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Both vertical and horizontal adsorption configurations of a diatomic molecule were modeled as the rigid
rotor with which the spatial motion was confined by a finite conical well. In addition to the polar hindering
potential, a sinusoidal azimuthal modulation, which bears the local symmetry of the adsorption site, was
incorporated. Eigenfunctions for different models were expressed analytically in terms of the hypergeometric
functions, and eigenvalues were solved numerically. We found that the rotational energy levels exhibit oscil-
latory behavior when plotted as functions of the hindrance angle. This particular phenomenon was interpreted
as the occurrence of resonance transmission of the rotor wave function at certain hindrance condition. We also
found that the rotational levels were grouped into bands when the azimuthal modulation strength was in-
creased. The solutions were used to calculate the rotational-state distribution of desorbed molecules, and
agreement with the previous experiment was obtained.@S0163-1829~96!07139-1#

I. INTRODUCTION

The hindered-rotation problem is an important topic in the
study of the following topics: the internal rotation of a mol-
ecule which can be modeled as a frame with attached
tops;1–5 the overall rotation of a molecule which is bounded
inside a crystal;6–8 and the overall rotation of a molecule
which is adsorbed on a solid surface.9–23 Examples of the
first case can be found in the organic molecules, e.g., in
methyl alcohol. When a molecule is bounded inside a crystal
or adsorbed on a solid surface, owing to the molecule-
molecule or molecule-surface interaction, the rotational mo-
tion of the molecule is usually frustrated, and thus is defi-
nitely different from that of a free rotor. Hence a thorough
study of the states and energies of the hindered rotation is
crucial to an understanding of the spectra of molecules and
molecular crystals, and the dynamics of adsorption and de-
sorption.

The first evidence for the hindered rotation of an adsorbed
molecule was the observation of orthopara separation factors
of the adsorbed hydrogen and deuterium.9,13,24,25 Sandler9

first showed that orthohydrogen can be adsorbed more
strongly than parahydrogen when it is physically adsorbed
on TiO2 and activated charcoal. Subsequently, it was also
demonstrated that paradeuterium as well as orthohydrogen
can be adsorbed more strongly on alumina.13,24,25 Sandler
suggested that the mechanism of the preferential adsorption
might be caused by the hindered rotation of adsorbed mol-
ecules. Preferential adsorption on selective surfaces made it
possible to prepare pure orthohydrogen and paradeu-
terium.24–26

Recently, the rotational motion of a molecule which inter-
acts with a solid surface has attracted increasing interest.

Many experimental studies such as surface neutron
scattering,13 surface infrared spectroscopy,21 electron-
energy-loss spectroscopy,27,28 electron- and photon-
stimulated desorption,19,22,29,30thermal desorption,31–33 and
gas-surface inelastic scattering34–38 provided fruitful infor-
mation about the rotational states of adsorption systems. For
example, the measured rotational-state distributions of mol-
ecules scattered or desorbed from surfaces were found to
exhibit a temperature-independent non-Boltzmann feature,
which can be attributed to hindered rotations of adsorbed
molecules.14–16,22,23

On the other hand, for theoretical studies, many simplified
models for surface potentials were proposed to simulate the
hindered rotational motion,10,14,17,19,23and a deeper theoreti-
cal understanding was acquired. Among those studies, Gad-
zuk and co-workers suggested an infinite-conical-well
model,14–17 in which the rotor is only allowed to rotate
within the well region. Rotational-state energy spectra for
both vertical and horizontal adsorption configurations were
obtained. Together with a sudden unhindrance approxima-
tion, they interpreted the non-Boltzmann properties of the
rotational-state distributions of molecules desorbed from sur-
faces. However, the infinite-conical-well model potential is,
by construction, more suitable for strong molecule-surface
interaction cases because it precludes completely the prob-
ability of a rotor appearing outside the cone. Therefore, in
the weaker interaction cases a finite conical well which al-
lows the rotor to rotate with polar angle lying outside the
well is preferable. Furthermore, it is difficult to deduce the
molecule-surface interaction strength from the experimental
data when comparing them with the theoretical results ob-
tained from solving a hard-wall hindering potential. In our
previous work,23 we presented a finite-conical-well model to
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study the rotational-state energy spectra of a vertically ad-
sorbed diatomic molecule. It was found that the rotational
energy levels of the soft-wall-hindered rotor exhibit oscilla-
tory behavior when plotted as functions of the hindrance
angle. By using the analogy of the Kronig-Penney model, we
showed this particular behavior, which does not appear in the
hard-wall case, is clearly the manifestation of the rotational
invariance of the present model. In this paper, we extend our
previous study to the horizontal configuration. In addition,
we include, to both vertical and horizontal configurations,
the periodic azimuthal modulation from which the effect of
the local symmetry of the adsorption site can be incorpo-
rated. Landmanet al.17 studied similar effects by using a
periodic square-well potential in their infinite-conical-well
model. In order to imitate more closely the real situation
around the adsorbed molecule, we adopted potentials with
sinusoidal oscillation from which analytical solutions can be
obtained. The potential models and mathematical method we
developed in our works can be generalized straightforwardly
to investigate the internal rotational states in molecules and
the rotational spectra of molecules in crystalline solids.

II. MODELS AND SOLUTIONS

The Schro¨dinger equation for the hindered molecular ro-
tation in spherical coordinates can be expressed as

F 1

sinu

]

]u S sinu ]

]u D1
1

sin2u

]2

]f2 1Erot

2Vhin~u,f!GCn,m
rot ~u,f!50, ~1!

whereErot andVhin are the rotational energy and the hinder-
ing potential energy. For convenience, the energies are ex-
pressed in the unit of the molecular rotational constant
B5\2/2I , whereI is the molecular moment of inertia with
respect to its center of rotation.Cn,m

rot is the angular wave
function of the hindered molecule. The subscriptsn andm
represent the quantum numbers arising from the dependence
of the hindering potential uponu andf.

In accordance with the objective of modeling the problem
by solvable potentials, we expressVhin(u,f) in the following
specific form to ensure separation of variables:17,39

Vhin~u,f!5FV~u!1
W~f!

sin2u G . ~2!

Hence the angular wave function can be written as a product
of two factors:

Cn,m
rot ~u,f!5Qn,m~u!Fm~f!, ~3a!

whereFm andQn,m satisfy the following equations:

F d2df2 1m22W~f!GFm~f!50 ~3b!

and

F 1

sinu

d

du S sinu d

du D1n~n11!2V~u!2
m2

sin2uGQn,m~j!50,

~3c!

where j5cosu. In deriving Eq.~3c!, the rotational energy
has been expressed in terms of the rotational quantum num-
ber n:

Erot5n~n11!, ~4!

which makes an obvious connection with the limit of free
rotation.

In Eq. ~3b!, W(f) is the periodic azimuthal modulation
arising from the local symmetry of the adsorption site. One
can imitate more closely to the real situation around the ad-
sorbed molecule by assumingW(f) in a sinusoidal oscilla-
tion form:1,6,19

W~f!5W0F12cos~Nf!

2 G , ~5!

whereN is an integer characterizing the azimuthal periodic-
ity of the site, andW0 is the height of the modulation barrier.
Thus Eq.~3b! becomes

F d2df21a22q cos~Nf!GFm~f!50, ~6a!

where

a5m22
W0

2
, q52

W0

4
. ~6b!

Equation ~6a! is just the Mathieu’s equation.41 From the
Floquet-Bloch theorem and the requirement of single value
of wave function, one can expressFm(f) in terms of the
Fourier series as

Fm~f!5 (
s52`

`

Csexp@ i ~m1sN!f#, ~7a!

wherem ands are integers. Inserting~7a! into ~6a!, one can
obtain the following recursion relation for determining the
Fourier coefficients:

Cs211Cs115tsCs , ts[
a2~m1sN!2

q
, ~7b!

and then derive a continued fraction relation
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~7c!

If m50,Fm(f) can bear definite parity, then the coefficient
C0 has to vanish for the odd-parity states. Thus Eq.~7c! is
only suitable for the even-parity states and has to be modi-
fied as

t12
1

t22

1

t32

1

t42
•••50 ~7d!
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for the odd states. The eigenvaluem2 of Eq. ~6a! for given
m andW0 can be determined numerically by solving Eqs.
~7c! and ~7d!.

Figure 1 illustrates the hindering potentials used to model
the constraint upon the rotational motion of an adsorbed di-
atomic molecule either in the vertical or horizontal configu-
ration. The rotors are confined within a conical domain
bounded at certain polar angles. However, unlike the previ-
ous studies,14–17 we used soft potential walls, i.e., finite
heights in the barrier regions, to study the adsorption behav-
iors at the weaker molecule-surface interaction range. Gen-
eral form for the polar hindering potentialV(u) correspond-
ing to both the vertical and horizontal configurations is

V~u!5H VI , 0<u,a

VII , a<u<b

VIII , b,u<p,

~8!

whereVI , VII , andVIII represent the barrier heights for re-
gion I (0<u,a), region II (a<u<b), and region III
(b,u<p), respectively.

For the vertical adsorption configuration,22,42,43 the mo-
lecular axis is preferred to be perpendicular to the surface,
therefore one can assume thatV(u) is minimum about
u50; thusVI50 andVII.0. If the adsorbed molecule ro-
tates about its center of mass, there are two cases to be con-
sidered. The first case is thatV(u) has only one minimum at
u50, thusVII5VIII.0 @see Fig. 1~a!#. This geometry can
also simulate an adsorbed diatomic molecule, in which one
end might be clamped to a surface via a chemical bond,
rotating about its attached atom. The second case is that
V(u) has two minima atu50 andu5p, thusVII.VIII.0.
If the adsorbed molecule is homonuclear, thenV(u) is sym-
metrical with respect to theu5p/2 plane, thusVI5VIII50
andb5p2a @see Fig. 1~b!#.

On the other hand, in the horizontal configuration,44,45 the
molecular axis is preferred to parallel the surface; therefore
one can assume thatV(u) is minimum aboutu5p/2, thus
VII50, VI.0, and VIII.0. If the adsorbed molecule is
homonuclear, one can further simplify the model by impos-
ing VI5VIII andb5p2a @see Fig. 1~c!#. In short, the hori-

zontal configuration is suitable to describe practically most
of the physisorbed diatomic molecules.

Since in our modelsV(u) in each region is independent of
u, we can define a parametern8 as

n8~n811!5n~n11!2V~u!, ~9!

which is independent ofu in each region, then Eq.~3c! in
each region is just the associated Legendre equation40,41with
degreen8 and orderm:

~12j2!
d2Qn,m

dj2
22j

dQn,m

dj
1Fn8~n811!2

m2

12j2GQn,m50,

~10!

wherej5cosu. Usually, the solutions of the above equation
are expressed in terms ofPn8

m andQn8
m , the associated Leg-

endre functions of the first kind and second kinds. However,
the numerical treatments of those functions near their singu-
larities, i.e.,j561, are rather unstable. A more convenient
alternate is to express the solutions of the above equation in
terms of the hypergeometric functions around their singular
pointsj51 and21.23 Now expressingQn,m(j) as

Qn,m~j!5~12j2! umu/2W~j!, ~11!

and substituting it into Eq.~10!, one obtains the standard
form of the hypergeometric equation40,41 for W:

h~12h!
d2W
dh2 1@c2~a1b11!h#

dW
dh

2abW50,

~12a!

whereh5(12j)/2, and

a5umu2n8 ,

b511umu1n8 , ~12b!

c511umu.

Therefore, the linearly independent solutions of Eq.~10! in
the neighborhood of the singular pointsj561 can be ex-
pressed as41

P~61!~n8,m,j!5~12j2! umu/2FS umu2n8,11umu1n8;1

1umu;
17j

2 D , ~13a!

Q~61!~n8,m,j!5~12j2!2umu/2FS 2umu2n8,12umu1n8;1

2umu;
17j

2 D , ~13b!

whereF(a,b;c;z) is the hypergeometric function. One can
easily note that, for unspecifiedn8 andm, P(61) converges at
j561 but diverges atj571, while Q(61) diverges at
j561. Thus the solution for Eq.~10! in three different po-
tential regions can be written as

FIG. 1. Schematics of the finite-conical-well hindering potential
for ~a! vertical adsorption configuration with potential parameters
VI50; andVII5VIII.0; ~b! vertical adsorption configuration with
potential parametersVI5VIII50, VII.0, andb5p2a; and ~c!
horizontal adsorption configuration with potential parameters
VII50, VI5VIII.0, andb5p2a. O presents the center of rota-
tion, and I is the molecular moment of inertia with respect to its
center of rotation.
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Qn,m~j!5H CI,n,mP~11!~n I8 ,m,j!, cosa,j<1

CII, n,mP~11!~n II8 ,m,j!1D II, n,mQ~11!~n II8 ,m,j!, cosb<j<cosa

CIII, n,mP~21!~n III8 ,m,j!, 21<j,cosb,

~14a!

wheren I8 , n II8 , andn III8 are defined as

n I8~n I811!5n~n11!2VI ,

n II8~n II811!5n~n11!2VII , ~14b!

n III8 ~n III8 11!5n~n11!2VIII .

In order to determinen, one has to match the boundary conditions atj15cosa andj25cosb, which yield

@P~11!~n II8 ,m,j1!P~11!8 ~n I8 ,m,j1!2P~11!~n I8 ,m,j1!P~11!8 ~n II8 ,m,j1!#

3@P~21!~n III8 ,m,j2!Q~11!8 ~n II8 ,m,j2!2Q~11!~n II8 ,m,j2!P~21!8 ~n III8 ,m,j2!#

1@P~11!~n I8 ,m,j1!Q~11!8 ~n II8 ,m,j1!2Q~11!~n II8 ,m,j1!P~11!8 ~n I8 ,m,j1!#

3@P~21!~n III8 ,m,j2!P~11!8 ~n II8 ,m,j2!2P~11!~n II8 ,m,j2!P~21!8 ~n III8 ,m,j2!#50, ~15!

for nontrivial solutions, whereP(61)8 5dP(61) /dj, andQ(61)8 5dQ(61) /dj. For givenm, a, b, VI , VII , andVIII , one can
determinen by solving Eq.~15! numerically, and thus obtain the rotational energies from Eq.~4!.

In the absence of azimuthal modulation, the parameterc511umu511umu can only have integer values because of the
requirement of single value of the azimuthal wave function. Equations~14a! and ~15! are still valid if Q(11)(n8,m,j) is
replaced by

Q~11!~n8,m,j!5~12j2! umu/23H FS umu2n8,11umu1n8;11umu;
12j

2 D lnS 12j

2 D
1 (

n51

`
~ umu2n8!n~11umu1n8!n

~11umu!nn!
S 12j

2 D n@c~ umu2n81n!2c~ umu2n8!1c~11umu1n81n!

2c~11umu1n8!2c~11umu1n!1c~11umu!2c~11n!1c~1!#

2 (
n51

umu
~n21!! ~2umu!n

~12umu1n8!n~2umu2n8!n
S 12j

2 D 2nJ , ~16!

wherec(a) is the digamma function.
Some special cases can be considered in the following:

for the vertical configuration withVI50 andVII5VIII , i.e.,
there is only one conical well, the entire polar space is di-
vided into two regions. The wave functions are

Qn,m~j!5HCI,n,mP~11!~n,m,j!, cosa<j<1

CII, n,mP~21!~n II8 ,m,j!, 21<j,cosa,
~17a!

and the eigenvalues can be obtained from solving the follow-
ing equation:

P~11!~n,m,j1!P~21!8 ~n II8 ,m,j1!

2P~11!8 ~n,m,j1!P~21!~n II8 ,m,j1!50. ~17b!

As VII→`, Eqs.~17a! and ~17b! can be reduced to

Qn,m~j!5HCI,n,mP~11!~n,m,j!, cosa<j<1

0, 21<j,cosa
~18a!

and

P~11!~n,m,j1!50. ~18b!

On the other hand, for the horizontal configuration, that is
with VII50, but bothVI andVIII→`, the wave functions can
be expressed as
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Qn,m~j!5H 0, cosa<j<1

CII, n,mP~11!~n,m,j!1D II, n,mQ~11!~n,m,j!, cosb<j<cosa

0, 21<j,cosb,

~19a!

and the eigenvalues can be obtained by solving

P~11!~n,m,j1!Q~11!~n,m,j2!2P~11!~n,m,j2!

3Q~11!~n,m,j1!50. ~19b!

One can note that Eqs.~18a!, ~18b!, ~19a!, and ~19b! are
exactly the same as the results obtained in Refs. 14 and 17.

For the special case that no restrictive conical well exists,
i.e.,V(u)50, the wave function is

Qn,m~j!5Cn,mP~11!~n,m,j!, 21<j<1, ~20a!

which diverges atj521 (u5p) unless umu2n52n,
wheren is a non-negative integer. This renders the hyper-
geometric function representingP(11)(n,m,j) terminates at
finite terms. Thus for givenm, the eigenvaluesn are

n5umu1n, n50,1,2, . . . . ~20b!

By making use of the transformation formulas of the hyper-
geometric functions,41 the total angular part wave functions
can be written as

Cn,m
rot ~u,f!5Cn,mPn

2umu~cosu!Fm~f!. ~21!

Furthermore, if the azimuthal modulation potential is absent,
m5m is also an integer. Therefore, for a givenm, the eigen-
values n5 l are integers which are equal or greater than
umu:

l5umu1n, n50,1,2,. . . , ~22a!

and the corresponding wave functions can be written as

C l ,m
rot ~u,f!5Cl ,mPl

m~cosu!exp~ imf!. ~22b!

This is exactly the familiar result of a free-space rotor.

III. RESULTS AND DISCUSSION

A. Hindered rotational energy levels

For the vertical adsorption configuration, we setVI50
and VII.0 in Eq. ~8!. For the simplest caseVII5VIII , as
shown in Fig. 1~a!, if the azimuthal modulation is absent, the
wave functions are given by Eq.~17a! with m5m5 integer.
The eigenvalues can be obtained from solving Eq.~17b! nu-
merically. The results were discussed in our previous
paper.23 Now let us consider another hindering potential
case, i.e.,VIII50 andb5p2a for the vertical configura-
tion. In this case,V(u) is just a double potential well in the
polar angle space as shown in Fig. 1~b!. The low-lying rota-
tional energy levels for such hindering potential without azi-
muthal modulation are presented in Fig. 2 as functions of
cone opening anglea for three different potential barrier
heights, namely,VII55, 20, and 80. From Fig. 2, one can
find that whena is decreased fromp/2 to zero the level
energy corresponding to thel th free rotor level increases

fromErot5 l ( l11)B toErot5 l ( l11)B1VIIB. The rotational
levels above the barrier also exhibit oscillatory behavior as
results of the single conical well. From Fig. 2, one can note
that for a given potential barrier heightVII , the rotational
levels with the same value ofn([ l2umu) exhibit the same
behavior asa changes, and the levels with the samen but
larger umu are always higher than those with smallerumu.
This is a common feature for both the vertical and horizontal
rotors, as we will see below. Therefore, the rotational energy
levels can be classified into several families according to the
values ofn, and it is convenient to denote the calculated
rotational energy levels by the pair of numbers, (n,m). Fig-
ure 2 shows that the number of oscillations~i.e., the number
of dErot/da'0 in the region 0,a,p/2) of the levels, be-
longing to thenth family in the region of 0,a,p/2, is
equal to @n/2#, where @x# denotes the largest integer<x.
Figure 2 also shows that lower-energy levels of the hindered
rotor for a given value ofumu are nearly degenerate in pairs
for larger potential barrier heights and medium open angles.
This degeneracy is the general feature of a symmetric double
well structure.46,47 One can note that the higher the barrier
height is, the more obvious the degeneracy of levels is.

For the horizontal adsorption configuration, the polar hin-
dering potential is chosen asVII50, VI5VIII , and

FIG. 2. Low-lying rotational energy levels~in units of
B5\2/2I ) of a vertically hindered rotor@see Fig. 1~b!# as functions
of the hindrance anglea ~in degrees! with b5180°2a for poten-
tial barrier heightsVI5VIII50 and~a! VII55, ~b! VII520, and~c!
VII580.
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b5p2a in Eq. ~8!, as shown in Fig. 1~c!. One can note
from Figs. 1~b! and 1~c! that this case is just the geometry
complement of the symmetric vertical conical well. The cal-
culated low-lying rotational energy levels for such a hinder-
ing potential without azimuthal modulation are shown in Fig.
3 as functions of the hindrance anglea for three different
potential-barrier heights, namely,VI55, 20, and 80. As in
the case of vertical configuration, the rotational energies of
the horizontal rotor increase as the spatial localization is in-
creased. Whena changes from zero top/2, the energy in-
creases fromErot5 l ( l11)B to Erot5 l ( l11)B1VIB. For
the smaller barrier height, e.g.,VI55, the energy levels can
be categorized into different groups in accordance with the
quantum numbersl of the free rotor. But for larger barrier
heights, e.g.,VI520, the levels start to intersect with each
others. If the barrier height is sufficiently large, e.g.,
VI580, the rotational levels become to group into different
families asa approachesp/2. However, in the case of finite
potential barriers the leakage of the rotor wave function out-
side the well is possible. Therefore, when the conical well
region is very small, i.e.,a is close top/2, the molecule does
not behave like a two-dimensional plan rotor; instead, it be-
haves like a three-dimensional rotor again. From Fig. 3, one
can note that as in the cases of vertically hindered rotors, the
energy levels of the soft-wall horizontal rotor also exhibit
oscillatory behavior when the level energies are plotted as
functions of hindrance angle. The number of oscillation of
the levels belonging to thenth family in the region of
0,a,p/2 is equal to@n/2#.

The oscillatory behavior ofErot can be ascribed to the
phenomenon of the resonance transmission.23 If the hinder-

ing potential is absent, the solution is the associated Leg-
endre functionPl

m The number of nodes of the solution in
the region 0,u,p is n5 l2umu. When the hindering po-
tential is present, the wave function is distorted by the po-
tential wall; however, the number of nodes does not change.
When the well reduces to the situation that the potential wall
is located on the node position of the wave function, the
resonance transmission occurs. Therefore, the amplitude of
the rotor wave function inside the well reaches a minimum,
and Erot is not sensitive to the reduction of the well, i.e.,
dErot/da'0. As the conical well reduces further, the node
position of the wave function does not locate on the potential
wall, and the resonance transmission disappears until the
next coincidence of potential wall and node position of wave
function occurs. Therefore, the number of oscillations of the
rotational level is related to the number of nodes of the so-
lution. For the single vertical conical-well potential@Fig.
1~a!#, the numbers of oscillation of the rotational levels as
a changes from zero top aren. On the other hand, for the
symmetric conical-well potential@Figs. 1~b! and 1~c!#, the
numbers of oscillation of the rotational levels asa changes
from zero top/2 are@n/2#.

B. Azimuthal modulation effect

The effect of increasingW0 upon azimuthal quantum
numbersm2 for different values ofm can be obtained by
solving Eqs.~7c! and~7d!. The results are presented in Fig. 4
for N54 and 6. One can note the progressive splitting for
m at Brillouin-zone edge values~i.e., umu52,4,6,. . . , for
N54 or umu53,6,9,. . . , for N56) and greater banding of
m2 as the height of the azimuthal barrierW0 is increased.

FIG. 3. Low-lying rotational energy levels~in units of
B5\2/2I ) of a horizontally hindered rotor@see Fig. 1~c!# as func-
tions of the hindrance anglea ~in degrees! with b5180°2a for
potential barrier heightsVII50 and ~a! VI5VIII55, ~b!
VI5VIII520, and~c! VI5VIII580.

FIG. 4. Azimuthal quantum numberm2 as functions of azi-
muthal modulation potential barrier heightW0 for different values
of m. The results are presented for symmetric numbers~a! N54,
and ~b! N56.
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One can expect that, asW0 increases, the states approach
harmonic-oscillator-like states, and as seen in Fig. 4, the lev-
els ofm2 tend toward equal spacing.

To investigate the effect of azimuthal modulation upon
rotational levels, the low-lying energy levels of a modulated
vertical rotor@see Fig. 1~a! for VI50, andVII5VIII520# and
a modulated symmetric horizontal rotor@see Fig. 1~c! for
VII50, VI5VIII520, andb5p2a# for fourfold azimuthal
symmetry@N54 in Eq. ~5!# for different modulation barrier
heights, namely,W055, 10, and 20 as functions of hin-
drance anglea are presented in Figs. 5 and 6, respectively.
Figures 5 and 2~b! of Ref. 23 and Figs. 6 and 3~b! afford
direct comparison between the results of the rotational en-
ergy levels with and without the azimuthal modulation. From
these figures one can find that, for given values ofN, the
increasing of the barrier heightW0 yields increasing ofm2

and, therefore, increases the energies of the rotational states.
When a5p for the vertical configuration ora50 for the
horizontal configuration, i.e., there is no restrictive cone, the
energy of the rotational state within thenth family becomes
Erot5(ummu1n)(ummu1n11)B from Eq. ~20b!. When the
conical well reduces,Erot increases oscillatorily as that in the
unmodulated rotor cases. Whena approaches zero for the

vertical configuration orp/2 for the horizontal configuration,
the rotor is nearly unhindered again; therefore, the energy
becomes Erot'(ummu1n)(ummu1n11)B1VB, where
V5VII for the vertical rotor orV5VI for the horizontal rotor.
The banding ofm2 with increasingW0 as shown in Fig. 4 is
reflected in the rotational energies displayed in Figs. 5 and 6.
This banding is reflected within each of rotational state fami-
lies. In Figs. 5 and 6, the splittings of (0,62) and (1,62)
states are indicated. The band gaps due to the periodic azi-
muthal modulation increase as the modulation barrier is in-
creased. The convergence of states into bands upon increas-
ing modulation strength is clearly seen. That is, when the
barrier height increases, the gaps becomes wider and the
band becomes narrower.

C. Rotational-state distributions

Now consider the desorption problem. If the desorption is
induced by a fast process, such as electron or photon bom-
bardment or rapid heating, one can assume that the hindering
potential is suddenly switched off, and that hindered-to-free
rotational transition takes place without altering the wave
function. In such sudden unhindrance approximation,14–16

FIG. 5. Low-lying rotational energy levels~in units of
B5\2/2I ) of a vertically hindered rotor@see Fig. 1~a! for VI50,
and VII5VIII520# as functions of the hindrance anglea ~in de-
grees! for azimuthal modulation potential barrier heights~a!
W055, ~b! W0510, and~c! W0520. The azimuthal modulation is
sinusoidal with fourfold symmetry (N54). The (n,m) designation
is shown withm being the azimuthal quantum number in the limit
of vanishing modulation@see Fig. 2~b! of Ref. 23#. The band gaps
due to the periodic azimuthal modulation are indicated for the
n50 andn51 families andm562.

FIG. 6. Low-lying rotational energy levels~in units of
B5\2/2I ) of a horizontally hindered rotor@see Fig. 1~c! for
VII50, VI5VIII520, andb5180°2a# as functions of the hin-
drance anglea ~in degrees! for azimuthal modulation potential bar-
rier heights~a! W055, ~b! W0510, and~c! W0520. The azimuthal
modulation is sinusoidal with fourfold symmetry (N54). The
(n,m) designation is shown withm being the azimuthal quantum
number in the limit of vanishing modulation@see Fig. 3~b!#. The
band gaps due to the periodic azimuthal modulation are indicated
for then50 andn51 families andm562.
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the population of free-rotational states when molecules are
quickly desorbed from the surface can be calculated.

The free-rotational states are described by a set of spheri-
cal harmonics:$YL,M(u,f)%; thus the probability of ending
up in theLth free-rotational state is the sum of rotational
Franck-Condon factors between the final stateYL,M and the
hindered-rotational stateCv,m

rot weighted by appropriate ther-
mal factors; that is,

P~L !5
1

Zhin
(

M ,v,m
exp@2Bn~n11!/kT# z^YL,MuCv,m

rot & z2,

~23!

whereT is the surface temperature,k is the Boltzmann con-
stant, andZhin is the partition function of the hindered rotor.
In Eq. ~23!, we have assumed the center of mass of the
molecule to be always at rest, i.e., no center of mass trans-
lational energy, and consider only the purely hindered-to-
free rotational transition.

The calculated final rotational-state distributions based on
Eq. ~23! with B/kT51 for various potential barrier heights
are shown in Figs. 7 and 8. Figure 7 presents the result for
the vertically hindered rotor@see Fig. 1~a!# while Fig. 8 is for
the horizontally hindered rotor@see Fig. 1~c!#. For conve-
nience, in our calculation, we have neglected the modulation
potential, i.e., settingW(f)50. As the conventional treat-
ment, we plot the curves of ln@P(L)/(2L11)# vs L(L11). It
is known that for a Boltzmann distribution a straight line
with slope 52B/kT should be obtained. However, from
Figs. 7 and 8, one can note that the rotational-state distribu-
tions are significantly influenced by the hindering potential
and a non-Boltzmann feature is obtained.

In Figs. 7 and 8, the calculated final-state distributions
exhibit two different behaviors. For the low-L region a
nearly linear behavior is seen in which an effective rotational
temperatureTr can be determined by equating the slope to
2B/kTr . One can note that, the greater the potential
strength, the higher the effective rotational temperatureTr
can be obtained. Furthermore, the effective temperaturesTr
for all of hindrance conditions are higher than the surface
temperatureT. This rotational heating effect14–16 has been
found in the electron-stimulated desorption experiment,22

and can be realized by the fact that, at low enough tempera-
ture, the final free-rotational-state distribution is due to the
conversion of initial-state zero-point energy, not thermal ex-
citation. A higher potential-barrier height yields greater
initial-state zero-point energy; therefore, a higher effective
rotational temperatureTr can be obtained. This also explains
the fact that the probability of an unhindered rotor appearing
in the high-L region for a greater hindering potential strength
is greater than that for smaller hindering potential strength.
This is due to the fact that, at low enough temperature, the
hindered rotor is primarily located at low-lying states. Thus
the population of the final high-L states depends mainly on
their overlaps with the low-lyingn states. When we gradu-
ally increase the strength of the hindering potential, energies
of the low-lyingn states start to increase, and the overlaps of
the low-lying n states with the high-L states become more
prominent.

For the high-L region, the curves in Figs. 7 and 8 display
qualitatively different behavior from that of the curves in the
low-L region. At some criticalL value, the state distribution
drops precipitously from the linear form, then rises to form a
plateau. Such alternate drops and plateaus make the state

FIG. 7. Rotational-state distribution of the suddenly unhindered
rotor of Fig. 1~a! for VI50, VII5VIII520, 160, 1280, and̀ with
a510° and B/kT51, plotted in the form ln@P(L)/(2L11)# vs
L(L11).

FIG. 8. Rotational-state distribution of the suddenly unhindered
rotor of Fig. 1~c! for VII50, VI5VIII520, 160, 1280, and̀ with
a580°, b5180°2a, and B/kT51, plotted in the form
ln@P(L)/(2L11)# vs L(L11).
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distribution an oscillatory structure. The oscillations show a
periodicity in L as 180°/a for the vertical rotor and
180°/(90°2a) for the symmetric horizontal rotor. This os-
cillatory structure can be understood as follows: For the
high-L region, the rotational Franck-Condon factors between
the final stateYL,M and the hindered-rotational stateCv,m

rot

oscillate asL increases. When the Franck-Condon factors are
summed over differentM , n, andm weighted by the appro-
priate Boltzmann factors, they form precipitous drops and
plateaus. The plateau structure was observed in a gas-surface
scattering experiment, and was interpreted in terms of rota-
tional rainbows.48 This implies an intimate connection be-
tween the rotational rainbows and the molecule-surface in-
teraction.

In Fig. 8, the calculated rotational-state distributions for
the horizontally hindered rotor show that in addition to the
oscillatory structures there are zigzags along the curves.
These zigzags occur because the horizontally hindering po-
tential is chosen to be symmetrical with respect to the
u5p/2 plane, and thus the hindered rotational stateCv,m

rot

bears the definite parity. The dominant ground state is even.
Therefore, the Franck-Condon factors between the odd-L
free-rotational state and the ground hindered state should
vanish. One can find that the zigzag is minimum at oddL
and maximum at evenL. One can expect that the zigzag
structure will disappear when the surface temperature is very
high. This is because at high temperature the ground state is
no longer dominant.

To investigate the oscillation of Franck-Condon factor,
one can recall the analogy between the hindered-rotor prob-
lem and the Kronig-Penney model problem.23 The Cartesian-
coordinate counterpart of the free rotor statesYL,M are the
following free-particle states which satisfy periodic bound-
ary conditionC(x12p)5C(x):

Ceven,N
free ~x!55

1

A2p
, N50

1

Ap
cos~Nx!, N51,2,3, . . .

~24a!

for even states and

Codd,N
free ~x!5

1

Ap
sin~Nx!, N51,2,3, . . . ~24b!

for odd states. These wave functions have been normalized
in the region of2p<x<p. For the infinite well case, i.e.,
VII→`. Our vertical conical well @see Fig. 1~a! for
VII→`# corresponds to an infinite square well with width of
2a. The hindered particle states of such infinite square well
are

Ceven,n
hin ~x!5

1

Aa
cosS np

2a
xD , n51,3,5, . . . ~25a!

for even states and

Codd,n
hin ~x!5

1

Aa
sinS np

2a
xD , n52,4,6,. . . , ~25b!

for odd states. Therefore, for a hindered-to-free transition the
probability is

peven
n→N5H 8a

n2p2, N50

n2p

a3 F cos~aN!

N22~np/2a!2G
2

, N51,2,3, . . .

~26a!

for even-to-even transition or

podd
n→N5

n2p

a3 F sin~aN!

N22~np/2a!2G
2

, N52,4,6, . . .

~26b!

for odd-to-odd transition. One can easily find that the transi-
tion probability oscillates asN varies. The probability has
drops atN5sp/2a, s51,3,5, . . . for even-to-even transi-
tion or s52,4,6, . . . for odd-to-odd transition@except
N5np/2a, whereCN

free(x) and Cn
hin(x) specify the same

states in the well region#. Therefore the spacing between two
neighbor drops is justDN5p/a. Examining the free-particle
statesCN

freewith N5sp/2a, one can findCN
free states are just

the states which are orthogonal withCn
hin .

For the finite vertical conical well, its Cartesian counter-
part is just a set of periodic square wells. The hindered par-
ticle states are now the zone-center Bloch states. A similar
treatment will deduce an oscillatory hindered-to-free transi-
tion probability. The spacing between two neighbor drops of
the probability is alsoDN5p/a. On the other hand, a simi-
lar treatment of the Cartesian counterpart of a horizontal
conical well potential will deduce an oscillatory hindered-to-
free transition probability with periodicityDN5p/(p/2
2a).

From the above simple comparison between the hindered
rotor problem and its Cartesian-coordinate counterpart, one
can conclude that the oscillation of the Franck-Condon fac-
tors is a general result of a system transiting from hindered
states to free states. The drops of the Franck-Condon factors
occur when the final free states are orthogonal~or nearly
orthogonal! with the initial hindered states. The periodicity
of the oscillation is related to the geometry structure of the
hindering potential. The oscillation of the Franck-Condon
factor reflects the rotational invariance of the hindered rotor
problem.

One can determine the parameters of the model potential
function by fitting the calculated rotational-state distribution
to the measured distribution. Figure 9 shows the measured
distributions for CN* desorbed form the Li and Cs
surfaces,22 and the calculated results of Ref. 22 and us by
least-squares fitting. In the calculation of Ref. 22, the hinder-
ing potential was modeled as a complicated form with three
parameters. In our calculation, the potential was modeled as
a vertical conical well as shown in Fig. 1~a!. For the soft-
wall conical well, the cone opening anglea and the potential
barrier heightVII were set as parameters, while for the hard-
wall conical well, onlya was a parameter. In the fitting
calculations, the model potential was assumed to bef inde-
pendent and only the ground initial state was considered due
to the low substrate temperature.
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The fitted parameters of both soft- and hard-wall conical
wells are presented in Table I. As shown in Table I, surface
hindering potential depends strongly on the substrates. The
potential barrier height for the Cs surface is very large; there-
fore, as shown in Fig. 9, our calculated results for both finite
and infinite conical wells are nearly coincident with each
other, and these results are in agreement with the results of
Ref. 22. On the other hand, the potential barrier height for
the Li surface is smaller, and therefore the hard-wall conical
well induced a poor result; however, the soft-wall well in-
duced a better one.

From Table I, one can note that the finite conical well for
the Li surface has a very small cone opening angle, while
that for the Cs surface has a larger one. This agrees the fitted
result of Ref. 22. The small cone opening angle for the Li
surface confines a CN molecular wave function in a small-
angle region, and renders a large zero-point energy. There-
fore, when CN is desorbed, more energy is transferred into
the final rotational states for the Li surface than those for the
Cs surface, and the distribution for CN desorbed from Li is
wider than that for CN desorbed from Cs. Figure 9 shows
this result.

Finally, some comments on the difference between the
soft- and hard-wall conical wells are made. As we showed
above, the rotational levels of a soft-wall-hindered rotor ex-
hibit oscillatory behavior. This is absolutely different from
that of a hard-wall rotor. Further, the infinite-conical-well
model potential is suitable only for the adsorption system
with a large potential barrier height; however, the finite one
is suitable for most of adsorption system due to the adjust-
able potential barrier heights. This is very helpful to estimate
the interaction strength between adsorbed molecules and sur-
faces by fitting experimental data. Above, we showed that
our fitted rotational-state distributions for the finite-conical-
well model are in agreement with the previously measured
and calculated distributions. However, the infinite-conical-
well model gives poor results for a system with a small po-
tential barrier height.

Another advantage of the finite-conical-well model is that
as the role of finite square well in the Cartesian space, the
finite conical well plays a basic role in the polar space. Any
complicated hindering potential in the polar space can be
approximated by a series of suitable finite wells or barriers,
and the mathematical treatment is just the extension of our
above treatments. However, an infinite well is useless to ap-
proximate most of complicated hindering potential.

It is possible for some adsorption systems that the hinder-
ing potential has minima aboutu50 andp/2, i.e., that both
vertical and horizontal adsorption configurations are stable.
One can expect that if the potential barrier height is not very
large, an exchange between two different adsorption con-
figurations is possible due to the tunneling effect or external
perturbations. One can investigate such vertical-horizontal
exchange by applying the finite-conical-well model. How-
ever, the infinite-conical-well model is useless because it
precludes completely the transition probability.

IV. CONCLUSIONS

We have studied the hindered and modulated rotational
motion of an adsorbed diatomic molecule. Both vertical and
horizontal adsorption configurations were studied, respec-
tively, by modeling the surface potentials as solvable vertical
and horizontal finite conical wells. In addition to the polar
hindrance, we studied the effect of the azimuthal modulation
upon the rotational energy levels. The azimuthal modulation
was assumed to possess the local symmetry of the adsorption
site.

The calculated rotational energies increase as the region
of the conical well is reduced. They also show an oscillatory
behavior when they are plotted as functions of the hindrance
angle. The physical origin of the oscillatory behavior can be
ascribed to the phenomenon of the resonance transmission.
By examining variations of rotational levels, one can classify
energy levels into different families in accordance withn,
which is the number of nodes of molecular polar wave func-
tion.

The effect of increasing modulation barrier height upon
the azimuthal quantum numberm2 was found. The results
exhibited the progressive splitting ofm2 for m at the
Brillouin-zone edge and the banding effect ofm2 as the
height of the azimuthal barrierW0 increases. This banding
effect is reflected within each rotational level family. The

FIG. 9. Comparisons of the calculated rotational distribution
with measured distribution:~a! for CN* desorbed from the Li sur-
face, and~b! for CN* desorbed from the Cs surface~Ref. 22!.

TABLE I. The fitted parameters of the vertical soft- and hard-
wall conical wells for Cs-CN and Li-CN adsorption systems.

Cs-CN Li-CN
a VII a VII

conical well ~degree! ~eV! ~degree! ~eV!

soft wall 11.36 2.45 1.85 0.31
hard wall 12.01 ` 11.2 `
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levels within each family were found to converge into bands
as the modulation strength increases.

By employing the sudden unhindrance approximation, the
solutions of the hindered molecules were used to calculated
the rotational-state distributions of molecules desorbed from
a solid surface. When the calculated state distributions were
plotted semilogarithmically, two distinctly different regimes
appeared. For the low-L region a nearly linear behavior was
seen in which an effective rotational temperatureTr can be
determined.Tr was found to be independent of the surface
temperature. On the other hand, the high-L region displayed
an oscillatory structure with alternate drops and plateaus.
The oscillation structure is a general result of a system tran-

siting from hindering states to free states, and can be re-
garded as the manifestation of the rotational invariance. The
calculated state distributions were used to fit the previously
measured data, and the parameters of the hindering potential
were obtained. For an adsorption system with a smaller po-
tential barrier height, only the results of the finite-conical-
well model agree with the measured data.
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