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Abstract

We introduce two different types of
bivariate regression quantile which are defined
through the bivariate distribution function. The
large sampl e representations of sample type
bivariate regression quantiles are both
developed. For parameter estimation, affine
equivariant bivariate trimmed mean and
bivariate trimmed covariance matrix have also
been introduced where large sampl e property of
the bivariate trimmed mean has been
investigated. Results of simulation studies for
the bivariate quantiles and trimmed mean have
been presented. On the other hand, results of
data analysis and regression quantiles of higher
dimensions are a so displayed.

KEYWORDS: Quantile; Regression; Trimmed
Mean.

Introduction

Order statistics or quantiles are the basis
for avariety of useful exploratory and robust
procedures for univariate data. It isdesirable
to extend these procedures to multivariate data,
but the lack of a natural ordering for
multivariate data (Kendall, 1966, Bell and
Haller, 1969) has hindered the definition of

90 7 31

quantiles and hence the definition of
procedures based on them in multivariate
problems.

Much of the work in generalizing
quantiles to multivariate models has
concentrated on the particular case of the
median of the multivariate |ocation model.
Weber (1909) defined the multivariate
I, median by minimizing the multivariate

version of the absolute residuals. More
recently, Oja (1983) defined the multivariate
simplex median by minimizing the sum of
volumes of simplices with vertices on the
observations, and Liu (1988 and 1990)
introduced the simplicial depth median
maximizing an empirical smplicial depth
function. In these approaches, the median by
Weber is not affine equivariant but those by Oja
and Liu are. An excellent review of the work
on the multivariate median is given by Small
(1990). Genera multivariate quantiles (which
of course include the multivariate median and
extremes as special cases) are more difficult to
define. The approach of taking a minimization
problem whose solution is the univariate
quantile has been generalized, called the
M-qguantile, by Breckling and Chambers (1988)
and Koltchinski (1997) to the multivariate
model. Unfortunately these two generalizations
are al not affine equivariant. The approach of
Einmahl and Mason (1992) considered the
properties of the volume of the smalles Borel
set that contains at least fraction of the
multivariate data points. This variable, the
volume, is no longer a multivariate quantity
and then is not natural as a quantile point. As
noted by Chaudhuri (1996), most authors, as
the above ones, try to introduce descriptive
statistics that generalize the concept of



univariate quantiles to the multivariate setup
without discussing what they are trying to
estimate. That is, almost no attention is paid to
the underlying population quantile. As the fact
that the univariate quantileis an inverse
function of adistribution function, recently,
Chen and Welsh (1999) introduced a
multivariate quantile through the inveses of
joint and marginal distribution functions of
variables or their transforms for the
multivariate location model. introduced a
bivariate quantile for bivariate location. With
using inverses of joint distributions, this
guantile then satisfies some properties of space
partition with specified probabilities on sets.

Relatively to the location model, the study
for quantile in the multivariate regression
model seemsreceive even lesser attention. As
an exemption, Koenker and Portnoy (1987)
introduced the multivariate M-estimation for
this model. This study by Koenker and Portnoy
has the advantage of introducing a generalized
robust type estimator for multivariate
regression, however, the estimators proposed in
their paper involved aweighted matrix that is
assumed to be known and then make the
estimators not affine equivariant. The interest
in this paper is to introduce the multivariate
guantile to the multivariate regression model
through the conditional joint and marginal
distributions of the dependent variables and
their transforms. For simplicity, we first specify
the population bivariate regression quantile in
terms of the underlying error cumulative
distribution and then construct estimators of
these population quantiles through the
regression quantile by Koenker and Bassett
(1978). We show that this bivariate regression
guantile satisfies a property of maximizing
variance in terms of all directions of linear
transformations. For estimation, affine
equivariant sample bivariate regression
guantiles are introduced and studied. Some
properties as being a quantile of data portioning
for the sample bivariate regression quantile
have been stated. The setting of bivariate
regression quantile leads naturally to the
development of affine equivariant bivariate
regression trimmed mean and covariance
matrix. Results of simulation for quantile and
trimmed mean and also a data analysis have all
been provided.

We define two different types of bivariate
regression quantile pointsin Section 2. We
present sample estimators of these bivariate
regression quantile points and establish their
large sample propertiesin Sections 3 and 4. We
introduce a bivariate trimmed mean in Section
5. We apply the bivariate regression quantiles
and trimmed mean in Section 5 and briefly
discuss extensions to higher dimensions in
Section 6.
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