IEEE Trans Circuits and
Systems June;1989 36(6):795–804.

31. Vainio O, Neuvo Y, Butner SE. A signal processor for median-based algorithm. IEEE Trans
Acoustics, Speech, and Signal Processing Sept;1989 37(9):1406–1414.

32. Yu, H.; Lee, J.; Cho, J. A fast VLSI implementation of sorting algorithm for standard median filters.
IEEE Int. ASIC/SOC Conference; Sptember; 1999. p. 387-390.

33. Fitch JP. Software and VLSI algorithm for generalized renked order filtering. IEEE Trans Circuits
and Systems May;1987 CAS-34(5):553–559.

34. Karaman M, Onural L. New radix-2-based algorithm for fast median filtering. Electron Lett May;
1989 25:723–724.

35. Fitch JP. Software and VLSI Algorithms for Generalized Ranked Order Filtering. IEEE Trans Circuits
and Syst May;1987 CAS-34(5):553–559.

36. Kar BK, Pradhan DK. A new algorithm for order statistic and sorting. IEEE Trans Signal Processing
Aug;1993 41(8):2688–2694.

37. Pedroni VA. Compact hamming-comparator-based rank order filter for digital VLSI and FPGA
implementations. IEEE Int Sym on Circuits and Systems May;2004 2:585–588.

38. Shobha, Singh; Shamsi, Azmi; Nutan, Agrawal; Penaka, Phani; Ansuman, Rout. Architecture and
design of a high performance SRAM for SOC design. IEEE Int. Sym. on VLSI Design; Jan; 2002.
p. 447-451.

11 Appendix I
Given a 2-D n × n ROF application with n=3 and r =5 and the following is the pseudo-code:

SET 5;

i=0; −− IS

start loop; −− IS

input_sel=0; −− IS

LOAD i, P_READ 00000010;

input_sel=1; −− IS

LOAD i+1, P_WRITE 00000001;

input_sel=2; −− IS

LOAD i+2, P_READ 00000001;

COPY, P_READ 10000000;

DONE, P_WRITE 01111111;

P_READ 01000000;

P_WRITE 00111111;

Lin and Dung Page 16

Integration (Amst). Author manuscript; available in PMC 2009 October 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

P_READ 00100000;

P_WRITE 00011111;

P_READ 00010000;

P_WRITE 00001111;

P_READ 00001000;

P_WRITE 00000111;

P_READ 00000100;

P_WRITE 00000011;

i++; −− IS

i=3*(i mod 3); −− IS

end loop; −− IS

Given a 2-D 3 × 3 RMF application, the pseudo-code is written as follows:

SET 5;

i=0; −− IS

start loop; −− IS

input_sel=0; −− IS

LOAD (i mod9), P_WRITE 00000001;

input_sel=1; −− IS

LOAD (i+1 mod 9), P_READ 00000001;

input_sel=2; −− IS

LOAD (i+2 mod 9), CF_NULL;

DONE, CF_NULL;

input_sel=3; −− IS

LOAD (i+4 mod 9), CF_NULL;

COPY, P_READ 10000000;

P_WRITE 01111111;

P_READ 01000000;

P_WRITE 00111111;

Lin and Dung Page 17

Integration (Amst). Author manuscript; available in PMC 2009 October 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

P_READ 00100000;

P_WRITE 00011111;

P_READ 00010000;

P_WRITE 00001111;

P_READ 00001000;

P_WRITE 00000111;

P_READ 00000100;

P_WRITE 00000011;

P_READ 00000010;

i=i+3; −− IS

end loop; −− IS

Lin and Dung Page 18

Integration (Amst). Author manuscript; available in PMC 2009 October 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 1.
An example of the generic bit-sliced ROF algorithm for N =7, B=4, and r=1.

Lin and Dung Page 19

Integration (Amst). Author manuscript; available in PMC 2009 October 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 2.
The proposed rank-order filtering architecture.

Lin and Dung Page 20

Integration (Amst). Author manuscript; available in PMC 2009 October 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 3.
The block diagram of the Level-Quantizer.

Lin and Dung Page 21

Integration (Amst). Author manuscript; available in PMC 2009 October 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 4.
The polarization selector (PS).

Lin and Dung Page 22

Integration (Amst). Author manuscript; available in PMC 2009 October 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 5.
A basic element of DCRAM.

Lin and Dung Page 23

Integration (Amst). Author manuscript; available in PMC 2009 October 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 6.
A DCRAM word mixing data field and computing field. D cell(i) denotes the data field of i-
th bit and C cell(i) denotes the computing field of i-th bit.

Lin and Dung Page 24

Integration (Amst). Author manuscript; available in PMC 2009 October 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 7.
The floorplan of DCRAM.

Lin and Dung Page 25

Integration (Amst). Author manuscript; available in PMC 2009 October 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 8.
The conceptual diagram of the ROF processor.

Lin and Dung Page 26

Integration (Amst). Author manuscript; available in PMC 2009 October 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 9.
The format of the instruction set.

Lin and Dung Page 27

Integration (Amst). Author manuscript; available in PMC 2009 October 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 10.
Block diagram of the 1-D non-recursive ROF.

Lin and Dung Page 28

Integration (Amst). Author manuscript; available in PMC 2009 October 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 11.
Reservation table of the 1-D non-recursive ROF.

Lin and Dung Page 29

Integration (Amst). Author manuscript; available in PMC 2009 October 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 12.
Block diagram of the 1-D RMF.

Lin and Dung Page 30

Integration (Amst). Author manuscript; available in PMC 2009 October 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 13.
The flow for data storage of the 1-D RMF.

Lin and Dung Page 31

Integration (Amst). Author manuscript; available in PMC 2009 October 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 14.
Reservation table of the 1-D RMF.

Lin and Dung Page 32

Integration (Amst). Author manuscript; available in PMC 2009 October 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 15.
Block diagram of the 2-D non-recursive ROF with 3-by-3 window.

Lin and Dung Page 33

Integration (Amst). Author manuscript; available in PMC 2009 October 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 16.
The windowing of the 3 × 3 non-recursive ROF.

Lin and Dung Page 34

Integration (Amst). Author manuscript; available in PMC 2009 October 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 17.
The data storage of the 2-D non-recursive ROF.

Lin and Dung Page 35

Integration (Amst). Author manuscript; available in PMC 2009 October 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 18.
Reservation table of the 2-D ROF.

Lin and Dung Page 36

Integration (Amst). Author manuscript; available in PMC 2009 October 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 19.
(a) The content of the 3 × 3 window centered at (i, j). (b) The windowing of the 2-D RMF.

Lin and Dung Page 37

Integration (Amst). Author manuscript; available in PMC 2009 October 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 20.
The data storage of 2-D RMF.

Lin and Dung Page 38

Integration (Amst). Author manuscript; available in PMC 2009 October 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 21.
Block diagram of the 2-D RMF with 3-by-3 window.

Lin and Dung Page 39

Integration (Amst). Author manuscript; available in PMC 2009 October 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 22.
Reservation table of optimal pipeline for 2-D recursive median filter.

Lin and Dung Page 40

Integration (Amst). Author manuscript; available in PMC 2009 October 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 23.
The fully-pipelined ROF architecture.

Lin and Dung Page 41

Integration (Amst). Author manuscript; available in PMC 2009 October 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 24.
A modified circuit of computing cell for fully-pipelined ROF.

Lin and Dung Page 42

Integration (Amst). Author manuscript; available in PMC 2009 October 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 25.
The format of the extended instruction set for the fully-pipelined ROF architecture.

Lin and Dung Page 43

Integration (Amst). Author manuscript; available in PMC 2009 October 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 26.
Reservation table of the 1-D non-recursive ROF for fully-pipelined ROF architecture.

Lin and Dung Page 44

Integration (Amst). Author manuscript; available in PMC 2009 October 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 27.
Simulation results of a 2-D ROF application. (a) The noisy “Lena” image corrupted by 8% of
impulsive noise. (b) The “Lena” image processed by the 3 × 3 4th-order filtering. (c) The
“Lena” image processed by the 3 × 3 5th-order filtering. (d) The “Lena” image processed by
the 3 × 3 6th-order filtering.

Lin and Dung Page 45

Integration (Amst). Author manuscript; available in PMC 2009 October 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 28.
Simulation results of a 2-D RMF application. (a) The noisy “Lena” image corrupted by 9% of
impulsive noise. (b) The “Lena” image processed by the 3 × 3 RMF.

Lin and Dung Page 46

Integration (Amst). Author manuscript; available in PMC 2009 October 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 29.
The result of chip design using TSMC 0.18um 1P6M technology. (a) The chip layout of
proposed rank-order filter. (b) The core of the proposed ROF processor. (c) The floorplan and
placement of (b). (1: Instruction decoder; 2: Reset circuit, 3: WMR, 4: RMR, 5: RR, 6:
DCRAM, 7: PS; 8: Level Quantizer; 9: Shift Register; 10: OUTR.)

Lin and Dung Page 47

Integration (Amst). Author manuscript; available in PMC 2009 October 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 30.
(a) The micrograph of DCRAM chip. (b) The layout of the DCRAM chip.

Lin and Dung Page 48

Integration (Amst). Author manuscript; available in PMC 2009 October 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 31.
Measured waveform of the DCRAM chip.

Lin and Dung Page 49

Integration (Amst). Author manuscript; available in PMC 2009 October 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Fig. 32.
The system prototype of rank-order filtering processor.

Lin and Dung Page 50

Integration (Amst). Author manuscript; available in PMC 2009 October 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Lin and Dung Page 51

Table 1

Timing analysis of the proposed ROF processor.
Path Description 1.8V supply 3.3V supply

1 From the output of RR to the input of the shift register. 1.2 ns 0.78 ns
2 From the output of RMR, thru DCRAM to the input of the PS. 1.8 ns 1.1 ns
3 From the output of RMR, thru DCRAM and the Level-Quantizer, to the input of the shift register. 3.9 ns 3.44 ns
4 From the shift register, thru the inverter connected to “c_in”, to the SRAM cell of the computing field. 3.02 ns 1.96 ns
5 From “d_in” to the SRAM cell of the data field. 3.05 ns 1.85 ns
6 From the SRAM cell of the data field to the SRAM cell of the computing field. 1.24 ns 1.09 ns

Integration (Amst). Author manuscript; available in PMC 2009 October 27.

