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Hindered and modulated rotational states and spectra of adsorbed diatomic molecules
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Both vertical and horizontal adsorption configurations of a diatomic molecule were modeled as the rigid
rotor with which the spatial motion was confined by a finite conical well. In addition to the polar hindering
potential, a sinusoidal azimuthal modulation, which bears the local symmetry of the adsorption site, was
incorporated. Eigenfunctions for different models were expressed analytically in terms of the hypergeometric
functions, and eigenvalues were solved numerically. We found that the rotational energy levels exhibit oscil-
latory behavior when plotted as functions of the hindrance angle. This particular phenomenon was interpreted
as the occurrence of resonance transmission of the rotor wave function at certain hindrance condition. We also
found that the rotational levels were grouped into bands when the azimuthal modulation strength was in-
creased. The solutions were used to calculate the rotational-state distribution of desorbed molecules, and
agreement with the previous experiment was obtaif®d163-18206)07139-1

[. INTRODUCTION Many experimental studies such as surface neutron
scattering® surface infrared spectroscopy, electron-

The hindered-rotation problem is an important topic in theenergy-loss  spectroscopy?® electron- and photon-
study of the following topics: the internal rotation of a mol- stimulated desorptioft;???%*thermal desorptiofi: 3 and
ecule which can be modeled as a frame with attachegas-surface inelastic scatterifig® provided fruitful infor-
tops1~ the overall rotation of a molecule which is bounded mation about the rotational states of adsorption systems. For
inside a crystaf™® and the overall rotation of a molecule example, the measured rotational-state distributions of mol-
which is adsorbed on a solid surfaté® Examples of the ecules scattered or desorbed from surfaces were found to
first case can be found in the organic molecules, e.g., iexhibit a temperature-independent non-Boltzmann feature,
methyl alcohol. When a molecule is bounded inside a crystalvhich can be attributed to hindered rotations of adsorbed
or adsorbed on a solid surface, owing to the moleculemolecules:*~16:22:23
molecule or molecule-surface interaction, the rotational mo- On the other hand, for theoretical studies, many simplified
tion of the molecule is usually frustrated, and thus is defi-models for surface potentials were proposed to simulate the
nitely different from that of a free rotor. Hence a thorough hindered rotational motiotf:*"192%nd a deeper theoreti-
study of the states and energies of the hindered rotation isal understanding was acquired. Among those studies, Gad-
crucial to an understanding of the spectra of molecules anduk and co-workers suggested an infinite-conical-well
molecular crystals, and the dynamics of adsorption and denodel**~1" in which the rotor is only allowed to rotate
sorption. within the well region. Rotational-state energy spectra for

The first evidence for the hindered rotation of an adsorbedboth vertical and horizontal adsorption configurations were
molecule was the observation of orthopara separation factobtained. Together with a sudden unhindrance approxima-
of the adsorbed hydrogen and deuterit?®*?° Sandle?  tion, they interpreted the non-Boltzmann properties of the
first showed that orthohydrogen can be adsorbed moreotational-state distributions of molecules desorbed from sur-
strongly than parahydrogen when it is physically adsorbedaces. However, the infinite-conical-well model potential is,
on TiO, and activated charcoal. Subsequently, it was alsdy construction, more suitable for strong molecule-surface
demonstrated that paradeuterium as well as orthohydrogenteraction cases because it precludes completely the prob
can be adsorbed more strongly on alumin&:?® Sandler  ability of a rotor appearing outside the cone. Therefore, in
suggested that the mechanism of the preferential adsorptiche weaker interaction cases a finite conical well which al-
might be caused by the hindered rotation of adsorbed mollows the rotor to rotate with polar angle lying outside the
ecules. Preferential adsorption on selective surfaces madevitell is preferable. Furthermore, it is difficult to deduce the
possible to prepare pure orthohydrogen and paradeunolecule-surface interaction strength from the experimental
terium24-26 data when comparing them with the theoretical results ob-

Recently, the rotational motion of a molecule which inter-tained from solving a hard-wall hindering potential. In our
acts with a solid surface has attracted increasing interesprevious work® we presented a finite-conical-well model to
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study the rotational-state energy spectra of a vertically ad{ 1 d ( d wu?
—— —| sinfd—

sorbed diatomic molecule. It was found that the rotational| 55 4g gg) TV~ 55510,,,(6) =0,
energy levels of the soft-wall-hindered rotor exhibit oscilla- (30)

tory behavior when plotted as functions of the hindrance

angle. By using the analogy of the Kronig-Penney model, wevhere {=co. In deriving Eq.(3¢), the rotational energy
showed this particular behavior, which does not appear in theas been expressed in terms of the rotational quantum num-
hard-wall case, is clearly the manifestation of the rotationaber v:

invariance of the present model. In this paper, we extend our

previous study to the horizontal configuration. In addition, E=p(v+1), 4

we include, to both vertical and horizontal configurations, hich K bvi . ith the limit of f
the periodic azimuthal modulation from which the effect of \rlgt;ior:na €s an obvious connection with the imit of free

the local symmetry of the adsorption site can be incorpo-
y y P P In Eq. (3b), W(¢) is the periodic azimuthal modulation

rated. Landmaret all’ studied similar effects by using a '’ CE
| arising from the local symmetry of the adsorption site. One

periodic square-well potential in their infinite-conical-wel 9 o O
model. In order to imitate more closely the real situationc@n imitate more closely to the real situation around the ad-
molecule by assumin( ¢) in a sinusoidal oscilla-

around the adsorbed molecule, we adopted potentials Witﬁorbe<j

sinusoidal oscillation from which analytical solutions can bet®" form:%:19

obtained. The potential models and mathematical method we

developed in our works can be generalized straightforwardly W(h)=W 1-cogN¢) )
to investigate the internal rotational states in molecules and 0 2 '

the rotational spectra of molecules in crystalline solids. _ . . : -
whereN is an integer characterizing the azimuthal periodic-

ity of the site, and\, is the height of the modulation barrier.

The Schrdinger equation for the hindered molecular ro-

2
tation in spherical coordinates can be expressed as d _ _
[@fra 2qcogNg) | P ,(¢)=0, (63
1 9 d i where
—_ i R - rot
Sing aa(s'naae T sie a2 T
a= 2_% gq=— % (6b)
—VI(9,¢) W (6,4) =0, (D) Fom 4"

_ Equation (6a) is just the Mathieu’s equatictt. From the
whereE™ andV"" are the rotational energy and the hinder- Floquet-Bloch theorem and the requirement of single value
ing potential energy. For convenience, the energies are exf wave function, one can expreds,(¢) in terms of the
pressed in the unit of the molecular rotational constan¥ourier series as

B=#2/21, wherel is the molecular moment of inertia with
rot

respect to its center of rotation,’  is the angular wave *

function of the hindered molecule. The subscriptand u D, (d)= 2 Ceexfdi(m+sN)¢], (74
represent the quantum numbers arising from the dependence =

of the hindering potential upofi and ¢. wherem ands are integers. Insertinfa) into (6a), one can

In accordance with the objective of modeling the problemgptain the following recursion relation for determining the
by solvable potentials, we expreg8™( 8, ¢) in the following  Eourier coefficients:

specific form to ensure separation of variabied’

a—(m+sN)?
Co1+Csi1=7Cs, T6=—T, (7b)
. () q
and then derive a continued fraction relation

Hence the angular wave function can be written as a product

W(¢)
sit o

VI(,¢)=| V() +

of two factors: 1 1 1 1 1 1
To— — — — = —— .. =0,
T-17 T-27 T-3 71T T2T T3
V' (0,4)=0,,(0)D,($), (33 (79
] ] ) If m=0,® ,(¢) can bear definite parity, then the coefficient
where® , and®, , satisfy the following equations: C, has to vanish for the odd-parity states. Thus &g) is
only suitable for the even-parity states and has to be modi-
g2 fied as
[W*’MZ_W(Q") ®,(¢)=0 (3b)
N S S 7

and To— T3~ T4—
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zontal configuration is suitable to describe practically most
of the physisorbed diatomic molecules.

Since in our model¥(6) in each region is independent of
0, we can define a parametef as

V(v +1D)=v(rv+1)—V(0), 9

which is independent of in each region, then Eq3c) in
each region is just the associated Legendre equttbwith
degreev’ and orderu:

2

2
FIG. 1. Schematics of the finite-conical-well hindering potential (1- éz)d O, _2§d®V’M v (v +1)— ® =0
for (a) vertical adsorption configuration with potential parameters dé&? dé I
V,=0; andV,=V,,>0; (b) vertical adsorption configuration with (10

potential parameter¥,=V,,;=0, V>0, and 8=7—«a; and (c) _ . .
horizontal adsorption configuration with potential parametersWhereg_Cose' Usually, the solutions of the above equation

V,=0, V,=V,,>0, andB=m—a. O presents the center of rota- are expressed in terms &f,;, andQ’,, , the associated Leg-
tion, and! is the molecular moment of inertia with respect to its endre functions of the first kind and second kinds. However,
center of rotation. the numerical treatments of those functions near their singu-
larities, i.e.,£=*1, are rather unstable. A more convenient
for the odd states. The eigenvalpé of Eq. (6a) for given  alternate is to express the solutions of the above equation in
m and W, can be determined numerically by solving Egs.terms of the hypergeometric functions around their singular

(7¢) and (7d). points ¢=1 and—1.2* Now expressing®, ,(£) as
Figure 1 illustrates the hindering potentials used to model
the constraint upon the rotational motion of an adsorbed di- V,M(§)=(1—§2)|“"2W(§), 11

atomic molecule either in the vertical or horizontal configu- o .
ration. The rotors are confined within a conical domainand substituting it into Eq(lO), one obtains the standard
form of the hypergeometric equatitSif! for W:

bounded at certain polar angles. However, unlike the previ-
ous studies? 1" we used soft potential walls, i.e., finite W aw
heights in the barrier regions, to study the adsorption behav- 1— +lc—(a+b+1)nl— —abW=0

iors at the weaker molecule-surface interaction range. Gen- 7(1=7) d»n? [e=( ) 7] dzy '
eral form for the polar hindering potenti®l §) correspond- (1239
ing to both the vertical and horizontal configurations is where 7= (1—£)/2, and

V,, 0=6<a a=|u|—v',
V(6)=9| Vi, as6<p (8)
Vy, B<6sm, b=1+|u|+7v', (12b
whereV,, V,, andV, represent the barrier heights for re- c=1+]ul.

gion | (0=6<a), region Il (e<#=<p), and region llI

(B< 6=<), respectively. Therefore, the linearly independent solutions of E)) in
For the vertical adsorption configuratiéh??*3the mo-  the neighborhood of the singular poings- =1 can be ex-

lecular axis is preferred to be perpendicular to the surfacepressed ds

therefore one can assume th¥{6#) is minimum about

0=0; thusV,=0 andV,>0. If the adsorbed molecule ro- , , .

tates about its center of mass, there are two cases to be con- Ply(v ,M,g):(1_§2)u|/2|:( =yt Lt ul el

sidered. The first case is thd{#) has only one minimum at

6=0, thusV,=V,,>0 [see Fig. 1a)]. This geometry can A |E)

also simulate an adsorbed diatomic molecule, in which one =)

end might be clamped to a surface via a chemical bond,

rotating about its attached atom. The second case is that

V(6) has two minima a¥=0 and =, thusV,>V,,>0. Q(ﬂ)(v’,,u,g)z(l—gz)‘""ZF( —|u|—v" 1= |ul+v";1

If the adsorbed molecule is homonuclear, th&®) is sym-

metrical with respect to thé= =/2 plane, thusv/,=V,,=0 15¢

and 8= m— «a [see Fig. 1b)]. =lul; T)
On the other hand, in the horizontal configuratf6fi®the

molecular axis is preferred to parallel the surface; thereforavhereF(a,b;c;z) is the hypergeometric function. One can

one can assume th&t(#) is minimum aboutd= /2, thus  easily note that, for unspecified andu, P 1) converges at

V=0, V>0, and V;;>0. If the adsorbed molecule is £=+1 but diverges att=7+1, while Q.1 diverges at

homonuclear, one can further simplify the model by impos-£=*=1. Thus the solution for Eq10) in three different po-

ing V,=V,, and 8= m— « [see Fig. 1c)]. In short, the hori- tential regions can be written as

(133

(13b)
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CiovuPirn (v s, 6), cosm<¢<l
0,,.(8=3 CuvuPr(vi s, &)+ Dy Qi) (v m,é), CcOPB<E<cosw (149
C”,Y,,V#P(,l)(yl’“ s 6), —1=<¢<Cco0sB,

wherev| , v, andv, are defined as
v (v/+1)=v(r+1)—V,,
vi(v+ ) =v(r+1)-V,, (14b

vy (vt =v(r+1)—Vy,.

In order to determine, one has to match the boundary conditiong gt cose and &,=cos3, which yield

[Py (v is €D P1)( o0 €2) = Py (v 1, €0 Py (v 1,61 ]
XIPny(Vl 10 €2) Q1) (Wit s 1, €2) = Q1) (Wi i, €2) P 1y () s 11, €2) ]
P, €0) Qs 1y (w0 E1) — Qi ) ( i, €D Plo 1y (9] e, €1) ]

XIP (v i, E) Plo gy (V0 E2) = Pra iy (v, 1, €2) P (v 11, €2) 1 =0, (15

for nontrivial solutions, wher ., ;)=dP.1)/d¢, and Q. ;)=dQ.1,/d¢. For givenu, «, B, V|, V,;, andVy,, one can
determiner by solving Eqg.(15) numerically, and thus obtain the rotational energies from(Ey.

In the absence of azimuthal modulation, the parametet +|u«|=1+|m| can only have integer values because of the
requirement of single value of the azimuthal wave function. Equati@ds) and (15) are still valid if Q1) (v",m,§) is

replaced by
in| 28
N2

1_ n
( 25) [o(Im[ =" +n)—g(Im[—v") + ¢(1+[m|+ v +n)

3

1_
|m|—v’,1+|m|+v’;1+|m|;T

Qs )(¥',m, &) =(1—g2)Im2x { E

[

(Jml—v') o1+ |m + "),
tE T @

— (14 |m|+ ") = p(1+[m[+n)+ (1+[m]) = p(1+n) + 4(1)]

|ml -n
(n—=1)!(=[m|), 1-¢
- ! ’ L] 16
& T T =7, 2 (19
|
wherey(a) is the digamma function. As V,—x, Egs.(179 and(17b can be reduced to

Some special cases can be considered in the following:
for the vertical configuration with/,=0 andV,=V,,, i.e.,
there is only one conical well, the entire polar space is di-

vided into two regions. The wave functions are 0, (&)= CrvuPrn(v.p,é), cosxs<¢s<l
ni 0, —1<é<cosw
® (5) CI,V,,LLP(+1)( V,,(L,g), CO&!$§$1 (18@
S Ci v P—1)(vy ), —1sé<cos,
(179 and
and the eigenvalues can be obtained from solving the follow- Poyy(v,m,€1)=0. (18b)
ing equation:
Piroy(vim, EDP_ gy (v 1, €1) On the other hand, for the horizontal configuration, that is

with V,,=0, but bothV, andV,;, — o, the wave functions can
= Pleny(vim, D P 1) (v, u,€1)=0. (17  be expressed as
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0, comr==¢<1
0,,.6=1 CuvuPey(vim, )+ Dy, Qi) (v, 1,6),  COPB<Escosy (19a
0, —1<é<cosB,
|
and the eigenvalues can be obtained by solving from E™'= (I +1)B to E™=1(l+1)B+V,B. The rotational
levels above the barrier also exhibit oscillatory behavior as
P (v, €1) Q) (vip,€2) = Pray (v, 62) results of the single conical well. From Fig. 2, one can note
X Qs 1)(v,u,€1)=0. (19b) that for a given potential barrier heigh, , the_z rotational
levels with the same value @f(=I—|m|) exhibit the same

One can note that Eq$184), (180), (198, and (19b) are  pehavior ase changes, and the levels with the saméut
exactly the same as the results obtained in Refs. 14 and arger Im| are always higher than those with smallen].
~ For the special case that no restrictive conical well existsyhjs is a common feature for both the vertical and horizontal
.e., V(0)=0, the wave function is rotors, as we will see below. Therefore, the rotational energy
levels can be classified into several families according to the
0,u8)=Co Py §), —1<é<1, (203 values ofn, and it is convenient to denote the calc?JIated
which diverges até=—1 (6=m) unless |u|—v=—n, rotational energy levels by the pair of numbens,n). Fig-
wheren is a non-negative integer. This renders the hyperure 2 shows that the number of oscillatidng., the number
geometric function representirg , 1)(v,4,¢) terminates at  of dE™/da=~0 in the region & a<w/2) of the levels, be-

finite terms. Thus for givem, the eigenvalueg are longing to thenth family in the region of Ka<w/2, is
equal to[n/2], where[x] denotes the largest integefx.
v=|ul+n, n=012.... (20b) Figure 2 also shows that lower-energy levels of the hindered

By making use of the transformation formulas of the hyper-fotor for a given value ofm| are nearly degenerate in pairs
geometric functioné! the total angular part wave functions for larger potential barrier heights and medium open angles.

can be written as This degener?gx7is the general feature of a symmetric double
well structure®*’ One can note that the higher the barrier
w0, (j)):CV’MP;l“‘(COS?)(I)M(d)). (21)  height is, the more obvious the degeneracy of levels is.

. . . L For the horizontal adsorption configuration, the polar hin-
Furthermore, if the azimuthal modulation potential is absemdering potential is chosen a&,=0, V,=V,, and

pm=m s also an integer. Therefore, for a given the eigen-
values v=I are integers which are equal or greater than
|m| : 20

V,=5 @

I=|m/+n, n=0,1.2,..., (229

and the corresponding wave functions can be written as

T (6,4)=Ci nP"(cosf)expime).  (22b)

This is exactly the familiar result of a free-space rotor.

Ill. RESULTS AND DISCUSSION

A. Hindered rotational energy levels

For the vertical adsorption configuration, we 34t=0
and V>0 in Eqg. (8). For the simplest cas¥,=V,,, as
shown in Fig. 1a), if the azimuthal modulation is absent, the
wave functions are given by E¢L7a with u=m=integer.
The eigenvalues can be obtained from solving @b nu-
merically. The results were discussed in our previous
paper’® Now let us consider another hindering potential
case, i.e.V;;=0 and 8= m— « for the vertical configura-
tion. In this caseV(#) is just a double potential well in the 0 45 90
polar angle space as shown in Figb)l The low-lying rota- a (deg)
tional energy levels for such hindering potential without azi-
muthal modulation are presented in Fig. 2 as functions of G 2. Low-lying rotational energy levelgin units of
cone opening anglex for three different potential barrier p—7#2/21) of a vertically hindered rotdisee Fig. {b)] as functions
heights, namelyV, =5, 20, and 80. From Fig. 2, one can of the hindrance angle (in degreeswith 8= 180°— « for poten-
find that whena is decreased fromr/2 to zero the level tial barrier heightsv,=V,,=0 and(a@) V,=5, (b) V=20, and(c)
energy corresponding to thieéh free rotor level increases Vv,=80.
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FIG. 4. Azimuthal quantum numbex? as functions of azi-
B=1#2/21) of a horizontally hindered rotdisee Fig. 1c)] as func- muthal modulation potential barrier heigit, for different values
tions of the hindrance angle (in degreeswith 8=180°— « for of m. The results are presented for symmetric numigarsN=4,
potential barrier heightsV,=0 and (@ V,=V,=5, (b and(b) N=6.

V|=V||| =20, and(C) V|=V||| =80.

FIG. 3. Low-lying rotational energy levelgin units of

ing potential is absent, the solution is the associated Leg-

B=m—«a in Eq. (8), as shown in Fig. (). One can note endre functionP" The number of nodes of the solution in
from Figs. 1b) and Xc) that this case is just the geometry the region G< #< is n=1—|m|. When the hindering po-
complement of the symmetric vertical conical well. The cal-tential is present, the wave function is distorted by the po-
culated low-lying rotational energy levels for such a hinder-tential wall; however, the number of nodes does not change.
ing potential without azimuthal modulation are shown in Fig. When the well reduces to the situation that the potential wall
3 as functions of the hindrance anglefor three different is located on the node position of the wave function, the
potential-barrier heights, namely,=5, 20, and 80. As in resonance transmission occurs. Therefore, the amplitude of
the case of vertical configuration, the rotational energies othe rotor wave function inside the well reaches a minimum,
the horizontal rotor increase as the spatial localization is inand E™ is not sensitive to the reduction of the well, i.e.,
creased. Whemr changes from zero ter/2, the energy in- dE™®da~0. As the conical well reduces further, the node
creases fromE™'=I(1+1)B to E™=I(I+1)B+V,B. For position of the wave function does not locate on the potential
the smaller barrier height, e.g/;=5, the energy levels can wall, and the resonance transmission disappears until the
be categorized into different groups in accordance with thenext coincidence of potential wall and node position of wave
guantum numbers of the free rotor. But for larger barrier function occurs. Therefore, the number of oscillations of the
heights, e.g.V,=20, the levels start to intersect with each rotational level is related to the number of nodes of the so-
others. If the barrier height is sufficiently large, e.g.,lution. For the single vertical conical-well potentifFig.
V,=80, the rotational levels become to group into different1(a)], the numbers of oscillation of the rotational levels as
families asa approachesr/2. However, in the case of finite « changes from zero tar aren. On the other hand, for the
potential barriers the leakage of the rotor wave function outsymmetric conical-well potentidlFigs. 1b) and Xc)], the
side the well is possible. Therefore, when the conical wellhnumbers of oscillation of the rotational levels aschanges
region is very small, i.eq is close torr/2, the molecule does from zero tow/2 are[n/2].
not behave like a two-dimensional plan rotor; instead, it be-
haves like a three-dimensional rotor again. From Fig. 3, one
can note that as in the cases of vertically hindered rotors, the
energy levels of the soft-wall horizontal rotor also exhibit The effect of increasingV, upon azimuthal guantum
oscillatory behavior when the level energies are plotted asumbersu? for different values ofm can be obtained by
functions of hindrance angle. The number of oscillation ofsolving Eqs(7¢) and(7d). The results are presented in Fig. 4
the levels belonging to theith family in the region of for N=4 and 6. One can note the progressive splitting for
0<a<w/2 is equal td n/2]. m at Brillouin-zone edge valuef.e., |[m|=2,4,6,. .., for

The oscillatory behavior oE™ can be ascribed to the N=4 or|m|=3,6,9,..., forN=6) and greater banding of
phenomenon of the resonance transmis$tdithe hinder- w2 as the height of the azimuthal barrig¥, is increased.

B. Azimuthal modulation effect
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FIG. 5. Low-lying rotational energy levelgin units of
B=7%2/21) of a vertically hindered rotofsee Fig. 1a) for V,=0, FIG. 6. Low-lying rotational energy levelgin units of
and V,,=V,,=20] as functions of the hindrance angle (in de- ~ B=7#?/2) of a horizontally hindered rotofsee Fig. 1c) for
greeg for azimuthal modulation potential barrier heights)  Vy=0, V,=V;;=20, and 5=180°-«] as functions of the hin-
W,=5, (b) W= 10, and(c) W,=20. The azimuthal modulation is drance anglex (in degreesfor azimuthal modulation potential bar-
sinusoidal with fourfold symmetryN=4). The (,m) designation  rier heights(@ Wy=5, (b) Wp= 10, and(c) Wy =20. The azimuthal
is shown withm being the azimuthal quantum number in the limit modulation is sinusoidal with fourfold symmetryN&4). The
of vanishing modulatiofisee Fig. 2b) of Ref. 23. The band gaps (n.,m) designation is shown witm being the azimuthal quantum
due to the periodic azimuthal modulation are indicated for thenumber in the limit of vanishing modulatiofsee Fig. 8)]. The
n=0 andn=1 families andm=*2. band gaps due to the periodic azimuthal modulation are indicated

for then=0 andn=1 families andm==*2.

One can expect that, a8, increases, the states aloloroachvertical configuration otr/2 for the horizontal configuration,

harmon|20—030|llator—l|ke states, aqd as seen in Fig. 4, the lth'he rotor is nearly unhindered again; therefore, the energy
els of u“ tend toward equal spacing.

: _ , _ becomes E"™'~(|um|+n)(|um|+n+1)B+VB, where

Tc_> investigate the effec_t of azimuthal modulation uponV:V” for the vertical rotor ol =V, for the horizontal rotor.
rota.t|onal levels, th_e low-lying energy levels of a modulated-l-he banding ofu? with increasingW, as shown in Fig. 4 is
vertical rotor| see Fig. 1."") for \./':o' andv, :V”.' =20] and reflected in the rotational energies displayed in Figs. 5 and 6.
a modulated symmetric horizontal rotgsee Fig. _1C) for This banding is reflected within each of rotational state fami-
V=0, V=V =20, andg=m— o] for fourfold azimuthal ;o5 | Figs. 5 and 6, the splittings of (82) and (1+2)
symmetry[N=4 in Eq. (5] for different modulation barrier  giateg are indicated. The band gaps due to the periodic azi-
heights, namelyW,=5, 10, and 20 as functions of hin- , tha| modulation increase as the modulation barrier is in-
drance anglev are presented in Figs. 5 and 6, respectively.creased. The convergence of states into bands upon increas-
Figures 5 and @) of Ref. 23 and Figs. 6 and( afford  jq modulation strength is clearly seen. That is, when the

direct comparison between the results of the rotational enga rier height increases, the gaps becomes wider and the
ergy levels with and without the azimuthal modulation. Fromy 44 pecomes narrowerj

these figures one can find that, for given valuesNofthe
increasing of the barrier heigh, yields increasing ofu?

and, therefore, increases the energies of the rotational states.
When a= 7 for the vertical configuration or=0 for the Now consider the desorption problem. If the desorption is
horizontal configuration, i.e., there is no restrictive cone, thanduced by a fast process, such as electron or photon bom-
energy of the rotational state within tiith family becomes bardment or rapid heating, one can assume that the hindering
E™'= (| wml+n)(|eml +n+1)B from Eq. (20b). When the potential is suddenly switched off, and that hindered-to-free
conical well reducesE™" increases oscillatorily as that in the rotational transition takes place without altering the wave
unmodulated rotor cases. Whenapproaches zero for the function. In such sudden unhindrance approximatfbh®

C. Rotational-state distributions
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In[P(L)/(2L+1)]
In[P(L)/(2L+1)]

.35 1 1 L 1 .30 1 1 L 1
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

L(L+1) L(L+1)

FIG. 7. Rotational-state distribution of the suddenly unhindered FIG. 8. Rotational-state distribution of the suddenly unhindered
rotor of Fig. 1a) for V,=0, V,,=V,,=20, 160, 1280, an¢> with rotor of Fig. Xc) for V,=0, V,=V,,=20, 160, 1280, anc> with
a=10° and B/kT=1, plotted in the form IpP(L)/(2L+1)] vs a«=80°, B=180°-«, and B/kT=1, plotted in the form
L(L+1). InN[P(L)/(2L+1)] vs L(L+1).

the population of free-rotational states when molecules are |, Figs. 7 and 8, the calculated final-state distributions

quHc_:Enydesorbeq fr0||"n the surfacde car_nbbz ct:)alculated]; h exhibit two different behaviors. For the lolv-region a
e free-rotational states are described Dy a set of Sphefliaary linear behavior is seen in which an effective rotational

cal harmonics{Y, (6, ¢)}; thus the probability of ending yomneraturer, can be determined by equating the slope to
up in theLth free-rotational state is the sum of rotational —B/KT,. One can note that, the greater the potential
r- ]

F.ranck-Condoln factors breOPNeen the final stéfey gnd the strength, the higher the effective rotational temperaflire
hindered-rotational stat¥,, weighted by appropriate ther- ., e obtained. Furthermore, the effective temperaftyes

M
mal factors; that is, for all of hindrance conditions are higher than the surface
temperaturel. This rotational heating effett!® has been
found in the electron-stimulated desorption experinfént,
and can be realized by the fact that, at low enough tempera-
(23)  ture, the final free-rotational-state distribution is due to the
conversion of initial-state zero-point energy, not thermal ex-
whereT is the surface temperature,s the Boltzmann con- citation. A higher potential-barrier height yields greater
stant, andZ,,, is the partition function of the hindered rotor. initial-state zero-point energy; therefore, a higher effective
In Eg. (23), we have assumed the center of mass of theotational temperaturg, can be obtained. This also explains
molecule to be always at rest, i.e., no center of mass tranghe fact that the probability of an unhindered rotor appearing
lational energy, and consider only the purely hindered-toin the hight region for a greater hindering potential strength
free rotational transition. is greater than that for smaller hindering potential strength.
The calculated final rotational-state distributions based orfhis is due to the fact that, at low enough temperature, the
Eqg. (23) with B/kT=1 for various potential barrier heights hindered rotor is primarily located at low-lying states. Thus
are shown in Figs. 7 and 8. Figure 7 presents the result fahe population of the final high- states depends mainly on
the vertically hindered rotdisee Fig. 1a)] while Fig. 8 is for  their overlaps with the low-lying’ states. When we gradu-
the horizontally hindered rotdrsee Fig. 1c)]. For conve- ally increase the strength of the hindering potential, energies
nience, in our calculation, we have neglected the modulationf the low-lying v states start to increase, and the overlaps of
potential, i.e., settingV(¢)=0. As the conventional treat- the low-lying v states with the high- states become more
ment, we plot the curves of [R(L)/(2L+1)] vsL(L+1). It  prominent.
is known that for a Boltzmann distribution a straight line  For the hight region, the curves in Figs. 7 and 8 display
with slope = —B/kT should be obtained. However, from qualitatively different behavior from that of the curves in the
Figs. 7 and 8, one can note that the rotational-state distribdew-L region. At some criticalL value, the state distribution
tions are significantly influenced by the hindering potentialdrops precipitously from the linear form, then rises to form a
and a non-Boltzmann feature is obtained. plateau. Such alternate drops and plateaus make the state

1

P(L)= ZhinM,o,

> exd —Bu(v+ L/KTI(YL u| TP,

v,
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distribution an oscillatory structure. The oscillations show afor odd states. Therefore, for a hindered-to-free transition the
periodicity in L as 180°k for the vertical rotor and probability is
180°/(90°— «) for the symmetric horizontal rotor. This os-

cillatory structure can be understood as follows: For the 8«
high-L region, the rotational Franck-Condon factors between nZa2 N=0
the final stateY, v and the hindered-rotational stafe, Poven=19 5
oscillate ad increases. When the Franck-Condon factors are n*ml cogaN) N=123 ...
summed over different!, v, and u weighted by the appro- a® [N’ (nm/2a)?] T
priate Boltzmann factors, they form precipitous drops and (269
plateaus. The plateau structure was observed in a gas-surface .
scattering experiment, and was interpreted in terms of rota© €Ven-to-even transition or
tional rainbows'® This implies an intimate connection be- ) ) )
tween the rotational rainbows and the molecule-surface in- non_ N 77[ sin(aN) N=246
teraction. Podd =733 IN = (n7l2a)?] > T
In Fig. 8, the calculated rotational-state distributions for (26b)

the horizontally hindered rotor show that in addition to the - o .
oscillatory structures there are zigzags along the curvedor odd-to-odd transition. One can easily find that the transi-
These zigzags occur because the horizontally hindering pdion probability oscillates a®l varies. The probability has
tential is chosen to be symmetrical with respect to thedrops atN=sm/2a, =135, ... for even-to-even transi-
6=/2 plane, and thus the hindered rotational sti, ~ tion or s=2,4,6,... for odd-to-odd transitioriexcept
ini i ' ic =nn/2a, where W¥(x) and w""(x) specify the same
bears the definite parity. The dominant ground state is ever nwice, N n pe
Therefore, the Franck-Condon factors between the lodd- States in the well regidnTherefore the spacing between two
free-rotational state and the ground hindered state shouldighbor drops is juskN= /. Examining the free-particle
vanish. One can find that the zigzag is minimum at &dd States? *® with N=sm/2a, one can find? [*° states are just
and maximum at evei.. One can expect that the zigzag the states which are orthogonal with)".
structure will disappear when the surface temperature is very For the finite vertical conical well, its Cartesian counter-
high. This is because at high temperature the ground state jmrt is just a set of periodic square wells. The hindered par-
no longer dominant. ticle states are now the zone-center Bloch states. A similar
To investigate the oscillation of Franck-Condon factor,treatment will deduce an oscillatory hindered-to-free transi-
one can recall the analogy between the hindered-rotor proliion probability. The spacing between two neighbor drops of
lem and the Kronig-Penney model probléThe Cartesian- the probability is alsaAN=7/«. On the other hand, a simi-
coordinate counterpart of the free rotor stavgsy are the lar treatment of the Cartesian counterpart of a horizontal
following free-particle states which satisfy periodic bound-conical well potential will deduce an oscillatory hindered-to-
ary conditionW (x+27) =V (x): free transition probability with periodicityAN= 7/(7/2
—a).
1 From the above simple comparison between the hindered
— N:O . . _ .
' rotor problem and its Cartesian-coordinate counterpart, one
N2 N
piee  (x)= (249  can conclude that the oscillation of the Franck-Condon fac-
evenN . ... .
tors is a general result of a system transiting from hindered
\/——COS(NX), N=123, ... states to free states. The drops of the Franck-Condon factors
™ occur when the final free states are orthogofmal nearly
for even states and orthogonal with the initial hindered states. The periodicity
of the oscillation is related to the geometry structure of the

1 hindering potential. The oscillation of the Franck-Condon
‘I'gSS’N(x)z—sirKNx), N=1,2,3, ... (24b factor reflects the rotational invariance of the hindered rotor
\/; problem.

for odd states. These wave functions have been normalized ONe can determine the parameters of the model potential
in the region of— m<x<ar. For the infinite well case, i.e. function by fitting the calculated rotational-state distribution

V,—. Our vertical conical well[see Fig. a) for © the measured distribution. Figure 9 shows the measured

V, ] corresponds to an infinite square well with width of distributions for CN* desorbed form the Li and Cs

2
2a. The hindered particle states of such infinite square wel urfaces? and .th_e calculated resu!ts of Ref. 22 and us by
are east-squares fitting. In the calculation of Ref. 22, the hinder-

ing potential was modeled as a complicated form with three
1 parameters. In our calculation, the potential was modeled as
n . . . .
(X)= —cos(z—x), n=1,35,... (253 a vertical conical well as shown in Fig(d. For the soft-

Va « wall conical well, the cone opening angleand the potential
barrier heightv, were set as parameters, while for the hard-
wall conical well, only @ was a parameter. In the fitting
calculations, the model potential was assumed tepbede-

hin 1. [nm endent and only the ground initial state was considered due
P (X)= —=sin =—x|, n=246,..., (25p P ytheg
: Ja  \2a to the low substrate temperature.

\I,hin

evenn

for even states and
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0.10 i i i i . . Finally, some comments on the difference between the
(a) . *  Csoexpt. soft- and hard-wall conical wells are made. As we showed
0.08 | 1t e Ret 22 ] above, the rotational levels of a soft-wall-hindered rotor ex-
: hibit oscillatory behavior. This is absolutely different from
0.06 F — softwall | that of a hard-wall rotor. Further, the infinite-conical-well
2 —— hard wall model potential is suitable only for the adsorption system
* 004t with a large potential barrier height; however, the finite one
is suitable for most of adsorption system due to the adjust-
0.02 H* able potential barrier heights. This is very helpful to estimate
the interaction strength between adsorbed molecules and sur-
0.00 L= faces by fitting experimental data. Above, we showed that
0.08 ) ; ' " j ' our fitted rotational-state distributions for the finite-conical-
RN * Liexpt well model are in agreement with the previously measured
0.06 z '\\ ---- Ref. 22 | and calculated distributions. However, the infinite-conical-
\ — soft wall well model gives poor results for a system with a small po-
3 . tential barrier height. N _ _
z 004 ' hard wall Another advantage of the finite-conical-well model is that
as the role of finite square well in the Cartesian space, the
0.02 finite conical well plays a basic role in the polar space. Any
complicated hindering potential in the polar space can be
. ) . CONiEETY approximated by a series of suitable finite wells or barriers,
0.00 0 5 10 15 20 25 30 and the mathematical treatment is just the extension of our

above treatments. However, an infinite well is useless to ap-
L proximate most of complicated hindering potential.
It is possible for some adsorption systems that the hinder-
FIG. 9. Comparisons of the calculated rotational distributioning potential has minima abo#=0 and /2, i.e., that both
with measured distributior(a) for CN* desorbed from the Li sur- vertical and horizontal adsorption configurations are stable.
face, andb) for CN* desorbed from the Cs surfaggef. 22. One can expect that if the potential barrier height is not very
large, an exchange between two different adsorption con-
The fitted parameters of both soft- and hard-wall conicalfigurations is possible due to the tunneling effect or external
wells are presented in Table I. As shown in Table |, surfaceerturbations. One can investigate such vertical-horizontal
hindering potential depends strongly on the substrates. Thexchange by applying the finite-conical-well model. How-
potential barrier height for the Cs surface is very large; thereever, the infinite-conical-well model is useless because it
fore, as shown in Fig. 9, our calculated results for both finiteprecludes completely the transition probability.
and infinite conical wells are nearly coincident with each
other, and these results are in agreement with the results of
Ref. 22. On the other hand, the potential barrier height for IV. CONCLUSIONS

the”L.' zurfa(cje is smaller, :lzlr.u::]therefore ;he h?rd—vxilall C(I)In_lcal We have studied the hindered and modulated rotational
\éve 'g uge a poor result; however, the soft-wall well in- motion of an adsorbed diatomic molecule. Both vertical and
uced a better one. horizontal adsorption configurations were studied, respec-

From Table |, one can note that the finite conical well for e\ "1 modeling the surface potentials as solvable vertical
the Li surface has a very small cone opening angle, Whl|%

hat for th " h | hi he i ?ﬁ?d horizontal finite conical wells. In addition to the polar
that for the Cs surface has a larger one. This agrees the fittegh, 4 e we studied the effect of the azimuthal modulation
result of Ref. 22. The small cone opening angle for the Li

; LI upon the rotational energy levels. The azimuthal modulation
surface confines a CN molecular wave function in a small

: , ‘was assumed to possess the local symmetry of the adsorption
angle region, and renders a large zero-point energy. Thergs,

fore, when CN is desorbed, more energy is transferred into 1o a0y jated rotational energies increase as the region

the final rotational states for the Li surface than those for th%f the conical well is reduced. They also show an oscillatory

Cs surface, and the distribution for CN desorbed from Li iSpepayior when they are plotted as functions of the hindrance
W'.der than that for CN desorbed from Cs. Figure 9 Showsdngle. The physical origin of the oscillatory behavior can be
this result. ascribed to the phenomenon of the resonance transmission.
By examining variations of rotational levels, one can classify
energy levels into different families in accordance with
which is the number of nodes of molecular polar wave func-
tion.

TABLE |. The fitted parameters of the vertical soft- and hard-
wall conical wells for Cs-CN and Li-CN adsorption systems.

-CN Li-CN . . . . .
Cs-C -C The effect of increasing modulation barrier height upon
o V|| o V” .
conical well (degree eV) (degree V) the azimuthal quantum number? was found. The results
9 g exhibited the progressive splitting ofi®> for m at the
soft wall 11.36 2.45 1.85 0.31 Brillouin-zone edge and the banding effect af as the
hard wall 12.01 © 11.2 0 height of the azimuthal barrieW, increases. This banding

effect is reflected within each rotational level family. The
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levels within each family were found to converge into bandssiting from hindering states to free states, and can be re-

as the modulation strength increases.

garded as the manifestation of the rotational invariance. The

By employing the sudden unhindrance approximation, thecalculated state distributions were used to fit the previously
solutions of the hindered molecules were used to calculategheasured data, and the parameters of the hindering potential
the rotational-state distributions of molecules desorbed fronvere obtained. For an adsorption system with a smaller po-
a solid surface. When the calculated state distributions wergantial barrier height, only the results of the finite-conical-
plotted semilogarithmically, two distinctly different regimes \ye|| model agree with the measured data.

appeared. For the lol-region a nearly linear behavior was
seen in which an effective rotational temperatiifecan be

determined.T, was found to be independent of the surface

temperature. On the other hand, the highegion displayed
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