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Magnetoelectronic properties of a two-dimensional �2D� monolayer graphene are investigated by the Peierls
tight-binding model. They are dominated by the period, strength, and direction of a spatially modulated
magnetic field. Such a field could induce the reduction in dimensionality, change of energy dispersions,
anisotropy at low energy, composite behavior in state degeneracy, extra band-edge states, and asymmetry of
energy bands. There are partial flatbands at the Fermi level and one-dimensional parabolic bands at others.
These make density of states exhibit delta-function-like structure and asymmetric prominent peaks, respec-
tively. Energies of the extra band-edge states strongly depend on the period, while those of the original
band-edge states exhibit little dependence. Both of them grow as the strength increases. The modulated and
uniform magnetic fields differ from each other in energy dispersion, state degeneracy, and dimensionality.
Important differences between a monolayer graphene and a 2D electron gas also exist.
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I. INTRODUCTION

Condensed-matter systems, such as diamond, layered
graphenes, carbon nanotubes, carbon tori, C60-related
fullerenes, and carbon onions, are purely made up of carbon
atoms. Such systems have very special symmetric configura-
tions, and their dimensionalities vary from three dimensions
to zero dimension. They could exhibit rich electronic prop-
erties, e.g., a wide-gap diamond, a semimetallic bulk graph-
ite, a zero-gap monolayer graphene, a metallic armchair car-
bon nanotube, and a small-gap nonarmchair carbon
nanotube. Recently, few-layer graphenes with two-
dimensional �2D� hexagonal symmetry and nanoscaled
thickness could be produced by controlling film thickness
with single-atom accuracy.1 Much research has been ex-
plored, such as growth,2 phonon,3 band structure,4–7 elec-
tronic excitations,8–11 optical spectra,12,13 and transport
properties.14–20

A 2D monolayer graphene owns linear bands intersecting
at the Fermi level EF=0. Energy bands are isotropic at low
energy ��0.5 eV�,21 and so are the low-frequency physical
properties �e.g., Coulomb excitations�.8,10 They produce a
vanishing density of states at EF=0, which makes a mono-
layer graphene an exotic zero-gap semiconductor. The two
important characteristics, isotropy and semiconductor, origi-
nate from the hexagonal symmetric configuration. Electronic
properties are completely changed by applying a uniform
perpendicular magnetic field. Most of energy bands become
the dispersionless Landau levels. The effective-mass model
predicts that energies of the low Landau levels are propor-
tional to the square root of field strength and quantum
number.22 These theoretical predictions have been verified by
experimental measurements on transport properties16 and op-
tical spectra.12 An inhomogeneous magnetic field might also
strongly affect the essential physical properties. Haldane in-
vestigated whether a 2D graphene could exhibit magnetocon-
ductance in the presence of a vanishing net magnetic field.23

In this work, we focus mainly on the effects of a periodic
magnetic field on electronic properties.

There have been numerous experimental24–27 and
theoretical28–36 research for a two-dimensional electron gas
�2DEG� under a spatially modulated magnetic field. These
works primarily analyze the transport properties,24–26,28,29 en-
ergy bands,30–32 electronic excitations,33–36 and optical
spectra.27 The transport measurements24,25 manifest the oscil-
latory magnetoresistance. Energy bands of a 2DEG have
parabolic energy dispersions. A periodic magnetic field leads
to the drastic changes in electronic properties, e.g., the
changes in state degeneracy, band-edge states, and curva-
tures.

The Peierls tight-binding model is used to calculate the
electronic structure of a 2D graphene in a spatially modu-
lated magnetic field. The Hamiltonian is a huge Hermitian
matrix for a large modulation period ��1000 Å�. The nu-
merical techniques are developed to attain a bandlike Hamil-
tonian matrix. The dependence of electronic properties on
the direction, period, and strength of the modulated magnetic
field will be investigated in detail, e.g., energy dispersions,
state degeneracy, band-edge states, symmetry of energy
bands, and density of states. A comparison with those of a
uniform magnetic field is made. The important differences
between a monolayer graphene and a 2DEG is also dis-
cussed.

This paper is organized as follows. The bandlike Hamil-
tonian matrix in a periodic magnetic field is derived in Sec.
II. The main characteristics of the �-electronic structures are
discussed in Sec. III. Finally, Sec. IV contains concluding
remarks.

II. PEIERLS HAMILTONIAN BAND MATRIX

The tight-binding model with nearest-neighbor interac-
tions is used to calculate the �-electronic structure of 2pz
orbitals. In the honeycomb structure of a 2D single-layer
graphene in the absence of an external field, there are two
kinds of carbon atoms, a and b, in a primitive unit cell. The
wave function consisting of the two linear tight-binding
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functions from periodic 2pz orbitals is expressed as ��k�
=Cak�ak�+Cbk�bk�, where �ak�=�ie

ik·Ri�aik� and �bk�
=� je

ik·Rj�bjk�. The Hamiltonian built from �ak� and �bk� is a
2�2 Hermitian matrix. The site energies are vanishing
��aik�H0�aik�= �bik�H0�bik�=0�, and the nearest-neighbor hop-
ping integral is given by

�bjk�H0�aik� = �0 exp�ik · �Ri − R j�� , �1�

where �0�=2.56 eV� �Ref. 21� is the atom-atom interaction
between two neighboring atoms at Ri and R j.

A monolayer graphene is assumed to exist in a spatially
modulated magnetic field B=B sin�Kx�ẑ along the armchair
direction �the x axis in Fig. 1�a��, and the periodic length is
lB=2� /K=3b�RB, where parameter RB is useful in describ-
ing the dimensionality of the Hamiltonian matrix. The mag-
netic flux, product of the field strength and the hexagonal
area in the unit of flux quantum ��0=hc /e=4.1356
�10−15 T /m2�, is �= �3	3Bb�2 /2� /�0. b�=1.42 Å is the
C–C bond length. The modulated magnetic field that leads to
the Peierls phase is characterized by the vector potential A
=−�B cos�Kx�� /Kŷ. The nearest-neighbor hopping integral
becomes

�bjk�HB�aik� = �0 exp
i�k·�Ri − R j� +
2�

�0
�

Ri

Rj

A·dr
� .

�2�

For three nearest-neighbor atoms, their hopping integrals
are, respectively, t1k�n�=�0 exp��ikxb� /2+ iky

	3b� /2�+Gn�,
t2k�n�=�0 exp��ikxb� /2− iky

	3b� /2�−Gn�, and t3k�n�
=�0 exp�−ikxb��, where Gn=−i�6�RB�2� /��cos���n

−5 /6� /RB�sin��� /6RB��. The modulation period causes the
periodic boundary conditions along the x axis so that the
corresponding Peierls phase is periodic in a period 2RB. An
enlarged rectangular unit cell includes 4RB carbon atoms.
The wave function and the Hamiltonian matrix element are,
respectively, given by

��k� = �
n=1

2RB

Cak
n �ank� + Cbk

n �bnk� , �3a�

�bmk�HB�ank� = �t1k�n� + t2k�n��	m,n + t3k�n�	m,n−1. �3b�

Cak
n =Cak

n+2RB and Cbk
n =Cbk

n+2RB are derived because of the pe-
riodical boundary condition. To solve the complicated calcu-
lations of the huge Hamiltonian matrix, the base functions
are chosen as the following sequence

��a1k�, �b2RBk�, �b1k�, �a2RBk�, �a2k�, �b2RB−1k�, �b2k�,

�a2RB−1k�, . . . , �aRB−1k�, �bRB+2k�, �bRB−1k�, �aRB+2k�,

�aRBk�, �bRB+1k�, �bRBk�; �aRB+1k�� .

The Hamiltonian matrix could be expressed as a 4RB�4RB
bandlike Hermitian matrix

�
0 q* p1

* 0 . . . . . . 0 0

q 0 0 p2RB
0 . . . . . . 0

p1 0 0 0 q 0 . . . 0

0 p2RB

* 0 0 0 q* 0 0

] � q* 0 0 � � 0

] . . . � q � � 0 pRB+1

0 ] ] � � 0 � q

0 0 0 0 0 pRB+1
*

q* 0

� , �4�

where pn� t1k�n�+ t2k�n� and q� t3k. Because the range of kx

is much smaller than that of ky for a large RB, it is sufficient
just to consider one dimensional �1D� energy dispersions
along ky. That is to say, a modulated magnetic field could
effectively reduce the dimensionality by 1.

The �-electronic structure strongly depends on the direc-
tion of the modulated magnetic field, mainly owing to the
anisotropic structure of a 2D monolayer graphene. For the
zigzag direction �Fig. 1�b��, the similar calculations could
also be done. By the detailed derivations, the three hopping
integrals are t1k� �n�=�0 exp��ikx

	3b� /2+ ikyb� /2�+Gn��,
t2k� �n�=�0 exp��−ikx

	3b� /2+ ikyb� /2�−Gn−1� �, and t3k� �n�
=�0 exp��−ikyb��+Gn��, where Gn�=−i�2�RB�2� /3��cos���n
−1 /2� /RB�sin�� /2RB� and Gn�=−i��2RB� /3�cos��n
−1�� /RB��. The Hamiltonian matrix element is further given
by

�bmk�HB�ank� = t1k� �n�	m,n+1 + t2k� �n�	m,n−1 + t3k� �n�	m,n.

�5�

With the base functions

FIG. 1. The primitive unit cell of a monolayer graphene in the
spatially modulated magnetic field with period RB along �a� the
armchair direction and �b� zigzag direction.
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��a1k�, �b2RBk�, �b1k�, �a2RBk�, �b2k�, �a2RB−1k�, �a2k�, �b2RB−1k�, . . . , �bRB−1k�, �aRB+2k�, �aRB−1k�, �bRB+2k�, �aRBk�, �bRB+1k�, �bRBk�; �aRB+1k�� ,

the 4RB�4RB bandlike Hamiltonian matrix for the zigzag direction is

�
0 u2RB

* v1
* 0 s1

* 0 . . . 0 0 0

u2RB
0 0 v2RB

0 s2RB−1 0 0 0 0

v1 0 0 s2RB
� � � � 0 0

0 v2RB

* s2RB

* 0 � � 0 ]

s1 0 � � � � sRB−1
* 0

0 s2RB−1
*

� � � � 0 sRB+1

] 0 � � 0 sRB

* vRB

* 0

0 0 � � � � sRB
0 0 vRB+1

0 0 0 0 sRB−1 0 vRB
0 0 uRB

0 0 0 . . . 0 sRB+1
* 0 vRB+1

* uRB

* 0

� , �6�

where sn� t1k� �n�, un� t2k� �n�, and vn� t3k� �n�. The Hamil-
tonian matrices in Eqs. �4� and �6�, respectively, have two
and three independent matrix elements.

III. MAGNETOELECTRONIC PROPERTIES

The unoccupied conduction bands �Ec’s� are symmetric to
the occupied valence bands �Ev’s� about the Fermi level EF
=0. Only the former are discussed in this work. We first look
at the low-energy bands resulting from the modulated mag-
netic field with period RB=1000 along the armchair direc-
tion. At B=0, most of energy bands are parabolic dispersions
with the double degeneracy except two nondegenerate linear
bands intersecting at EF=0 �the solid circles in Fig. 2�a��.
There is only one band-edge state in each energy band; fur-
thermore, all the band-edge states are located at ky

pp

=2� /3	3b� �the original band-edge states�. The modulated
magnetic field leads to drastic changes in band-edge states
and energy dispersions, as shown in Fig. 2�a� by the open
circles at B=20 T. The range of ky, where electronic states
could exist, becomes large. The linear bands are changed into
partial flatbands at EF=0. Also noted is that this result is
similar to that of carbon nanotubes in magnetic fields perpen-
dicular to the symmetry axis.37 The doubly degenerate para-
bolic bands have weak energy dispersions or low curvatures
at ky

pp, and their number is largely reduced. Such effects sug-
gest that a magnetic field could make electronic states flock
together. The modulation effects of B on parabolic energy
bands result in four extra band-edge states at ky

sp’s, the strong
energy dispersions close to ky

sp’s, and the destruction of the
double degeneracy. The two extra band-edge states at the
left- and right-hand sites of ky

pp might have different energies;
that is, one side of the parabolic bands might be asymmetric
to the other about the original band-edge states. Each para-
bolic band exhibits the composite behavior in state degen-

eracy, the single and double degeneracies near ky
sp and ky

pp,
respectively.

The number of subbands grows quickly as state energy Ec

increases from zero. There are many middle energy bands

FIG. 2. Energy bands near �a� Ec=0, �b� Ec=�0, and �c� Ec

=3�0 for the armchair modulation direction at RB=1000 and B
=20 T. Those without B are also shown for comparison.
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near Ec��0, as shown in Fig. 2�b�. At B=0, they include
complete flatbands at Ec=�0 and parabolic bands at the oth-
ers. Both are doubly degenerate. The parabolic bands have a
low curvature at ky

pp=� /2	3b� and a high curvature at ky
sp

=0 �not shown�. Moreover, in the small or large ky, the
modulated magnetic field could destroy double degeneracy
and create extra band-edge states. It modifies the band cur-
vatures at ky

pp, and makes the complete flatbands change into
the partial flatbands.

The subband number decreases gradually with the further
increase of state energy. The high-energy bands, as shown in
Fig. 2�c� for B=0, are parabolic dispersions with the double
degeneracy and one band-edge state at ky

pp=0. All the ky
pp

states remain unchanged in the presence of B, as seen in low
and middle energy bands. However, the modulated magnetic
field could reduce the number of subbands or widen the
range of ky, produce the extra band-edge states at ky

sp�0, and
induce the composite behavior of the single and double de-
generacies.

The strength, period, and direction of the modulated mag-
netic field strongly affect the electronic structure, as shown
in Figs. 3�a� and 3�b� for the low-energy bands. The range of
partial flatbands increases with increasing B, while their
number and curvatures exhibit the opposite behavior �Figs.
3�a� and 2�a��. These results further demonstrate that the
ability to flock electronic states is enhanced by the increasing
field strength. The longer the period, the larger the effective
range of ky �Figs. 3�b� and 2�a��. The period could alter state

energies and curvatures of extra band-edge states at ky
sp’s. It

is also worth noting that ky
pp=2� /3	3b� of the doubly de-

generate parabolic bands is independent of period and
strength. When the spatially modulated direction is along the
zigzag structure, there are two partial flatbands at EF=0 and
many parabolic bands at the others �Fig. 3�c��. The former
are doubly degenerate; the latter are fourfold degenerate near
ky

pp=0 and doubly degenerate near ky
sp. That state degeneracy,

subband number, ky’s of band-edge states, and range of par-
tial flatbands depend on the modulation direction, which di-
rectly reflects the anisotropic characteristic of a graphene ge-
ometry. In addition, the similar effects could also be found in
moderate and high-energy bands.

Density of states �DOS�, which is closely related to essen-
tial features of the electronic structure, is defined as

D�
� = �
�,h=c,�

�
1stBZ

dkxdky

�2��2




�

1

�Eh�kx,ky� − 
�2 + 
2 . �7�


�=10−4�0� is a phenomenological broadening parameter.
The integration on kx could be roughly neglected because of
the very small range of kx. The low-frequency DOS at B=0
is proportional to 
, as shown in Fig. 4�a�. It vanishes at 

=0 and has no special structures. However, the modulated
magnetic field leads to a symmetric delta-function-like peak
at 
=0 �inset in Fig. 4�a�� and considerable asymmetric
square-root divergent peaks. The former comes from the two
partial flatbands at EF=0, and its height grows with the in-

FIG. 3. The low-energy bands along the armchair direction at
�a� RB=1000, B=40 T and �b� RB=2000, B=20 T, and those along
�c� the zigzag direction at RB=1000, B=20 T.

FIG. 4. The low-frequency density of states �a� along the arm-
chair direction at RB=1000 and different B’s and �b� at B=20 T and
different RB’s or directions. The insets show those near EF=0.
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creasing field strength. The latter are dominated by the band-
edge states of the 1D parabolic dispersions along k̂y �Fig.
2�a��. The asymmetric pronounced peaks could be further
divided into weak subpeaks and strong principal peaks. They
are, respectively, due to the band-edge states at ky

sp’s and ky
pp.

There are many pairs of subpeaks, and each pair of subpeaks
is associated with the asymmetry of the 1D parabolic bands
about the ky

pp states �discussed earlier in Fig. 2�a��. The num-
ber, frequencies, and heights of the asymmetric prominent
peaks are sensitive to the changes in the strength, period, and
modulation direction. The peak number decreases with the
increase of the strength, while the peak frequencies exhibit a
different behavior �Fig. 4�a��. The number of subpeaks in-
creases as the period grows �Fig. 4�b��, while it is the other
way around as the frequencies of subpeaks increase. The
main features of principal peaks have the weak dependence
on the period. When the modulation direction is orientated
relatively close to the zigzag structure, more principal peaks
with lower frequencies are observed �comparison between
the heavy and light solid curves in Fig. 4�b��. Density of
states could display the high anisotropy even at very low
frequency �
→0 in the inset of Fig. 4�b��. However, the
low-frequency physical properties without B are anisotropic
only for 
�0.25�0, e.g., electronic excitations and absorp-
tion spectra.9 This result indicates that the anisotropy of the
low-frequency electronic properties could be induced by
means of a spatially modulated magnetic field.

The frequencies of prominent peaks in DOS deserve a
closer investigation. Figure 5�a� shows the relation between
the frequencies �
sp’s� of the first six subpeaks and the pe-
riod at B=20 T. These peaks correspond to the extra band-
edge states at the left-hand neighborhood of ky

pp �Fig. 2�a��.

sp’s decline quickly as RB increases. As to the frequencies
of principal peaks �
pp’s�, their dependence on the period is
minor for a sufficient large RB ��1000�, as shown in Fig.
5�b�. Both 
sp’s and 
pp’s are largely enhanced by the in-
creasing field strength �Figs. 5�c� and 5�d��. There exists a
special square-root relation between 
pp and B, i.e., 
pp

�	B. In addition, the low-energy flat Landau levels due to a
uniform magnetic field �B0� also exhibit the square-root de-
pendence on the field strength.22 The band-edge state ener-
gies are closely related to the magneto-optical absorption
frequencies. The predicted results could be verified by the
optical spectroscopy.

A uniform magnetic field differs from a spatially modu-
lated magnetic field in the low-energy magnetoelectronic
structures. In terms of the ability in flocking electronic states,
the former is much stronger than the latter. A uniform mag-
netic field could make linear or parabolic bands convert into
the dispersionless Landau levels. Such levels are fourfold
degenerate for each ky state. All the Landau states could be
regarded as the band-edge states. They would exhibit zero-
dimensional features, but not one-dimensional features. For
example, the magneto-optical absorption spectra display the
symmetric and asymmetric prominent peaks in cases B0 and
B, respectively.

The electronic structure of a 2DEG could be strongly af-
fected by a spatially modulated magnetic field.30–32 It also
displays the similar behaviors to a monolayer graphene, such

as the composite behavior in state degeneracy, creation of
extra band-edge states, and change of curvatures. However,
there are three significant differences between a 2DEG and a
monolayer graphene. A 2DEG does not exhibit partial flat-
bands at zero energy. Its magnetoelectronic structure is inde-
pendent of the modulation direction. Moreover, the wave
vectors of extra band-edge states are approximately close to
ky =0 and hardly depend on the state energy. The above-
mentioned differences mainly come from the hexagonal
structure of a monolayer graphene.

IV. CONDLUDING REMARKS

In summary, the magnetoelectronic structure of a 2D
monolayer graphene is studied by the Peierls tight-binding
model. The specific base functions are chosen to solve a
huge Hamiltonian matrix. The strength, period, and direction
of a spatially modulated magnetic field dominate the main
features of electronic properties. Such a field could reduce
dimensionality by 1, alter energy dispersions, cause aniso-
tropy at low energy, induce composite behavior in state de-
generacy �the composite behavior of single and double de-

FIG. 5. Energies �
sp’s� of extra band-edge states at the left-
hand neighborhood of ky

pp and those �
pp’s� of the original band-
edge states. �a� and �b� are their dependences on the period; �c� and
�d� correspond to the dependence on the strength.
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generacies for the armchair direction�, produce extra band-
edge states, and destroy the symmetry of energy bands about
the original band-edge states. Energies of the extra band-
edge states strongly rely on the period, while the opposite is
true for those of the original band-edge states. Both of them
grow with the increase of the strength. Density of states
owns many asymmetric prominent peaks, mainly owing to
the band-edge states in 1D parabolic bands. The partial flat-
bands also make DOS display delta-function-like structures
at the Fermi level. A spatially modulated magnetic field con-
trasts sharply with a uniform magnetic field in energy disper-
sion, state degeneracy, and dimensionality. The important
differences between a monolayer graphene and a 2DEG arise

from the hexagonal symmetry. They are the existence of the
partial flatbands at zero energy, dependence on the modula-
tion direction, and wave vectors of the band-edge states. The
experimental measurements on the magneto-optical absorp-
tion spectra could be utilized to examine the predicted elec-
tronic properties.
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