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Side-wall effects on the bifurcation of the flow through
a sudden expansion

Yeng-Yung Tsui∗,† and Hong-Wen Wang
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SUMMARY

Three-dimensional computations have been performed to study the flow through a symmetric sudden
expansion with an expansion ratio of 3 at low Reynolds numbers. The aspect ratio of the flow channel
is allowed to vary within a wide range to examine its influence on the flow which bifurcates from
a symmetric state to an asymmetric state. The results reveal that the critical Reynolds number of the
symmetry-breaking bifurcation increases while the aspect ratio is reduced. The flow behaviour near the
side walls is illustrated by using limiting streamlines. The origin of the singular points identifiable on the
side wall can be traced back to the recirculating flows and the relevant reattachment/separation points
in the core of the channel. It is seen that the determination of the exact critical Reynolds number is not
trivial because it depends on how to define asymmetric flow. Computations have also been conducted
to show that a slight asymmetry in the channel geometry causes a smooth transition from symmetric to
non-symmetric states. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The laminar flow through a sudden expansion in a channel will inevitably separate. For a symmetric,
double-sided expansion two recirculation regions are formed behind the two expansion steps. It
was shown in the experimental work of Durst et al. [1] that the flow is symmetric to the centreline
of the channel at a Reynolds number of 56 (where the Reynolds number is based on the centreline
velocity and the height of the channel), but becomes asymmetric as the Reynolds number is
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increased to 140, with two recirculation regions of unequal sizes. The formation of the asymmetric
flow is sometimes attributed to the Coanda effect [2, 3]: once an increase (or decrease) in velocity
at one wall is accompanied with a decrease (or increase) in pressure, the pressure difference formed
across the channel will maintain the asymmetric pattern. The physical origin of the asymmetry
is related to the instability of the shear layer between the main stream and the recirculating flow.
Small disturbances embedded in the shear layer can be amplified to form wavy patterns and,
then, vortex-like structures. Such a vortex-like shedding structure was detected in the double-sided
sudden expansion flows studied by Cherdron et al. [4]. Due to the confinement of the channel the
two shear layers on the two sides of the intake stream interact with each other through velocity
fluctuations. If the fluctuating normal velocities in one shear layer are out of phase with those in
the other, the vortex-like shedding flow becomes asymmetric [4]. The asymmetric flow patterns
were captured in two-dimensional simulations by Tsui and Wang [5] and Tsui and Shu [6]. As
pointed out by them, the asymmetric disturbances, required to trigger the asymmetric solution, can
be generated either by the computer’s round-off errors or by asymmetric relaxation methods used
as matrix solvers.

The stability analyses of Fearn et al. [7] and Shapira et al. [8] showed that the unique, symmetric
solution loses its stability at a certain critical Reynolds number beyond which a pair of stable,
asymmetric solutions exists. This is referred to as supercritical pitchfork bifurcation. Because
the symmetry-breaking point is structurally unstable, any type of small perturbation to the base
flow problem, such as a slight degree of asymmetry in the expansion geometry as proposed by
Fearn et al. [7], can lead to a breaking of the pitchfork bifurcation diagram into two branches.
The primary branch describes a smooth transition from the symmetric solution to the asymmetric
solution, whereas on the secondary branch there are two asymmetric solutions with one solution
being stable and the other unstable [9, 10]. By further increasing the Reynolds number the flow
may become three-dimensional before it becomes unsteady, as suggested by Fearn et al. [7].
An alternative is for the flow to evolve into a time-periodic state, which remains essentially two
dimensional [3, 11, 12]. This is known as Hopf bifurcation. In a recent study the non-Newtonian
fluid flow through a symmetric sudden expansion was investigated by Neofytou and Drikakis [13]
using three models. Similar to the Newtonian flow, the breaking of the symmetric pattern also
occurs at a critical point which depends upon the Reynolds number and the specific parameters
included in each of the three models.

The methods adopted to find the critical Reynolds number for the pitchfork bifurcation can be
classified into three categories: bifurcation analyses, numerical simulations and experiments. In the
bifurcation analysis either stability analyses (linear or nonlinear) [8, 10, 14, 15] or extended system
techniques [7, 16] were adopted to pinpoint the exact bifurcation point. For the other two methods
it is required to gradually increase or decrease the Reynolds number to search for the critical point
asymptotically. Besides, as mentioned above, the critical Reynolds number is sensitive to small
imperfections that are unavoidable especially in the experimental apparatus. Therefore, it is rather
difficult to exactly locate this point by these two methods.

A summary of reported critical Reynolds numbers obtained using the above methods for expan-
sion ratios in the range 2–5 is listed in Table I. The Reynolds numbers shown in the table are based
on the average inlet velocity and the intake channel height. It is evident that there is an inverse
relationship between the critical Reynolds number and the expansion ratio. In general, the critical
Reynolds numbers obtained by using various bifurcation analyses are close. For expansion ratio
2 they range from 143.6 to 145.3 while for expansion ratio 3 they fall in the range 53.3–55. The
numerically predicted critical numbers are diversified. Among them only Drikakis [17] reported
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Table I. A summary of critical Reynolds numbers obtained by different methods.

H/h Rec References Methods

143.7 Shapira et al. [8] Bifurcation analysis
145.3 Alleborn et al. [14] Bifurcation analysis
143.6 Battaglia et al. [16] Bifurcation analysis

2 83.3 Durst et al. [11] Numerical simulation
150–155 Battaglia et al. [16] Numerical simulation
144 Drikakis [17] Numerical simulation
123.3 De Zilwa et al. [18] Numerical simulation
123.3 Chedron et al. [4] Experiments

53.9 Fearn et al. [7] Bifurcation analysis
55 Shapira et al. [8] Bifurcation analysis
53.3 Alleborn et al. [14] Bifurcation analysis
53.8 Battaglia et al. [16] Bifurcation analysis
53.8 Rusak and Hawa [15] Bifurcation analysis

3 53.7 Mizushima and Shiotani [10] Bifurcation analysis
53.3 Foumeny et al. [19] Numerical simulation
57–58 Battaglia et al. [16] Numerical simulation
53.3 Drikakis [17] Numerical simulation
58.7 De Zilwa et al. [18] Numerical simulation
54.3 Schreck and Schafer [20] Numerical simulation

(three-dimensional)
35.8 Battaglia et al. [16] Bifurcation analysis

4 35–40 Battaglia et al. [16] Numerical simulation
35.3 Drikakis [17] Numerical simulation

28.5 Alleborn et al. [14] Bifurcation analysis
5 28.4 Battaglia et al. [16] Bifurcation analysis

27–30 Battaglia et al. [16] Numerical simulation
27.3 Drikakis [17] Numerical simulation

values in close agreement with those obtained from bifurcation analyses for the various expansion
ratios. Either Foumeny et al. [19] or Schreck and Schafer [20] also obtained a critical value close
to the theoretical values for expansion ratio 3. For expansion ratio 2 the critical value of 83.3
reported by Durst et al. [11] is not reliable because, comparing with the other data, it is far too
low. The value of 123.3 predicted by De Zilwa et al. [18] is identical to the experimental data of
Cherdron et al. [4], but about 14% lower than those obtained from bifurcation theory. Battaglia
et al. [16] did not pinpoint exact values in their numerical simulations, but indicated an interval
for each case. The interval is in the range 150–155 for expansion ratio 2 and in the range 57–58
for expansion ratio 3, which are on the side higher than the theoretical values.

In all the above studies, apart from that by Shreck and Schafer [20], the flow was assumed to
be two dimensional. In the present study a three-dimensional numerical procedure is employed
to investigate the effect of the side wall on the flow at Reynolds numbers around the bifurcation
point. It was observed in both the experiments of Cherdron et al. [4] and the three-dimensional
computations by Shreck and Schafer [20] that a decrease in the aspect ratio of the channel
has a stabilizing effect which extends the range of Reynolds number for the symmetric flow
to exist. A numerical investigation has been carried out by Chiang et al. [21] to examine the
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side-wall effect for a flow with expansion ratio of 3 and Reynolds number of 80 (based on
the mean velocity and the channel height at the inlet). At this Reynolds number the flow is
unavoidably asymmetric. However, the decrease of aspect ratio makes the flow undergo a transition
towards symmetry. In addition to the bifurcation in the step height direction, the computations
of Chiang et al. [22] revealed a symmetry breaking in the spanwise direction. In this kind of
bifurcation the flow patterns are not symmetric, but skew symmetric to the mid-span plane; the two
recirculation zones interchange their positions on the two sides of the mid-span plane. As indicated
by them, it is rather difficult to obtain this spanwise bifurcation because symmetric flow is present
on the mid-span plane, which is unstable according to the two-dimensional bifurcation theory.
A recent study by Biswas et al. [23] showed some interesting results for the channel flow over a
single-sided backward-facing step. For an expansion ratio of 1.9423 the reattached point behind
the step is under-predicted in two-dimensional simulations for Reynolds numbers, Re, greater
than 400 compared with experimental data (Re is based on the hydraulic diameter Dh = 2h,
where h is the height of the intake channel). By conducting a three-dimensional calculation the
separation line on the bottom wall is well captured. This reveals that to accurately simulate
expansion flows at sufficiently large Reynolds numbers three-dimensional calculations become
indispensable.

In this paper numerical simulations of the flow field are performed using a finite-volume method.
A description of the flow configuration and the formulation of the problem are given in Section 2.
This is followed by presentation of the numerical algorithm used to solve governing equations.
The procedure is then tested and employed to examine the three-dimensional flow in the expansion
channel. Finally, a concluding remark is made.

2. MATHEMATICAL MODEL

The physical model under consideration is illustrated in Figure 1. A channel with height H and
length L2 is preceded by a smaller channel with height h and length L1. All computations are
performed for an expansion ratio H/h = 3. The width of the two channels are denoted by W . The
aspect ratio of the larger channel (W/H) will not be greater than 8 in most cases. All dimensions are

Figure 1. A schematic drawing of the expanded channel.
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scaled by using h as the reference length and the velocities are normalized by the bulk velocity in
the upstream channel U . The Reynolds number is defined as Re=Uh/�, where � is the kinematic
viscosity. The governing equations to conserve mass and momentum for incompressible flow can
then be cast into the following form:

∇ • V= 0 (1)

∇ • (VV) = −∇P + 1

Re
∇2V (2)

Non-slip boundary conditions are imposed on the confining walls. At the inlet a uniform distribution
of velocity is prescribed. Selection of the upstream channel length L1 is made to ensure a fully
developed state obtained before the flow entering the expanded channel. The length L1 is 30h for
most cases, but extended to 50h for aspect ratios W/h less than 3 at large Reynolds numbers in the
range 150–200. It is known that for a fully developed duct flow with a square cross section (aspect
ratio being one) the maximum velocity is twice the bulk velocity while for the two-dimensional
channel flow the velocity ratio is 1.5. Hence, the flows with low aspect ratios require longer
entrance length than those with large aspect ratios to reach fully developed state. Computations
have shown that the lengths of the recirculation regions downstream of the sudden expansion will
not exceed 20h in the present study. Thus, the use of 50h for the length L2 is long enough for the
flow to recover from the recirculating flows behind the step. At the exit the zero-gradient condition
is imposed.

3. NUMERICAL METHOD

The governing equations are discretized using the finite-volume method, by which the equations are
integrated over the control volume of a selected mesh first. The mesh is traditionally arranged in the
structured manner in which each control volume is addressed through specifying indices i , j , and
k. To deal with irregular geometry, one way is to construct the mesh using body-fitted curvilinear
lines. In this method a transformation of the coordinate system must be entailed, resulting in
emergence of a number of cross-derivatives and, thus, loss of strong conservation property of the
original differential equations. The use of curvilinear grids solely cannot cope with very complicated
geometry. To soothe this problem the zonal approach is sometimes incorporated. In this approach the
flow field is divided into a number of blocks and each block is covered by a structured grid. Solution
is sought in each block in a sequential fashion and iteration among the blocks must be carried out.
Special care must be taken at the interface between neighbouring blocks to ensure coupling. An
alternative, which can circumvent the above inconveniences, is the use of unstructured grids. In
this approach all control volumes and cell faces are specified in a one-dimensional manner. The
information regarding neighbouring cells and surrounding faces related to each control volume must
be stored in advance. By this method there is no need to make coordinate transformation. Another
merit is that the control volume is not restricted to be rectangular and can be a polygon of arbitrary
geometry.

After integration the volume integrals of the convection and diffusion terms are transformed
into surface integrals via applying the divergence theorem of Gauss. The convective and diffusive
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Figure 2. Illustration of a typical control volume and a neighbouring cell.

momentum fluxes through the surface of the control volume can be expressed as

Fc =∑
f
(V • s) f � f (3)

Fd =∑
f
(�∇� • s) f (4)

where subscripts f denote the value at a face of the control volume, � represents a velocity
component, V is the velocity vector, s f the surface vector of the considered face, and � the
kinematic viscosity. The summation is taken over all the surrounding faces.

In the convective flux the face value � f is approximated by the central difference in a deferred
correction manner. For the diffusive flux further discretization is needed. A variety of approxima-
tions were proposed in the literature. But, as shown by Tsui and Pan [24], these expressions are
equivalent to the following form

Fd
f = � f s2f
dPC • s f

(�C − �P) + � f ∇� f •
(
s f − s2f

dPC • s f
dPC

)
(5)

where, see Figure 2, the subscripts P and C denote the principal node and a neighbouring node
sharing the common face f , and dPC is the vector connecting these two nodal points. The gradient
on the face ∇� f is obtained via interpolation from the gradients at the two nodes P and C . For
grids with the surface vector s f in the same direction as dPC , such as the rectangular grid used
in the present study, the second term on the right-hand side vanishes because the two terms in
the parentheses become identical. The remaining first term simply represents a central difference
approximation.

All variables are placed on the centroid of each control volume. This collocation arrangement
may lead to decoupling between the velocity and the pressure fields unless special treatments
are taken. To avoid solution oscillation the momentum interpolation method [25] is employed to
calculate the mass flux through each face.
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Following the SIMPLE algorithm [26], a pressure-correction equation can be obtained by
invoking the continuity constraint as∑

f
(�∇ p′ • s) f = −∑

f
ṁ∗

f (6)

where p′ is the pressure correction, ṁ∗
f is the mass flux obtained in the momentum predictor

step, and � is a diffusion-like coefficient for p′. The term on the left-hand side represents the
sum of diffusive fluxes over all the surrounding faces and that on the right-hand side the mass
accumulated in the considered control volume. By using the approximation given in Equation (5)
for the diffusive fluxes forp′a pressure-correction equation is yielded

AP p
′
P =∑

C
AC p′

C + Sp1 + Sp2 (7)

where

Sp1 = −∑
f
m∗

f (8a)

Sp2 =∑
f
� f ∇ p′

f •
(
s f − s2f

dPC • s f
dPC

)
(8b)

It is emphasized here that for rectangular grids the term Sp2 and the second part in the diffusive
flux simply disappear, resulting in the same difference forms given by Patankar [26].

4. RESULTS AND DISCUSSION

Rectangular grids were employed in the calculation. The grid density has been carefully selected
to ensure real flow physics not being shadowed by discretization errors. In the vertical plane (x–z
plane) the number of nodes in the upstream channel is 30× 12 and that in the expanded channel
is 80× 36. The grid lines are distributed in a non-uniform manner with denser grids in the regions
near the walls and the expansion. The grid spacings in the x- and z-directions are within the ranges
0.25–1.27 and 0.05–0.14, respectively. It will be seen later from the bifurcation diagram given in
Figure 8 that with this grid the predicted reattachment lengths for the recirculating flows in the
three-dimensional channel with an aspect ratio 8 are in close agreement with those obtained in
two-dimensional calculations using a grid with 20 000 nodal points. The coordinate in the spanwise
direction is designated as y-axis. The node number in this direction depends on the aspect ratio.
For aspect ratios higher than 2.3 the node number is 79. It gradually reduces to 12 for aspect ratios
less than 0.33. The grid size �y ranges from 0.05 to 0.4.

In order to assess the mathematical model, calculations have been conducted for Reynolds
numbers Re= 34.7, 80, and 186.7, which are referred to as Re= 26, 60, and 140 in the study of
Fearn et al. [7]. The cause of the difference is due to the different definitions used for the Reynolds
number. For aspect ratio 8, as adopted in both computations and experiments, the effect of the
side wall on the flow in the centre x–z plane can be ignored, especially for the two low Reynolds
numbers. Comparison of axial velocity between predictions and measurements at a number of
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x=1.25 x=2.5 x=5 x=10

A=8, Re=34.7

x=1.25 x=2.5 x=5 x=10 x=20

A=8, Re=80

x=1.25 x=2.5 x=10 x=20x=5

A=8, Re=186.7

Figure 3. Comparison of axial velocity with measurements.

stations in the centre plane is made in Figure 3. At the sub-critical Reynolds number of 34.7
the flow is symmetric. By increasing the Reynolds number to 80 the flow becomes asymmet-
ric, with two recirculation regions of different sizes on the top and bottom walls. Further in-
crease of the Reynolds number to 186.7 results in a third recirculation zone formed on the same
side of the weaker one of the above two, which is visible at station x = 20h. Good agreement
between the two set of data can be seen, especially for the two low Reynolds numbers. This
validates our mathematical method which is used in the following computations.

The sizes of the recirculation zones, represented by reattachment lengths, for aspect ratios
A= 1

3 , 1, 4 and 8 are presented in Figures 4–7. It is evident that the flow is stabilized by the
side wall as the channel becomes narrow. For aspect ratio 1

3 the flow remains symmetric for all
Reynolds numbers under consideration. As the aspect ratio is increased to 1, a visible breaking
of the symmetric pattern occurs at a Reynolds number of around 92. The reattachment length
of the larger recirculation region x1 continues to increase with the increasing Reynolds num-
ber while that of the smaller one x2 decreases first, and then approaches a constant value of
about 4.5h. By increasing the aspect ratio to 4 the bifurcation point shifts to a lower Reynolds
number of about 61. The variation of the two reattachment lengths with respect to the Reynolds
number behaves in a similar manner to the case of aspect ratio 1. However, as the Reynolds number
becomes larger than about 125, a third recirculation region is found on the side of the smaller
of the two main recirculation zones. Both the main recirculating flows reduce in size while the
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third one appears. Further increase of the aspect ratio to 8 reduces the critical Reynolds number
slightly to about 58.5 and results in a lower Reynolds number of around 110 for the appearance of
the third recirculation zone. It is noted from the above figures that if the flow remains symmetric,
the reattachment lengths vary linearly with the Reynolds number. The bifurcation diagrams in the
region near the critical Reynolds number for the three high aspect ratio cases are reproduced in
Figure 8. Also included is a two-dimensional calculated result. It is obvious that in comparison
with the two-dimensional predictions, there still exists a considerable difference for aspect ratio 4.
For aspect ratio 8 the side-wall effect can be neglected and the flow on the centre plane can
be regarded as two-dimensional. As mentioned before, a grid with 20 000 nodes was employed
in the two-dimensional calculation, which is much finer than the one used in the x–z plane of
the three-dimensional calculation. This result helps justify the grid used in the three-dimensional
computation.

The effect of aspect ratio is further demonstrated in Figures 9 and 10 for Reynolds numbers
fixed at 80 and 133, respectively. For Re= 80 bifurcation takes place at an aspect ratio 1.25.
For aspect ratio greater than 5 the asymmetric pattern remains almost unchanged, with a larger
recirculation region of size 10h and a smaller one of size 3.7h, implying that the flow becomes
two-dimensional. At the high Reynolds number of 133 the critical aspect ratio is reduced to around
0.5. For this case a third recirculating flow is found as aspect ratio becomes greater than 3. At
sufficiently high aspect ratios the smaller main recirculating flow remains at a size of about 4h.
But the larger one reduces its reattachment length first, followed by an increase. The continuous
change of this reattachment point, together with the changing position of the third recirculation
region, indicates that the influence of the side wall cannot be ignored even for aspect ratio greater
than 8.
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Figure 11. Streamlines at different spanwise stations for A= 8 and Re= 160.

The flow structure is illustrated on various x–z planes at a number of spanwise locations in
Figures 11–13 for aspect ratios 8, 4, and 1, respectively. At Re= 160 for aspect ratio 8 a triple-
vortex pattern prevails throughout the spanwise direction, as seen in Figure 11. In the spanwise
direction up to y = −11h the three vortices remain nearly invariant in size. In the region near the
side wall the large vortex behind the upper step and the third vortex expand their sizes in the
vertical direction, as evident at y =−11.9h. Limiting streamlines (or skin friction lines) have been
widely used to study three-dimensional separated flows. In topology theory singular points occur
at points where skin friction becomes zero. Singular points are classified into nodes and saddles.
Nodes can be further divided into nodal points and focal points [27, 28]. The limiting lines on
the side wall (y =−12h) show that either the large vortex near the upper step or the third vortex
on the lower wall degenerates into a focal point of attachment (Fa), which acts as a source of
limiting streamlines that draws fluid from the core region and spays over the wall surface. The
small vortex behind the lower step is transformed into a focal point of separation (Fs) which
behaves like a sink where the fluid collected from the wall surface will eventually be carried away
in the spanwise direction. This indicates that a particle originally located near this point will be
transported towards the channel core. The attachment point of the large main vortex on the upper
wall becomes a nodal point of attachment (Na). There is a saddle point (S) between this node and
the focus of attachment of the third vortex. The separation and reattachments points of the third
vortex on the lower wall are transformed into saddle points. At the region near the reattachment
point of the small vortex behind the lower step a saddle point and a nodal point of attachment are
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Figure 12. Streamlines at different spanwise stations for A= 4 and Re= 80.
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Figure 13. Streamlines at different spanwise stations for A= 1 and Re= 160.

found. Totally, there are five nodes (three focal points and two nodal points) and four saddles on
the side wall.

For aspect ratio 4 with Re= 80 (see Figure 12) only two vortices are seen in the channel core.
However, a third vortex is formed near the side wall, which was also observed by Chiang et al. [21].
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The limiting streamlines show that the large vortex near the upper step is not transformed into a
focal point of attachment, but a focal point of separation. One nodal point as well as one saddle
point on the lower wall seen in the previous figure disappears from the plot. The flow topology is
modified by directing the limiting streamlines from the focal point of attachment at the downstream
location directly towards the focal point of separation behind the upper step. The number of nodes
is reduced to 4 and that of saddles to 3.

For the case with aspect ratio 1 and Re= 160 (see Figure 13) the double-vortex pattern is
seen in the entire spanwise direction. However, there still exists a focal point of attachment
which is degenerated from the third vortex in the above cases. This focal point is shifted to the
bottom wall. The saddle point transformed from the reattachment point of the third vortex seen
in the above figure does not exist any longer. In the meanwhile the saddle point above this focus
moves to the upper wall and the nodal point there is eliminated. Thus, only three nodes and two
saddles are found. It can be concluded from the above results that if a non-symmetric flow pattern
prevails, the total number of nodes

∑
N and the total number of saddles

∑
S on the side wall are

related as ∑
N

−∑
S

= 1 (9)

As reported by Fearn et al. [7], due to the unavoidable imperfections in the experimental
apparatus, perfectly symmetric flow patterns could not be obtained. As a result, the bifurcation
diagram broke into two separate branches and the critical Reynolds number could not be determined
in their experiments. Hawa and Rusak [9] and Mizushima and Shiotani [10] used nonlinear stability
analysis to verify that a gradual evolution from symmetric states to asymmetric states occurs in
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Figure 14. Comparison of reattachment length between the symmetric and the slightly asymmetric
channel flows for aspect ratio A= 8.
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Figure 15. Comparison of reattachment length between the symmetric and the slightly asymmetric
channel flows for aspect ratio A= 1.

a primary branch. Following Fearn et al., the imperfectness of the system is created by using a
slightly non-symmetric geometry. The computations conducted in the following are based on the
expanded channel shown in Figure 1 with the upper wall being shifted upwards by a small extent
of 0.05h. The phenomenon of the smooth transition from the symmetric state to the asymmetric
state is demonstrated in Figures 14 and 15 for aspect ratios 8 and 1. Away from the bifurcation
region the solution for the non-symmetric channel approaches that for the symmetric channel.

An interesting point regarding the critical Reynolds number needs to be addressed in the
following. The critical Reynolds number for the symmetric channel flow Rec is marked in the
bifurcation diagrams in Figures 14 and 15. It can be detected that before this critical point is
reached, a slight deviation between the two reattachment lengths had already been in progress.
A similar phenomenon was also addressed by Neofytou and Drikakis [13] in their non-Newtonian
flow calculations and could be identified in the bifurcation diagrams in the three-dimensional study
of Schreck and Schafer [20]. For the low aspect ratio 1 this deviation varies in a more gradual
fashion. For aspect ratio 8 a rather significant deviation point at around Re∗ = 55 can be identified.
It is seen from Table I that the present critical value of 58.5 is comparable to the value of 58.7
given by De Zilwa et al. [18] and that in the range 57–58 reported by Battaglia et al. [16]. All
these results are obtained using numerical simulations, which, in general, are higher than those
determined by the bifurcation theory. But the value Re∗ = 55 is close to the theoretical one, say,
53.9 reported by Fearn et al. [7]. This indicates the difficulty to exactly pinpoint the bifurcation
point by both the numerical simulations and the experiments; this point would rely on how to
define asymmetric flow.
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5. CONCLUSIONS

A mathematical method incorporating unstructured grids has been used to examine the side wall
effect on the bifurcating flow in a channel with a symmetric sudden expansion. A summary of the
main results is given as follows:

(1) For aspect ratio 8 the breaking of symmetric flow occurs at a Reynolds number of 58.5.
By reducing the aspect ratio to 4 and 1 the critical Reynolds number is increased to 61 and
92. By further decreasing the aspect ratio to 1

3 the flow remains symmetric for all Reynolds
numbers considered. This result implies that the appearance of the side wall by reducing
the aspect ratio has a stabilizing effect on the flow.

(2) For high aspect ratios together with high Reynolds numbers a third recirculation zone can
be seen in all the planes throughout the spanwise direction. When either the aspect ratio or
the Reynolds number is decreased, the third recirculation zone appears only in the region
near the side wall. Each of the number of nodes and the number of saddles on the side
wall is reduced by 1. Further decreasing the aspect ratio or the Reynolds number results in
complete elimination of the third recirculation zone from the channel. As a consequence,
the total numbers of nodes and saddles are further reduced by 1 individually. It can be
concluded that the total node number is greater than the total saddle number by 1 for the
asymmetric flows.

(3) The critical Reynolds number of 58.5 obtained for aspect ratio 8 is somewhat higher than
the theoretical value obtained from two-dimensional bifurcation theory. However, slightly
asymmetric solutions can be traced to a lower Reynolds number of 55 which is close to the
theoretical one. Therefore, the determination of the bifurcation point would depend upon
how to distinguish between symmetric and asymmetric flows in numerical simulations.

(4) It is confirmed that an imperfection in the flow system would result in smooth transition
from the symmetric state to the asymmetric state.
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