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Abstract

In this work, an indoor sound field feature matching method is proposed and is applied to detect a mobile robot’s location and ori-
entation. The sound field feature, captured from a sound source to a pair of microphones, contains the dynamic of the propagation path.
Because of the complexity of indoor environment, the features from different path can be distinguished using appropriate models. Gauss-
ian mixture models are utilized in this paper to characterize the phase difference and magnitude ratio distributions between the micro-
phone pair in consecutive data frames. The application provides an alternative thinking compared with traditional methods such as
direction of arrival (DOA) using propagation delay. They usually suffer from reverberation, non-line-of-sight and microphone mismatch
problems. The experimental results show the method not only has a high recognition rate for robot’s location and orientation, but also is
robust against environmental noise.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Indoor robot localization is an important issue in the
field of robotics. Various equipments, such as camera,
radio frequency identification (RFID), infrared red (IR),
ultra sonic sensor, laser, wireless LAN-based methods
and inertial navigation sensor have been adopted to pro-
vide different solutions (Borenstein et al., 1996; Georgiev
and Allen, 2004; Gutierrez-Osuna et al., 1998; Ladd
et al., 2004; Larsson et al., 1996; Lee et al., 2003; McGillem
and Rappaport, 1988; Ohya et al., 1998). Pattern matching
or pattern recognition-based algorithms are also proposed
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in this research domain. Vlassis et al. (2001) utilized edge-
based feature vectors of the omni-directional images for
robot localization. A place recognition method based on
image signature matching was presented for mobile robots
(Argamon-Engelson, 1998). For range-finder-based sen-
sors, Weiss et al. (1994) proposed a method based on
matching two scan results to derive the position and orien-
tation of a moving indoor system.

For indoor robots, audio devices such as loudspeakers
and microphones are becoming basic equipments. These
sound-related devices can generally provide a more nat-
ure way for robots to communicate with human. Addi-
tionally, some researchers believe that these devices can
be utilized for robot localization (Tamai et al., 2004a;
Wang et al., 2004). This work investigates the feasibility
of using sound field feature matching for robot’s location
and orientation detection and proposes a robust sound-
based indoor robot’s pose detection system utilizing
two microphones.
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1.1. Traditional sound-based robot localization methods and

known problems

The idea of using multiple microphones to localize
sound sources has been developed for a long time. Among
various kinds of sound source localization methods, gener-
alized cross-correlation (GCC)-based methods (Brandstein
and Silverman, 1997; Carter et al., 1973; Knapp and Car-
ter, 1976; Nikas and Shao, 1995) were discussed for robot
localization application (Wang et al., 2004). In general,
sound-based robot localization system uses a speaker
mounted on the robot to produce sound and estimates
the location of the sound source, which is the robot’s loca-
tion, by a set of microphone array installed in the room
(Tamai et al., 2004a; Wang et al., 2004). The main difficulty
for indoor robot localization using sound wave is the com-
plex propagation behavior such as reflection and diffrac-
tion. Theoretically, the values of phase difference and
magnitude ratio among microphones are directly related
to the sound wave arrival direction and the distance
between a sound source and microphones. However, these
straightforward relations only exist in free space or envi-
ronments with simple geometry. In real environments,
these values exhibit stochastic phenomena due to the dis-
tributed nature of the propagation path dynamics and
the limitation of finite-length data. Furthermore, complex
boundary conditions, near-field effect, and local sound
scattering make these values hard to correlate with the
source location. These variations generally result in uncer-
tain estimation errors and make sound-based localization
methods unreliable. Moreover, for indoor applications,
the robot may move to a location that is non-line-of-sight
to the sensors, i.e., without direct paths between the robot
and microphones. Under this circumstance, traditional
methods cannot locate the robot accurately.

Another well-known problem of sound-based robot
localization methods is the microphone mismatch problem.
If the microphones are not mutually matched, then the
phase difference information among microphones may be
distorted. However, pre-matched microphones are rela-
tively expensive and mismatched microphones are difficult
to calibrate accurately since the characteristics of micro-
phones change with the sound directions. Consequently,
Fig. 1. Phase difference and magni
the estimation accuracy varies from different microphone
pairs and is difficult to be evaluated.

1.2. The proposed method based on sound field feature

matching

Traditional sound source localization algorithms
attempt to suppress the effects of complex propagation
behavior, as well as estimate the direction of the direct
sound source. Unlike existing sound-based robot localiza-
tion systems which focus on eliminating the influence of
reflection and diffraction, this work treats the propagation
behavior as a local feature and attempts to recognize it by
pattern matching method. In practice, the complex propa-
gation behavior of a sound sources results in location or
orientation dependent phase difference and magnitude
ratio distributions. For example, Figs. 1 and 2 show the
histograms of phase difference and the magnitude ratio in
consecutive data frames measured between a microphone
pair for the location ‘‘A’’ in a line-of-sight case and the
location ‘‘B’’ in a non-line-of-sight case (the figure of the
experimental environment is shown in Fig. 9). Obviously,
even under the line-of-sight case, the values of phase differ-
ence and magnitude ratio are not fixed due to the complex
propagation behavior.

The examples of sound field features given in Figs. 1 and
2 are used to mark the location or orientation of a sound
source that is mounted on the robot. Notably, both the
magnitude ratio and the phase difference between two
microphones are content independent. In other words,
the content of the sound produced by the robot does not
have to be defined. For example, the sound can be conver-
sation, or even the noise emitted by an autonomous vac-
uum-cleaning robot. This work adopts Gaussian mixture
models (GMMs) (Reynolds and Rose, 1995) to model
phase difference and magnitude ratio distributions and pro-
poses two models, robot localization model (RLM) and
robot orientation model (ROM). The first model (RLM)
is used for robot’s location detection and the second model
(ROM) is used for robot’s orientation detection. The
unique advantage of the proposed method is the detection
of location and orientation in non-line-of-sight cases, i.e.,
when no direct path is available between the robot and
tude ratio in line-of-sight case.



Fig. 3. Speaker and microphone configuration of the proposed system.

Fig. 2. Phase difference and magnitude ratio in non-line-of-sight case.
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the microphones. To adapt to the environmental noises
and enhance the robustness of the feature identification,
an on-line calibration procedure is also proposed.

The remainder of this paper is organized as follows. The
next section introduces the overall system architecture. Sec-
tion 3 describes the design of the directional sound pattern
for orientation detection. Section 4 presents the formula-
tions of the proposed RLM and ROM. The experimental
results are discussed in Section 5 and, finally, conclusions
are drawn in Section 6.
2. System architecture

As shown in Fig. 3, the proposed system contains two
speakers on the robot and a robot’s location and orienta-
tion detection agent (RLODA) with two microphones.
The RLODA can be placed in any part of the room as long
as the reception of sound from the robot is clear enough.3

The sound pattern generated by Speaker 1 (SP1) is received
by the RLODA and the RLMs for different sound source
locations can be obtained by modeling the location depen-
dent sound field features (phase difference and magnitude
ratio distributions) measured between the two micro-
phones. When the system attempts to build the ROMs,
both SP1 and SP2 are used to generate a directional sound
pattern. Note that the detail of generating a directional
3 In this paper, we do not discuss the issue of placement of RLODA.
sound pattern is described in Section 3. Because the sound
pattern generated by SP1 and SP2 is directional, the sound
field features change with the robot’s orientation and can
be utilized for orientation detection.

Fig. 4 depicts the overall system architecture. Stage I in
Fig. 4 is the pre-recording stage, in which the robot moves
and changes its orientation in the environment when
the environment is quiet, and produces sound through
the speakers to obtain a pre-recorded database. Since the
sound is recorded by the two microphones, the information
of the sound field features can be obtained by this
database.

Once the pre-recording stage is finished, the system
enters Stage II called silent stage. In this stage, the robot
remains silent and the RLODA records the environmental
noises. Assuming that noise signals are additive, the sound
recorded in real application can be considered as the linear
combination of robot’s sound and environmental noises.
Therefore, this stage adds the environmental noises to the
pre-recorded database to construct the training features,
phase difference and magnitude ratio distributions, and
then utilizes these features to trains the parameters of
RLMs and ROMs. Through this process, the effect of envi-
ronmental noises is adapted in this stage.

When the robot needs to know its location or orienta-
tion, the system then switches to the sounding stage, in
which the robot produces a sound into the room for the
RLODA to detect the robot’s location or orientation. If
the robot’s location is required, the SP1 is used to generate
sound; conversely, both SP1 and SP2 are excited if the
robot’s orientation is needed. Because the microphones
used in these three stages are the same, the mismatched
characteristics between microphones are collected in the
pre-recording database and would not influence the detec-
tion results of proposed system. The sounding and the
silent stages can be switched to each other iteratively for
location or orientation detection and environmental noises
adaptation. Fig. 5 illustrates the flowchart of proposed
system.

Additionally, wireless communication technologies such
as Wireless Ethernet can be adopted to accomplish the
stage synchronization and communication between the
robot and the RLODA.



Fig. 4. Overall system architecture.

Fig. 5. Flowchart of the proposed system.
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3. Directional sound pattern design for robot orientation

detection

To detect the robot’s orientation by the sound field
features, the sound pattern generated by the robot
should be correlated with the robot’s orientation. How-
ever, a general omni-directional sound pattern may lead
to the same sound fields when the robot changes its ori-
entation because the emitted sound has the same charac-
teristics in all directions. Therefore, a directional sound
emission approach must be designed. To realize a direc-
tional sound pattern, the idea of speaker array beam-
forming (Tamai et al., 2004b; Yamada et al., 2004) is
adopted in this work to guarantee the directivity of the
generated sound pattern. Besides directivity, another con-
straint on the generated sound pattern is the number of
symmetric axes (b) in the horizontal plane. Fig. 6 shows
an example of how b affects the orientation detection,
where the solid line denotes the generated sound pattern,
the dotted line denotes the symmetric axes, and the
arrow denotes the robot’s orientation.

As shown in Fig. 6, the sound patterns generated when
the robot’s orientation is 0�, 90�, 180�, and 270� are exactly
the same when b = 4. A sound pattern generated when the
robot points at a certain direction (0� in the example)
would have b � 1 identical sound patterns. Therefore, the
generated sound could only be symmetrical along one axis
(b = 1) to avoid confusion in orientation detection. Conse-
quently, this work proposes a method that utilizes two
speakers to generate the sound pattern that conforms to
the constraint by

J SP1ðnÞ ¼ JðnÞ
J SP2ðnÞ ¼ 0:5� JðnÞ

ð1Þ

where J(n) is the original sound source and JSP1(n) and
JSP2(n) is the sound emitted by SP1 and SP2. The distance
between two speakers is set to 0.2 m.



Fig. 6. Relations between b and the sound pattern.
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Fig. 7 depicts the simulation of the generated sound pat-
tern of the proposed system based on the sound propaga-
tion theories introduced by Parker (1988) when the
robot’s orientation is 0�, where the sound power is mea-
sured at 1 m away from the SP1 with the same height.
The solid lines in the circle depict the relative sound power
in dB. As shown in Fig. 7, the generated sound pattern is
symmetric along only one axis and is suitable for robot’s
orientation detection.
Fig. 7. Simulation of gen
4. Robot localization model (RLM) and robot orientation

model (ROM)

4.1. A description of the proposed RLM and ROM

To establish both RLMs and ROMs, the RLODA needs
to construct models for the sound fields at different loca-
tions and orientations. PSx(xb) and MSx(xb) denote the
phase difference and magnitude ratio, respectively, for con-
structing RLM (S = L) or ROM (S = O) at frequency xb,
b 2 {1, . . .,B}. The GMMs are defined as the weighted sum
of N1 and N2 mixtures of Gaussian component densities
shown below,
GðPSxjkSPÞ ¼
XN1

i¼1

qSP;igiðPSxÞ ð2Þ

GðMSxjkSMÞ ¼
XN2

i¼1

qSM;igiðMSxÞ ð3Þ
where S ¼ fL;Og, PSx ¼ P Sxðx1Þ � � � P SxðxBÞ½ �T, MSx ¼
MSxðx1Þ � � � MSxðxBÞ½ �T. qSP,i and qSM,i are the ith mix-

ture weights, and gi(PSx) and gi(MSx) are the Gaussian den-
sity function. Notably, the mixture weights must satisfy the
constraints:
XN1

i¼1

qSP;i ¼ 1 and
XN2

i¼1

qSM;i ¼ 1 ð4Þ
erated sound pattern.
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The terms kSP and kSM represent the parameters of N1 and
N2 component densities:
kSP ¼ fqSP; lSP;RSPg and kSM ¼ fqSM; lSM;RSMg ð5Þ
where

qSP ¼ b qSP;1 � � � qSP;N1
c denotes the phase difference

mixture weight vector with dimensions 1 · N1.
qSM ¼ b qSM;1 � � � qSM;N2

c denotes the magnitude
ratio mixture weight vector with dimensions 1 · N2.
lSP ¼ b lSP;1 � � � lSP;N1

c denotes the phase difference
mean matrix with dimensions B · N1.
lSM ¼ b lSM;1 � � � lSM;N2

c denotes the magnitude
ratio mean matrix with dimensions B · N2.
RSP ¼ bRSP;1 � � � RSP;N1

c denotes the phase difference
covariance matrix with dimensions B · BN1.
RSM ¼ bRSM;1 � � � RSM;N2

c denotes the magnitude
ratio covariance matrix with dimensions B · BN2.

The parameters kSP and kSM in (5) can be estimated by
the iterative EM algorithm (Xuan et al., 2001) which guar-
antees a monotonic increase in the model’s log-likelihood
value. The iterative procedure can be divided into the fol-
lowing two steps:

Expectation step:

G ijPðtÞSx; kSP

� �
¼ qSP;igi P

ðtÞ
Sx

� � XN1

i¼1

qSP;igi P
ðtÞ
Sx

� �,
ð6Þ

G ijM ðtÞ
Sx; kSM

� �
¼ qSM;igi M

ðtÞ
Sx

� � XN2

i¼1

qSM;igi M
ðtÞ
Sx

� �,
ð7Þ
where G ijPðtÞSx; kSP

� �
and G ijM ðtÞ

Sx; kSM

� �
are posteriori

probabilities.
Maximization step:

(i) Estimate the mixture weights:
qSP;i ¼ 1 T
XT

t¼1

G ijPðtÞSx; kSP

� �,
ð8Þ

qSM;i ¼ 1 T
XT

t¼1

G ijM ðtÞ
Sx; kSM

� �,
ð9Þ
(ii) Estimate the mean vector:
lSP;i ¼
XT

t¼1

G ijPðtÞSx; kSP

� �
P
ðtÞ
Sx

,XT

t¼1

G ijPðtÞSx; kSP

� �
ð10Þ

lSM;i ¼
XT

t¼1

G ijM ðtÞ
Sx; kSM

� �
M
ðtÞ
Sx

,XT

t¼1

G ijM ðtÞ
Sx; kSM

� �
ð11Þ
(iii) Estimate the variances:

r2
SP;iðxbÞ

¼
XT

t¼1

G ijPðtÞSx;kSP

� �
P ðtÞ2Sx ðxbÞ

,XT

t¼1

G ijPðtÞSx;kSP

� � !
�l2

SP;iðxbÞ

ð12Þ

r2
SM;iðxbÞ

¼
XT

t¼1

G ijM ðtÞ
Sx;kSM

� �
M ðtÞ2

Sx ðxbÞ
,XT

t¼1

G ijM ðtÞ
Sx;kSM

� � !
�l2

SM;iðxbÞ

ð13Þ
However, the EM algorithm is sensitive to the choice of
initial model. A good choice of initial model results in a
lower number of iterations of the EM algorithm. K-means
related approaches are known to be effective in finding a
suitable initial model (MacQueen, 1967). This work utilizes
an accelerated K-means algorithm proposed by Elkan
(2003), which can significantly reduce the computational
power requirement.

The proposed RLM and ROM at each location
and orientation are defined as the linear combination
of the phase difference GMM and the magnitude ratio
GMM:

F RLM ¼ aLPG PLxjkLPð Þ þ aLMGðMLxjkLMÞ ð14Þ

F ROM ¼ aOPG POxjkOPð Þ þ aOMG MOxjkOMð Þ ð15Þ

where aLP, aOP, aLM and aOM represent the weighting fac-
tors. The values of aSP and aSM can be chosen based on the
sum of the correlation values among trained locations of
the phase difference GMM and magnitude ratio GMM.
The GMM with higher correlation summation would be
assigned a lower weight, since the ability to discriminate
is considered lower under this circumstance, and vice versa.
Under this principle, aSP and aSM are determined by the
following formula:

min
X
qSP

aSPfCSPðqSPÞUCSPðqSPÞ
Tg

(

þ
X
qSM

aSMfCSMðqSMÞUCSMðqSMÞ
Tg
)

s:t: aSPaSM ¼ 1; aSP > 0; aSM > 0

ð16Þ

where qSP 2 QSP and qSM 2 QSM are the B dimensional ran-
dom vectors in the operation ranges, QSP and QSM.
CSPðqSPÞ¼ CðqSPjkSPð1ÞÞ CðqSPjkSPð2ÞÞ � � � CðqSPjkSPðLÞÞ½ �;

CSMðqSMÞ¼ CðqSMjkSMð1ÞÞ CðqSMjkSMð2ÞÞ � � � CðqSMjkSMðLÞÞ½ �;
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and

U ¼

0 1 1 � � � � � � 1

0 0 1 1 � � � 1

..

.
0 0 . .

.
� � � 1

..

. ..
.

0 . .
.

1 1

..

. ..
. ..

. ..
.

0 1

0 0 0 0 0 0

2
66666666664

3
77777777775

with dimension L · L.
In addition,

CðqSPjkSPðlÞÞ ¼ HðqSPjkSPðlÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
qSP

H 2ðqSPjkSPðlÞÞ
s,

;

ð17Þ

CðqSMjkSMðlÞÞ ¼ HðqSMjkSMðlÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
qSM

H 2ðqSMjkSMðlÞÞ
s,

;

ð18Þ

HðqSPjkSPðlÞÞ¼GðqSPjkSPðlÞÞ�
X
qSP

GðqSPjkSPðlÞÞ=NðqSPÞ
 !

;

and

HðqSMjkSMðlÞÞ¼GðqSMjkSMðlÞÞ�
X
qSM

GðqSMjkSMðlÞÞ=NðqSMÞ
 !

ð19Þ
where N(qSP) and N(qSM) denote the total selected numbers
of qSP and qSM.

The values of aSP and aSM can be obtained by solving
(16) as:

aSP¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
qSM

CSMðqSMÞUCSMðqSMÞ
T

,X
qSP

CSPðqSPÞUCSPðqSPÞ
T

vuut
ð20Þ

aSM¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
qSP

CSPðqSPÞUCSPðqSPÞ
T

,X
qSM

CSMðqSMÞUCSMðqSMÞ
T

vuut
ð21Þ
4.2. Sound field feature matching for location and orientation

detection

The location and orientation are determined by finding
the maximum a posteriori location probability and a poste-
riori orientation probability for a given observation
sequence:

l̂ ¼ arg max
16l6L

F RLMðlÞ

¼ arg max
16l6L

aLPGðkLPðlÞjPLYÞ þ aLMGðkLMðlÞjMLYÞ

¼ arg max
16l6L

aLPðGðPLYjkLPðlÞÞpðkLPðlÞÞ=pðPLYÞÞ

þ aLMðGðMLYjkLMðlÞÞpðkLMðlÞÞ=pðMLYÞÞ ð22Þ
ô ¼ arg max
16o6O

F ROMðoÞ

¼ arg max
16o6O

aOPðGðPOYjkOPðoÞÞpðkOPðoÞÞ=pðPOYÞÞ

þ aOMðGðMOYjkOMðoÞÞpðkOMðoÞÞ=pðMOYÞÞ ð23Þ

where PSY ¼ P
ð1Þ
SY; . . . ;P

ðV Þ
SY

n o
and MSY ¼ M

ð1Þ
SY; . . . ;

n
M
ðV Þ
SY g are the phase difference and magnitude ratio com-

puted from the testing sequences denoted as YS1(x) and
YS2(x), and V denotes the testing sequence length. The
probabilities p(kLP(l)) and p(kLM(l)) could be selected as
1/L and p (kOP(o)) and p(kOM(o)) could be selected as
1/O since the probability in each location and orientation
is equally likely for a blind search. Moreover, because the
probability densities p(PSY) and p(MSY) are the same for
all location models, the detection rule can be recast as:

l̂ ¼ arg max
16l6L

aLP

YV

v¼1

G P
ðvÞ
LYjkLPðlÞ

� �
þ aLM

YV

v¼1

G M
ðvÞ
LYjkLMðlÞ

� �
ð24Þ

ô ¼ arg max
16o6O

aOP

YV

v¼1

GðPðvÞOYjkOPðoÞÞ þ aOM

YV

v¼1

G M
ðvÞ
OYjkOMðoÞ

� �
ð25Þ
5. Experimental results

Fig. 8 shows the experimental platform and the pro-
posed RLODA. In Fig. 8a, the distance between two
speakers is 0.2 m. Considering the spatial aliasing problem
(Brandstein and Ward, 2001) and the highest frequency of
sound generated by the robot, which is 2 kHz in this exper-
iment, the distance between the two microphones of the
RLODA is chosen as 0.07 m, as shown in Fig. 8b. The
experiment was performed in an office room filled with fur-
niture, which is 11.4 m in length, 4.73 m in width and 2.8 m
in height. Two off-the-shelf, non-calibrated microphones
are utilized on the ROLDA in this experiment and the
RLODA is implemented on a PC with a stereo recording
sound card. The sampling rate is 8 kHz, and the A/D res-
olution is 16 bit. The pre-recording is performed every
0.1 m within the region in which the robot is allowed to tra-
vel. For orientation detection, the robot is rotated in every
30� step to obtain 12 orientations in 360�.

Fig. 9 depicts the experimental environment and the
location of the RLODA. Note that there is a partition
room in the office. Therefore, the robot is completely under
non-line-of-sight case when it is in the partition room. The
robot’s moving trajectories are also shown in Fig. 9 with
the dotted lines from 1 to 8 in sequence.

The lengths of the training sequence and the testing
sequence were set to 300 and 30. In other words, a three-
second length input datum was set for training, and a 0.3
second length input datum was set for testing. The major
noise in this experiment is speech noise and the minor
noises are electric noise such as air conditioner noise, com-
puter fan noise to simulate a general indoor environment.



Fig. 9. Experimental environment.

Fig. 8. The experimental platform and the proposed RLODA. (a) The
experimental platform. (b) The proposed RLODA.

Table 1
Average SNRs of all trajectories and the average SNRs of each trajectory
pair (dB)

Average
SNR

Average SNR
of trajectories
1 and 8

Average SNR
of trajectories
2 and 3

Average SNR
of trajectories
4 and 5

Average SNR
of trajectories
6 and 7

19.87 13.94 23.34 16.44 17.69
7.91 2.76 10.93 4.93 6.01
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Table 1 lists the average SNRs of all trajectories and the
average SNRs of each trajectory pair. Fig. 10 shows the
location detection results along the robot’s moving trajec-
tory with a mixture number of 15 and an average SNR
of 7.91 dB. As shown in Fig. 10, the location detection
results are mostly very close to the actual location for most
of the time.

The proposed method models the phase difference and
magnitude ratio distributions measured from the sounds
generated by the robot to perform robot’s location and ori-
entation detection. However, the sound field features of the
noise start to dominate the phase difference and magnitude
ratio distributions with the increment of noise power. In
this circumstance, the RLMs and ROMs may become less
distinguishable and may degrade the performance of the
proposed method. In Fig. 10, the detection error occurs
most frequently on trajectories 1 and 8, because some area
of these trajectories is completely in the partition room and
the average SNR of these trajectories is lower than those of
other trajectories, as shown in Table 2. Although trajecto-
ries 1 and 8 contain locations that are in non-line-of-sight
case, the location dependent sound field features can still
be caught by the proposed RLMs.

Several experiments are conducted to access the accu-
racy of the proposed method in terms of location and ori-
entation detection error. Table 2 lists the average correct
rates of the location detection results where D denotes
the distance between the actual location and the nearest
location in the pre-recorded database. Notably, the pre-
recorded locations are discrete and are 0.1 m apart. In this
experiment, if the detected result is the nearest pre-recorded
location in the database, it will be regarded as a correct
one. Additionally, the trial numbers for localization detec-
tion and orientation detection are 1210 and 332 individu-
ally for each condition. As shown in Table 2, if only a
single Gaussian component is utilized (M = 1), then the
average correct rates are too low to be acceptable in both
two SNR cases. However, the average correct rates are
improved to more than 95% when the mixture number is
increased (M = 11 and M = 15) and 0 6 D < 1 cm.



Fig. 10. Location detection results alone X and Y axes. (a) Location detection results alone X axis. (b) Location detection results alone Y axis.

Table 2
Average correct rates of location detection results (%)

Average SNR
(dB)

M = 1 M = 11 M = 15

0 6 D < 1
(cm)

1 6 D < 3
(cm)

3 6 D < 5
(cm)

0 6 D < 1
(cm)

1 6 D < 3
(cm)

3 6 D < 5
(cm)

0 6 D < 1
(cm)

1 6 D < 3
(cm)

3 6 D < 5
(cm)

19.87 24.00 20.83 20.41 95.45 95.00 85.45 97.19 95.00 88.35
7.91 22.98 22.89 17.52 91.98 89.50 84.13 94.38 87.93 81.57
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Table 3 shows the average correct rates of the orienta-
tion detection results, where A denotes the distance
between the actual and the pre-recorded orientations. If
the orientation detection result is the nearest pre-recorded
orientation to the actual orientation, the result will be con-
sidered correct. Note that the experiment is performed after
a correct location is detected. As shown in Table 3, when
M = 1, the average correct rates are lower than 60%. These
results show that a single Gaussian component is not
appropriate for modeling the ROMs. When M = 11, the
average correct rates are much higher than those when
M = 1 in both the SNR cases. In the condition of
0� 6 A < 4�, the average correct rates exceed 99% in both
the SNR cases.
Table 3
Average correct rates of orientation detection results (%)

Average SNR (dB) M = 1

0� 6 A < 4� 4� 6 A < 8� 8� 6 A < 12� 12� 6

19.16 58.43 48.49 45.78 44.28
7.39 58.13 50.00 50.00 48.19
Fig. 11 shows the average of a posteriori probabilities
measured at the locations ‘‘A’’ and ‘‘B’’, where the location
‘‘A’’ is in a line-of-sight case and the location ‘‘B’’ is in a
non-line-of-sight case, as illustrated in Fig. 9. Notably,
the a posteriori location probability is defined as:

aLP

YV
v¼1

G P
ðvÞ
LYjkLPðlÞ

� �
þ aLM

YV
v¼1

G M
ðvÞ
LYjkLMðlÞ

� �
ð26Þ
and the a posteriori orientation probability is defined as:

aOP

YV
v¼1

G P
ðvÞ
OYjkOPðoÞ

� �
þ aOM

YV
v¼1

G M
ðvÞ
OYjkOMðoÞ

� �
ð27Þ
M = 11

A < 15� 0� 6 A < 4� 4� 6 A < 8� 8� 6 A < 12� 12� 6 A < 15�

99.70 88.55 84.04 81.33
99.10 84.34 80.12 77.11



Fig. 11. The average of the measured a posteriori probabilities. (a) The average a posteriori location probabilities at the location ‘‘A’’. (b) The average a
posteriori location probabilities at the location ‘‘B’’. (c) The average a posteriori orientation probabilities at the location ‘‘A’’. (d) The average a posteriori
orientation probabilities at the location ‘‘B’’.
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The average SNRs belong to the lowest SNR conditions in
Tables 2 and 3 individually. The mixture number in
Fig. 11a and b is 15, and the mixture number in Fig. 11c
and d is 11. The location ‘‘A’’ denotes the 113th location
and the location ‘‘B’’ represents the 220th location. In the
case of 0 6 D < 1 cm, the averages of (26) (averages of a
posteriori location probabilities) measured with the correct
locations indices (l = 113 and 220) are much higher than
those of other location indices, as shown in Fig. 11a and
b. However, since the sound field feature varies with the ro-



Fig. 11 (continued)
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bot’s location and orientation, the phase difference and
magnitude ratio distributions are becoming less similar
while the robot is moving away from the pre-recorded loca-
tion or orientation. Therefore, in Fig. 11a and b, the differ-
ence between the averages of (26) measured with the
correct locations indices and with other location indices
are becoming less obvious with the increase of D, and then
the chance of detection error rises. This tendency explains
why the average correct rates of location detection in Table
2 degrade with the increase of the distances between the ac-
tual and the pre-recorded locations. Although the averages
of (26) measured with the correct locations indices decrease
with the increase of D, it is still higher than those measured
with other location indices; as a result, the correct rates
listed in Table 2 remain above 80% when 3 6 D < 5 cm.
The same phenomenon appears in the experiment of orien-
tation detection. Fig. 11c and d depicts the average of (27)
(averages of a posteriori orientation probabilities) with the
correct orientations of 0� for Fig. 11c and 270� for
Fig. 11d. The average of (27) measured at the correct ori-
entation indices drops with the increase of A in both line-
of-sight and non-line-of-sight cases and so does the average
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correct rates of the orientation detection in Table 3. These
experimental results show that utilizing GMMs to model
the sound field features is a feasible method for robot’s
location and orientation detection.

6. Conclusion

A novel robot’s location and orientation detection
method based on sound field features matching is pro-
posed. The proposed method treats phase difference and
magnitude ratio distributions between the microphones as
distinct sound field features, and models them by GMMs
to detect a robot’s location and orientation. Since the pro-
posed method makes no assumptions about the spatial
relationship between sound sources and microphones, it
can be applied to both line-of-sight and non-line-of-sight
cases. Moreover, the modeled sound field features are con-
tent independent, so the content of sound can be designed
arbitrarily. A system architecture is also proposed to pro-
vide robustness to environmental noises. The proposed
method is suitable to be integrated with other robot loca-
tion or orientation detection algorithms based on different
sensors to provide initial conditions for reducing the search
effort, or to compensate for localizing certain locations that
cannot be detected using other localization methods to per-
form more robust, more accurate and faster pose and glo-
bal location detection.
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