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Abstract

Process capability indices are useful management tools, particularly in the manufacturing industry, which provide com-
mon quantitative measures on manufacturing capability and production quality. Most supplier certification manuals
include a discussion of process capability analysis and describe the recommended procedure for computing a process capa-
bility index. Acceptance sampling plans have been one of the most practical tools used in classical quality control appli-
cations. It provides both vendors and buyers to reserve their own rights by compromising on a rule to judge a batch of
products. Both sides may set their own safeguard line to protect their benefits. Two kinds of risks are balanced using a
well-designed sampling plan. In this paper, we introduce a new variables sampling plan based on process capability index
Cpmk to deal with product sentencing (acceptance determination). The proposed new sampling plan is developed based on
the exact sampling distribution hence the decisions made are more accurate and reliable. For practical purpose, tables for
the required sample sizes and the corresponding critical acceptance values for various producer’s risk, the consumer’s risk
and the capability requirements acceptance quality level (AQL), and the lot tolerance percent defective (LTPD) are pro-
vided. A case study is also presented to illustrate how the proposed procedure can be constructed and applied to the real
applications.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Inspection of raw materials, semi-finished products, or finished products is one aspect of quality assurance.
When inspection is for the purpose of acceptance or rejection of a product, based on adherence to a standard,
the type of inspection procedure employed is usually called acceptance sampling (see, e.g., Schilling, 1982;
Odeh and Owen, 1983; Montgomery, 2001). Acceptance sampling plans provide the vendor and the buyer
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a general criterion for lot sentencing while meeting their preset requirements on product order quality. How-
ever, it cannot avoid the risk of accepting bad product lots or rejecting good product lots unless 100% inspec-
tion is implemented. A well-designed sampling plan can significantly reduce the difference between the
required and the actual supplied product quality. An acceptance sampling plan is a statement regarding the
required sample size for product inspection and the associated acceptance or rejection criteria for sentencing
individual lots. The criteria used for measuring the performance of an acceptance sampling plan, is usually
based on the operating characteristic (OC) curve which quantifies the risks for producers and consumers.
The OC curve plots the probability of accepting the lot versus the lot fraction nonconforming, which displays
the discriminatory power of the sampling plan.

For product quality protection and company’s profit, both the vendor and the buyer would focus on certain
points on the OC curve to reflect their benchmarking risk. The vendor (producer) usually would focus on a
specific level of product quality, traditionally called AQL (acceptable quality level), which would yield a high
probability for accepting a lot. The AQL also represents the poorest level of quality for the vendor’s process
that the consumer would consider acceptable as a process average. The buyer (consumer) would also focus on
another point at the other end of the OC curve, traditionally called LTPD (lot tolerance percent defective).
Alternate names for the LTPD are the RQL (rejectable quality level) and LQL (limiting quality level). The
LTPD is the poorest level of quality that the consumer is willing to accept for an individual lot. a is the prob-
ability of the Type I error, for a given sampling plan, of rejecting the product that has a defect level equal to
the AQL. The producer suffers when this occurs because product with acceptable quality is rejected. b is the
probability of the Type II error, for a given sampling plan, of accepting the product with defect level equal to
the LTPD. The consumer suffers when this occurs, because product with unacceptable quality is accepted.
Accordingly, a well-designed sampling plan must provide a probability of at least 1� a of accepting a lot
if the level of the product quality is at the contracted AQL. The sampling plan must also provide a probability
of acceptance no more than b if the level of the product quality is at the LTPD level, the designated undesired
level preset by the buyer. That is, the acceptance sampling plan must have its OC curve passing through those
two designated points (AQL, 1 � a) and (LTPD, b).

There are a number of different ways to classify acceptance sampling plans. One major classification is by
attributes and variables. When a quality characteristic is measurable on a continuous scale and is known to
have a distribution of a specified type, it may be possible to use as a substitute for an attributes sampling plan
based on sample measurements such as the mean and the standard deviation of the sample. The variables sam-
pling plan has the primary advantage that the same OC curve can be obtained with a smaller sample than is
required by an attributes plan. The precise measurements required by a variables plan would probably cost
more than the simple classification of items required by an attributes plan, but the reduction in sample size
may more than offset this increased cost. Such saving may be especially marked if inspection is destructive
and the item is expensive (see Schilling, 1982; Duncan, 1986; Montgomery, 2001). The basic concepts and
models of statistically based on variables sampling plans were introduced by Jennett and Welch (1939). Lie-
berman and Resnikoff (1955) developed extensive tables and OC curves for various AQLs for MIL-STD-414
sampling plan. Das and Mitra (1964) have investigated the effect of non-normality on the performance of the
sampling plans. Bender (1975) considered sampling plans for assuring the percent defective in the case of the
product quality characteristics obeying a normal distribution with unknown standard deviation, and pre-
sented a procedure using iterative computer program calculating the non-central t-distribution. Govindaraju
and Soundararajan (1986) developed variables sampling plans that match the OC curves of MIL-STD-105D.
Other researches related to the classical acceptance sampling plans include Wallis (1947, 1950), Jacobson
(1949), Owen (1967), Guenther (1969), Kao (1971), Stephens (1978), Hamaker (1979), Hailey (1980), Odeh
and Owen (1980, 1983), Hald (1981), Moskowitz and Tang (1992), Tagaras (1994), Suresh and Ramanathan
(1997) and Arizono et al. (1997). In addition to the graphical procedure for designing sampling plans with
specified OC curves, tabular procedures are also available for the same purpose. Duncan (1986) gave a good
description of these techniques.

Due to the sampling cannot guarantee that every defective item in a lot will be inspected, the sampling
involves risks of not adequately reflecting the quality conditions of the lot. Such risk is even more significant
as the rapid advancement of the manufacturing technology and stringent customers demand is enforced. Par-
ticularly, when the fraction of nonconforming products is required very low, such as measured in parts per
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million (PPM), the required number of inspection items must be very large in order to adequately reflect the
actual lot quality. As today’s modern quality improvement philosophy, reduction of variation from the target
value is the guiding principle as well as reducing the fraction of nonconformities. The capability index Cpmk is
constructed by combining the yield-based index Cpk and the loss-based index Cpm, taking into account the
process yield (meeting the manufacturing specifications) as well as the process loss (variation from the target).
Therefore, in this paper we propose the use of the Cpmk capability index as a quality benchmark for an accep-
tance sampling scheme. The proposed sampling plan is developed based on analytical exact formulae hence
the decisions made are reliable.

2. Process capability indices approach

2.1. Process capability indices and product quality

Process capability analysis has become an important and integrated part in the applications of statistical
process control to continuous improvement of quality and productivity. The relationship between the actual
process performance and the specification limits or tolerance may be quantified using appropriate process
capability indices (PCIs). Based on analyzing the PCIs, a production department can trace and improve a poor
process so that the quality level can be enhanced and the requirements of the customers can be satisfied. Sev-
eral authors have promoted the use of various PCIs and examined with different degrees of completeness (see
Pearn et al., 1992, 1998; Kotz and Lovelace, 1998; Kotz and Johnson, 2002; Spiring et al., 2003 for more
details). Those indices have been defined explicitly as below, where l is the process mean, r is the process stan-
dard deviation, USL and LSL are the upper and lower specification limits, T is the target value preset by cus-
tomers or product designers, d ¼ ðUSL� LSLÞ=2 is half of the length of the specification interval:
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The index Cp measures only the distribution spread (process precision), which only reflects the consistency of
the product quality characteristic. The index Cpk takes into account the magnitude of process variance as well
as the departures of process mean from the mid-point of specification limits. The Cp and Cpk indices are
appropriate measures of progress for quality improvement paradigms in which reduction of variability is
the guiding principle and process yield is the primary measure of success. But, they are not related to the cost
of failing to meet customer desire. Taguchi, on the other hand, emphasizes the loss in a product’s worth when
one of its characteristics departs from the customers’ ideal value T. To help account for this Hsiang and Tagu-
chi (1985) introduced the index Cpm, which was also proposed independently by Chan et al. (1988). The index
is related to the idea of squared error loss, loss(X Þ ¼ ðX � T Þ2, and which incorporates two variation compo-
nents: (i) variation to the process mean and (ii) deviation of the process mean from the target.

The index Cpmk is constructed by combining the yield-based index Cpk and the loss-based index Cpm, taking
into account the process yield (meeting the manufacturing specifications) as well as the process loss (variation
from the target). When the process mean l departs from the target value T, the reduced value of Cpmk is more
significant than those of Cp, Cpk, and Cpm. Hence, the index Cpmk responds to the departure of the process
mean l from the target value T faster than the other three basic indices Cp, Cpk, and Cpm, while it remains
sensitive to the changes of process variation (see Pearn and Kotz, 1994–1995). We note that a process meeting
the capability requirement ‘‘Cpk P C’’ may not be meeting the capability requirement ‘‘Cpm P C’’. On the
other hand, a process meets the capability requirement ‘‘Cpm P C’’ may not be meeting the capability require-
ment ‘‘Cpk P C’’ either. But, if the process meets the capability requirement ‘‘Cpmk P C’’, then the process
must meet both capability requirements ‘‘Cpk P C’’ and ‘‘Cpm P C’’ since Cpmk 6 Cpk and Cpmk 6 Cpm. Thus,
the index Cpmk indeed provides more quality assurance with respective to process yield and process loss to
the customers than the two indices Cpk and Cpm. Throughout the presentation, all developments are made
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assuming the process is in a state of statistical control and the characteristic under investigation arise from
normal distribution. Also, the target value is assumed to be the mid-point of the specification limits
T ¼ M ¼ ðUSLþ LSLÞ=2 (which is quite common in practical situations) unless otherwise stated.

In addition to the above advantage, Cpmk reveals the most information about the location of the process
average. Given a Cpk index of 1.0, all a practitioner can say about l is that it is somewhere between the
LSL and the USL, i.e., T � d < l < T þ d, where d equals ðUSL� LSLÞ=2. With the Cpm index, it can be
shown (Bothe, 1997) that the distance between l and T must be less than d=ð3CpmÞ. Therefore, given a
Cpm index of 1.0, we know that T � d=3 < l < T þ d=3. This is a much smaller interval than the one for
Cpk equal to 1.0. For the Cpmk index, it can be shown that the distance between l and T is less than
d=ð3Cpmk þ 1Þ. That is, for a Cpmk index of 1.0, one knows that T � d=4 < l < T þ d=4, which is even a smal-
ler interval than the one for Cpm. This is a desired property according to today’s modern quality improvement
theory, reduction of process loss is just as important as increasing process yield. Consequently, while Cpk

remains the more popular and widely used index, the index Cpmk is considered be an advanced and useful
index for processes with two-sided manufacturing specifications. Considering Cpmk as a mixture of Cpk and
Cpm, Cpmk behaves ‘‘more like Cpm’’ if r2 is small, whereas Cpmk behaves ‘‘more like Cpk’’ if r2 is large (Jes-
senberger and Weihs, 2000). Particularly, for semiconductor or microelectronics manufacturing, the index
Cpmk is appropriate for capability measure due to high standard and stringent requirement on product quality
and reliability.
2.2. Estimation of Cpmk and its sampling distribution

For a normally distributed process that is demonstrably stable (under statistical control), Pearn et al. (1992)
suggested using the natural estimator, which is defined as
Ĉpmk ¼ min
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uniformly minimum variance unbiased estimator (UMVUE) of r2 þ ðl� T Þ2 in the denominator of Cpmk. In
fact, the estimator of Cpmk can be expressed as Ĉpmk ¼ ðD�
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2, H ¼ nð�X � T Þ2=r2, and g ¼ n1=2jl� T j=r. Under the assumption of normality, K is distributed
as v2

n�1, a chi-square distribution with n� 1 degrees of freedom, H is distributed as v021;k a non-central chi-
square distribution with one degree of freedom and the non-centrality parameter k ¼ nðl� T Þ2=r2, andffiffiffiffi

H
p

is distributed as the normal distribution Nðg; 1Þ with mean g and variance 1. That is, the estimator
Ĉpmk is a mixture of the chi-square distribution and the non-central chi-square distribution, as expressed in
the following (see Pearn et al., 1992):
Ĉpmk �
d
ffiffi
n
p
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3
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v2

n�1 þ v021;k
q :
Chen and Hsu (1995) investigated the asymptotic sampling distribution of the estimated Cpmk and showed that
the estimator Ĉpmk is consistent, asymptotically unbiased estimator of Cpmk, and if the fourth moment of the
distribution of X is finite, then Ĉpmk is asymptotically normal. Vännman and Kotz (1995) obtained the distri-
bution of the estimated Cpðu; vÞ for cases with T ¼ M . By taking u ¼ 1 and v ¼ 1, the distribution of
Cpð1; 1Þ ¼ Cpmk can be obtained. Wright (1998) derived an explicit but rather complicated expression for
the probability density function of the estimated Cpmk. Using variables transformation and the integration
technique similar to that presented in Vännman (1997), the cumulative distribution function (CDF) and
the probability density function (PDF) of the estimated index Ĉpmk may be expressed alternatively in terms
of a mixture of the chi-square distribution and the normal distribution. The explicit form of the CDF
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considerably simplify the complexity for analyzing the statistical properties of the estimated index, which can
be expressed below (see Pearn and Lin, 2002):
F Ĉpmk
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for y > 0, where b ¼ d=r, n ¼ ðl� T Þ=r, Gð�Þ is the CDF of the chi-square distribution, v2
n�1, with n� 1 de-

grees of freedom, /ð�Þ is the PDF of the standard normal distribution Nð0; 1Þ, and it is noted that we would
obtain an identical equation if we substitute n by �n into (1) for fixed values of y and n. Noting that for
l > USL or l < LSL, the capability Cpmk < 0, and for l ¼ USL or l ¼ LSL, the capability Cpmk ¼ 0. The
requirement with LSL < l < USL has been a minimum capability requirement applies to most start-up engi-
neering applications or new processes.
3. Designing Cpmk variables sampling plans

Consider an acceptance sampling plan by variables to control the lot fraction of nonconformities and
assure the loss caused by the deviation from its target value simultaneously. Suppose the quality characteristic
of interest is measurable on a continuous scale and is normally distributed with mean l and standard deviation
r, the USL and the LSL can be defined as the acceptable values of this parameter. According to today’s mod-
ern quality improvement theory, reduction of the process loss is as important as the process yield, Cpmk can be
used as a quality benchmark for acceptance of a product lot. Thus, it is easy to design a variables sampling
plan with a specified OC curve. Let ðCAQL; 1� aÞ and (CLTPD, b) be the two points on the OC curve of inter-
est, where CAQL and CLTPD represent the capability requirements corresponding to the AQL and the LTPD
based on Cpmk index, respectively. The concept of the new variables sampling plan may be constructed as:
If Cpmk P CAQL; then the lot should be accepted with producer’s risk a; and

if Cpmk 6 CLTPD; then the lot should be rejected with consumer’s risk b:
That is, if the Cpmk value of producer’s product is greater than CAQL, then the probability of consumer accept-
ing the lots will be larger than 100ð1� aÞ%. On the other hand, if the Cpmk value of producer’s product is less
than CLTPD, then the probability of consumer would accept no more than 100b%. As described previously,
owing to the sampling distribution of Ĉpmk is expressed in terms of a mixture of the chi-square and the normal
distributions. For processes with T ¼ M , the index may be rewritten as Cpmk ¼ ðd=r� jnjÞ=½3ð1þ n2Þ1=2�,
where n ¼ ðl� T Þ=r. Further, given Cpmk ¼ C, b ¼ d=r can be rewritten as b ¼ 3Cð1þ n2Þ1=2 þ jnj. The prob-
ability of accepting the lot can be expressed as
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Therefore, the required inspection sample size n and critical acceptance value C0 of Ĉpmk for the sampling
plans are the solution to the following two nonlinear simultaneous Eqs. (3) and (4):
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where b1 ¼ 3CAQLð1þ n2Þ1=2 þ jnj and b2 ¼ 3CLTPDð1þ n2Þ1=2 þ jnj, CAQL > CLTPD. Note that the required
sample size n is the smallest possible value of n satisfying (3) and (4), and determining the nd e as sample size,
where nd e means the least integer greater than or equal to n.
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3.1. The behavior of the critical acceptance value C0 and the sample size n

Generally, the lot or process mean l and standard deviation r are unknown, then the distribution charac-
teristic parameter, n ¼ ðl� T Þ=r is also unknown, which has to be estimated in real applications. However,
such approach introduces additional sampling errors from estimating n in finding the critical acceptance
values and the inspected sample sizes. To eliminate the need for estimating the distribution characteristic
parameter n, we examine the behavior of the critical acceptance values C0 and the sample size n against the
parameter n.

We perform extensive calculations to obtain the critical acceptance values C0 and the sample size n for
n ¼ 0ð0:05Þ3:00, with various levels of CAQL and CLTPD. Fig. 1a plots the critical acceptance value C0, versus
n value for CAQL ¼ 1:33; 1:50; 1:67; 2:00, CLTPD ¼ 1:00 with a ¼ 0:05, b ¼ 0:05. Fig. 1b plots the required sam-
ple size n versus n value for CAQL ¼ 1:33; 1:50; 1:67; 2:00, CLTPD ¼ 1:00 with a ¼ 0:05, b ¼ 0:05. Noting that
parameter values we investigated, n ¼ 0ð0:05Þ3:00, cover a wide range of applications and it has the same
result when n is replaced by �n. We find that the sample size n obtains its maximum either at n ¼ 0:50 (for
most cases), or at 0.45 (in a few cases). Further, we find that the critical acceptance value C0 does not change
a lot as the n increases and stays the same acceptance value with accuracy up to 10�2 in all cases (and for
n P 100, n ¼ 0:5 with accuracy up to 10�3Þ. Hence, for practical purpose we may solve equations with
n ¼ 0:5 to obtain the criterion of Ĉpmk and the required sample size n, without having to estimate the param-
eter n. This approach ensures that the decisions made based on those criteria are more reliable than all existing
methods. We note the above result is almost impossible to prove theoretically.

3.2. Solving nonlinear simultaneous equations

In order to solve the above two nonlinear simultaneous Eqs. (3) and (4), we let
Fig. 1.
(b) Plo
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For CAQL ¼ 1:33 and CLTPD ¼ 1:00, the surface and contour plots of (5) and (6) with a-risk ¼ 0:10 and
b-risk ¼ 0:05 are displayed in Figs. 2a,b and 3a,b, respectively.
(a) Plot of C0 versus n value for CAQL ¼ 1:33; 1:50; 1:67; 2:00, CLTPD ¼ 1:00 with a ¼ 0:05, b ¼ 0:05 (from bottom to top in plot).
t of sample sizes n versus n value for CAQL ¼ 1:33; 1:50; 1:67; 2:00, CLTPD ¼ 1:00 with a ¼ 0:05, b ¼ 0:05 (from bottom to top in



Fig. 2. (a) Surface plot of S1ðn;C0Þ. (b) Contour plot of S1ðn;C0Þ.

Fig. 3. (a) Surface plot of S2ðn;C0Þ. (b) Contour plot of S2ðn;C0Þ:

Fig. 4. (a) Surface plot of S1 and S2. (b) Contour plot of S1 and S2.
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Fig. 4a and b display the surface and contour plots of (5) and (6) simultaneously with a-risk ¼ 0:10 and
b-risk ¼ 0:05 under CAQL ¼ 1:33 and CLTPD ¼ 1:00, respectively. From the Fig. 4b, we can see that the inter-
action of S1ðn;C0Þ and S2ðn;C0Þ contour curves at level 0 is ðn;C0Þ ¼ ð82; 1:1870Þ, which is the solution to
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nonlinear simultaneous Eqs. (3) and (4). That is, in this case, the minimum required sample size n ¼ 82 and the
corresponding critical acceptance value C0 ¼ 1:1870 of sampling plan based on the capability index Cpmk.

To investigate the behavior of the critical acceptance values and the required sample sizes with various
parameters, we perform extensive calculations to obtain the solution of (3) and (4). We observe that the larger
of the risks which producer or consumer could suffer, the smaller is the required sample size n. This phenom-
enon can be explained intuitively: if we expect that the chance of wrongly concluding a bad process as good or
good lots as bad ones is smaller, the more sample information need to judge the lots. Further, for fixed a-, b-
risks and CLTPD, the required sample sizes become smaller when the CAQL becomes larger. This can also be
explained by the same reasoning as above, since the judgment will be more accurate with a larger difference
between the CAQL and CLTPD.

4. Sampling procedure and decision making

Selection of a meaningful critical value for a capability test requires specification of an AQL and a LTPD
for the Cpmk value. The AQL is simply a standard against which to judge the lots. It is hoped that the pro-
ducer’s process will operate at a fallout level that is considerably better than the AQL. Both producer and
consumer will lay down their requirements in the contract: the former demands that not too many ‘‘good’’
lots shall be rejected by the sampling inspection, while the latter demands that not too many ‘‘bad’’ lots shall
be accepted. In choosing a sampling plan attempts will be made to meet these somewhat opposing require-
ments. Thus, both producers and consumers may set their own safeguard line to protect their benefits. Two
kinds of risks are balanced using a well-designed sampling plan. That is, if product process capability with
Cpmk P CAQL (in high quality), the probability of acceptance must be larger than 1� a. If producer’s capabil-
ity is only with Cpmk 6 CLTPD (in low quality), consumer would accept no more than b.

For practical applications purpose, we calculate and tabulate the critical acceptance values and the sample
sizes required for the sampling plans, with commonly used a, b, CAQL and CLTPD. Table 1 displays ðn;C0Þ
values for producer’s a-risk ¼ 0:01, 0.025(0.025)0.10, consumer’s b-risk ¼ 0:01, 0.025(0.025)0.10, with vari-
ous benchmarking quality levels, ðCAQL; CLPTDÞ ¼ ð1:33; 1:00Þ; ð1:50; 1:00Þ; ð1:50; 1:33Þ; ð1:67; 1:33Þ;
ð1:67; 1:50Þ; ð2:00; 1:67Þ. For example, if the benchmarking quality level ðCAQL; CLPTDÞ set to (1.33, 1.00) with
producer’s a-risk¼ 0:01 and consumer’s b-risk ¼ 0:05, then the corresponding sample size and critical accep-
tance value can be calculated as ðn;C0Þ ¼ ð144; 1:1360Þ. That is, the lot will be accepted if the 144 inspected
product items yield measurements with Ĉpmk P 1:1360. Otherwise, we do not have sufficient information to
conclude that the process meets the present capability requirement. In this case, we would believe that
Cpmk 6 CLTPD. The consumer will reject the lot.

For the proposed sampling plan to be practical and convenient to use, a step-by-step procedure is provided
as below.

Step 1: Decide the process capability requirements (i.e. set the values of CAQL and CLTPD), and choose the a-
risk, the chance of wrongly concluding a capable process as incapable, and the b-risk, the chance of
wrongly concluding a bad lot as good.

Step 2: Check Table 1 to find the critical value (or acceptance criterion) C0 and the sample size n required for
inspection based on given values of a, b, CAQL and CLTPD.

Step 3: Calculate the value of Ĉpmk from these n inspected samples.
Step 4: Make decisions to accept the entire lot if the estimated Ĉpmk value is greater than the critical value C0

(Ĉpmk > C0Þ, otherwise, reject the entire lot.

5. Application example

Liquid crystals have been used for display applications with various configurations. Most of the produced
displays recently involve the use of either twisted nematic (TN), or super twisted nematic (STN) liquid crystals.
The technology of the STN display was introduced recently to improve the performance of LCD as an alter-
native to the TFT. A larger twist angle can lead to a significantly larger electro-optical distortion. This leads to



Table 1
(n,C0) values for a-risk ¼ 0:01; 0:025ð0:025Þ0:10, b-risk ¼ 0:01; 0:025ð0:025Þ0:10 with various (CAQL,CLTPD)

a b CAQL ¼ 1:33 CAQL ¼ 1:50 CAQL ¼ 1:50 CAQL ¼ 1:67 CAQL ¼ 1:67 CAQL ¼ 2:00

CLTPD ¼ 1:00 CLTPD ¼ 1:00 CLTPD ¼ 1:33 CLTPD ¼ 1:33 CLTPD ¼ 1:50 CLTPD ¼ 1:67

n C0 n C0 n C0 n C0 n C0 n C0

0.010 0.010 202 1.1634 98 1.2466 1039 1.4147 286 1.4988 1253 1.5847 426 1.8341
0.025 170 1.1497 82 1.2261 877 1.4075 240 1.4846 1058 1.5775 359 1.8203
0.050 144 1.1360 70 1.2057 749 1.4003 204 1.4704 904 1.5703 305 1.8065
0.075 129 1.1259 62 1.1907 671 1.3950 182 1.4599 810 1.5650 273 1.7962
0.100 117 1.1173 56 1.1780 614 1.3904 166 1.4511 742 1.5605 249 1.7875

0.025 0.010 174 1.1779 85 1.2688 887 1.4220 245 1.5137 1068 1.5921 365 1.8485
0.025 144 1.1642 70 1.2484 738 1.4149 203 1.4995 890 1.5849 303 1.8347
0.050 120 1.1504 58 1.2279 621 1.4076 170 1.4852 749 1.5776 254 1.8207
0.075 106 1.1400 51 1.2125 550 1.4021 150 1.4744 664 1.5721 224 1.8102
0.100 96 1.1312 46 1.1995 499 1.3974 136 1.4653 602 1.5674 203 1.8013

0.050 0.010 151 1.1925 74 1.2913 765 1.4295 213 1.5287 922 1.5995 316 1.8630
0.025 123 1.1792 60 1.2714 627 1.4224 174 1.5149 756 1.5924 258 1.8495
0.050 102 1.1654 50 1.2511 520 1.4152 143 1.5006 627 1.5852 213 1.8356
0.075 89 1.1551 43 1.2357 455 1.4096 125 1.4898 549 1.5762 187 1.8250
0.100 79 1.1461 39 1.2226 409 1.4049 112 1.4805 493 1.5748 167 1.8159

0.075 0.010 137 1.2035 68 1.3081 691 1.4350 193 1.5399 832 1.6050 286 1.8739
0.025 111 1.1905 54 1.2889 560 1.4281 156 1.5264 675 1.5981 231 1.8607
0.050 90 1.1770 44 1.2689 459 1.4209 127 1.5124 553 1.5909 189 1.8470
0.075 78 1.1667 38 1.2538 399 1.4154 110 1.5017 480 1.5854 164 1.8365
0.100 69 1.1578 34 1.2407 355 1.4107 98 1.4924 428 1.5806 146 1.8274

0.100 0.010 127 1.2128 63 1.3225 636 1.4397 178 1.5494 766 1.6097 264 1.8831
0.025 101 1.2002 50 1.3039 511 1.4330 143 1.5364 616 1.6030 211 1.8703
0.050 82 1.1870 40 1.2845 415 1.4260 115 1.5227 500 1.5959 171 1.8569
0.075 70 1.1769 35 1.2697 357 1.4205 99 1.5122 431 1.5905 147 1.8465
0.100 62 1.1681 31 1.2568 316 1.4158 87 1.5030 381 1.5857 130 1.8375
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a substantial improvement in the contract and viewing angles over TN displays. An increasing number of per-
sonal computers are now network-ready and multimedia-capable and are equipped with CD-ROM drives.
Due to advances in telecommunications’ technology, simple monochromatic displays are no longer in popular
demand. The next generation of telecommunication products will require displays with rich, graphic quality
images and personal interfaces. Therefore, future displays must be clearer and sharper to meet these demands.
Until this point, STN-LCD has been used mainly to display still images, and because of the slow response time
needed to process still images, STN-LCD has not been able to reproduce animated images at an adequate con-
trast level. Thus, with the growing popularity of multimedia applications, there is a need for PCs equipped
with color STN-LCD capable of processing animated pictures instead of still images. The space between
the glass substrate is filled with liquid crystal material and the thickness of the liquid crystal is kept uniform
with glass fibers or plastic balls as spacers. Thus, the STN-LCD is sensitive to the thickness of the glass
substrates.
5.1. Capability requirements

In a purchasing contract, a minimum value of the PCI is usually specified. If the prescribed minimum value
of the PCI fails to be met, the process is determined to be incapable. Otherwise, the process will be determined
to be capable. Montgomery (2001) recommended some guidelines of minimum capability requirements for
some special types of processes. In particular, it is recommended that 1.33 for existing processes, and 1.50
for new processes; 1.50 also for existing processes on safety, strength, or critical parameter, and 1.67 for
new processes on safety, strength, or critical parameter. In recent years, many companies have adopted criteria
for evaluating their processes that include process capability objectives that are more stringent than those rec-
ommended minimums above. For example, the ‘‘Six-Sigma’’ program pioneered by Motorola essentially



Table 2
The sample data with 79 observations (unit: mm)

0.717 0.698 0.726 0.684 0.727 0.688 0.708 0.703 0.694 0.713
0.730 0.699 0.710 0.688 0.665 0.704 0.725 0.729 0.716 0.685
0.712 0.716 0.712 0.733 0.709 0.703 0.730 0.716 0.688 0.688
0.712 0.702 0.726 0.669 0.718 0.714 0.726 0.683 0.713 0.737
0.740 0.706 0.726 0.688 0.715 0.704 0.724 0.713 0.694 0.742
0.690 0.704 0.697 0.705 0.707 0.687 0.718 0.718 0.724 0.706
0.687 0.673 0.730 0.732 0.720 0.688 0.710 0.707 0.706 0.709
0.729 0.729 0.685 0.686 0.722 0.720 0.715 0.727 0.696
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requires that when the process mean is in control, it will not be closer than six standard deviations from the
nearest specification limit. Thus, in effect, it requires that the process capability will be at least 2.0 to accom-
modate the possible 1.5r process shift (see Harry, 1988), and no more than 3.4 PPM of nonconformities.

To illustrate how the sampling plan can be established and applied to the actual data collected from the
factories, we present a case study on STN-LCD manufacturing process, STN-LCD is popularly used in mak-
ing the PDA (personal digital assistant), Notebook personal computer, Word Processor, and other Peripher-
als. The factory manufactures various types of the LCD. For a particular model of the STN-LCD
investigated, the target value is set to T ¼ 0:70 mm, and the tolerance of thickness is 0.07 mm, that is, the
USL of a glass substrate’s thickness is 0.77 mm, the LSL of a glass substrate’s thickness is 0.63 mm. If the
product characteristic does not fall within the tolerance (LSL,USL), the lifetime or reliability of the STN-
LCD will be discounted. In the contract, the AQL and LTPD are set to 1.33 and 1.00 based on Cpmk index
with the a-risk ¼ 0:05 and b-risk ¼ 0:10, respectively. Therefore, the problem for quality practitioners is to
determine the critical acceptance value and the required sample size of the sampling plan that provide the
desired levels of protection for both the producer and the consumer. Based on the proposed procedure, we
can obtain the critical acceptance value and inspected sample size are ðn;C0Þ ¼ ð79; 1:1461Þ from Table 1.
Hence, the inspected samples are taken from the lot randomly and the observed measurements are showed
in Table 2. Based on these inspections, we obtain that
�X ¼ 0:7088; Sn ¼ 0:0171; Ĉpmk ¼
USL� �X

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

n þ ð�X � T Þ2
q ;

�X � LSL

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2

n þ ð�X � T Þ2
q

8><
>:

9>=
>; ¼ 1:0621:
Therefore, in this case, the consumer would reject the entire lot, since the sample estimator from the inspec-
tions, 1.0621, is smaller than the acceptance value 1.1461 of the sampling plan. We note that if the existing
sampling plans are applied here, it is almost certain that any sample of 79 STN-LCDs taken from each lot
will contain no defective items. All the lots therefore will be accepted, which obviously provides no protection
to the consumer at all.
6. Conclusions

Capability indices are becoming the standard tools for quality report, particularly, at the management level
around the world. Proper understanding and accurate estimating them is essential for the company to main-
tain a capable supplier. According to today’s modern quality improvement philosophy, reduction of process
loss (variation from the target) is just as important as increasing process yield (meeting the specifications). The
index Cpmk indeed provides more quality assurance with respective to process yield and process loss to the
consumers. In this paper, we develop a new variables sampling plan based on the process capability index
Cpmk to deal with lot sentencing problem even when the lot or process fraction of nonconformities is very
low and reaches the PPM level. We develop a method for obtaining the required sample size for inspection
and the corresponding critical acceptance values based on the exact sampling distribution, which provide
the desired levels of protection for both producers and consumers. To make the proposed procedure practical
for in-plant applications, a case study on STN-LCD manufacturing process is presented and tables of the
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required sample sizes for inspection and the corresponding critical acceptance values for various producer’s
risks, the consumer’s risks with the capability requirements AQL and the LTPD are provided.
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