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Abstract

The multilayer perceptron of neural
network is trained as a classifier and is
applied to the robust recognition of seismic
patterns. The principle of robust training
using multilayer perceptron is described.
Three classes of seismic patterns are
analyzed in the experiment: bright spot,
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pinch-out, and horizontal reflection patterns.
Seven moments that are invariant to
trandation, rotation, and scale, are employed
for feature generation of each seismic
pattern. The training set includes noise-
free, low noisy, and misclassified seismic
patterns. The testing set includes seismic
patterns with various noise levels. The
multilayer perceptron isinitialy trained with
the training set of noise-free and low noisy
seismic patterns.  After convergence of
training, the network is applied to the
classification of the testing set of noisy
seismic  patterns. Some misclassified
testing seismic patterns with higher noise
level are selected and added to the training
set for retraining. Repeat the classification
and the training through several steps. The
retraining can significantly improve the
robustness of the network in higher steps.
Finally we apply the network at each
training step to the real seismic data at
Mississippi canyon, the bright spot pattern
can be detected. From experiments, the
multilayer perceptron is shown to have the
capability of robust recognition of seismic
patterns and the recognition results are
encouraged to the seismic interpretation.
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(1) The principle of robust training and
recognition is described. The two-layer
perceptron has the capability of robust

recognition. Using the misclassified
patterns in the retraining, the new
classification regions can accommodate

those patterns into the correct class.

(2) Seven moments that are invariant to
trandation, rotation, and scale, are employed
for feature generation of each seismic
pattern and useful in the seismic recognition.
(3) The analyzed seismic patterns are bright
gpot, pinch-out, and horizontal reflection
patterns. The two-layer perceptron is used
in the robust training and recognition of
simulated seismic patterns in several steps
and the recognition results are improved.
Then applying the network of each step to
real seismic data at Mississippi canyon, the
bright spot pattern is detected.

(4) The distance between each testing
seismic pattern and noise-free class pattern
is calculated in the feature space. The
selection of the misclassfied patternsinto the
training set must be closer to the noise-free
class pattern. If the new training set can
not get the convergence of the training of the
network and the less number of error
patterns, then we must select other

misclassified patterns into the training set
for retraining.

(5) Selection of a few misclassified seismic
patterns into the training set for retraining of
the network can greatly reduce the number
of eror seismic patterns in the next
classification.

(6) In the recognition of seismic patterns, we
adopted Hopfield net (Huang et al., 1989),
Fukushima's neocognitron (Huang and Liaw,
1992), and this paper's multilayer perceptron
(MLP). The Hopfield net has a
convergence problem if the training patterns
are not orthonormal (Lippman, 1987).
Fukushima's neocognitron is too complex in
the design of the training subpatterns and the
calculations of many hidden layers in the
hierarchical recognition rocesses.
Multilayer perceptron (MLP) accompanied
with 7 invariant moments is convenient in
the design of training patterns, and has the
robust capability in seismic pattern
recognition.
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Fig. 1. Preprocessing of seismic data.
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Fig. 2. Two-layer perceptron of neura network.
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Fig. 3. Training and testing of robust recognition by two-layer perceptron.

Tablel. Performance of testing 1800 patterns of 3 classes
(600 testing patterns for each class).

# of total | # of iterations
error of network
patterns

Step 1 468 512

Step 2 412 388

Step 3 279 373

Step 4 46 606

Step 5 33 800

Step 6 29 1031

Step 7 15 2186

Step 8 5 1430
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