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We study numerically and analytically the dynamical �ac� conductance through a two-dot system, where
only one of the dots is coupled to the leads but it is also side coupled to the other dot through an antiferro-
magnetic exchange Ruderman-Kittel-Kasuya-Yoshida �RKKY� interaction. In this case, the RKKY interaction
gives rise to a “two-stage Kondo effect” where the two spins are screened by two consecutive Kondo effects.
We formulate a renormalized scaling theory that captures remarkably well the crossover from the strongly
conductive correlated regime to the low temperature, low conductance state. Our analytical formulas agree well
with our numerical renormalization group results. The frequency-dependent current noise spectrum is also
discussed.
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INTRODUCTION

The Kondo effect1 in semiconductor quantum dots has
attracted significant theoretical and experimental interest in
recent years.2–4 In a dot that is only weakly coupled to leads,
charge fluctuations are typically suppressed due to Coulomb
blockade.5 However, if the dot has an odd number of elec-
trons, then the spin of this electron interacts antiferromag-
netically with the spin of the conduction electrons in the
leads, and at low temperatures, it is screened through a
Kondo effect. The formation of this Kondo state typically
leads to an enhancement of the conductance at low bias volt-
ages.

Recently, in the quest for designing multiple quantum dot
systems with tunable spin control, which can be used in spin-
tronics and quantum information processing, double quan-
tum dots have become the focus of interest.6,7 In these sys-
tems, when both dots are tuned to the single spin regime,
an effective spin-spin interaction known as the
Ruderman-Kittel-Kasuya-Yoshida8 �RKKY� interaction is
mediated between the two dots by the conduction electrons.6

This RKKY coupling competes with the Kondo effect in
these systems. In the case where the two dots are coupled to
two separate electrodes, an antiferromagnetic RKKY interac-
tion leads to a crossover between the Kondo and RKKY
regimes:6,9–12 A sufficiently strong antiferromagnetic RKKY
coupling will lock the spins of the two dots into a singlet and
thereby suppress the Kondo effect, while the Kondo effect
persists for weak RKKY interactions. This picture is slightly
modified under nonequilibrium conditions. Then, even for
strong RKKY interaction, the Kondo effect is partially re-
stored by the finite bias voltage allowing for triplet
excitations.13 Part of the rich physics has been studied pre-
viously in the framework of two impurity Kondo14 and
Anderson impurity15 models, and the singlet-triplet crossover
has also been recently studied experimentally by Craig et
al.,6 who observed the Kondo resonance for weak RKKY
couplings and a splitting of the Kondo resonance for large
RKKY interactions. Significant theoretical and experimental

effort has been devoted to the Kondo-RKKY transition in
these double quantum dot systems, and related multiorbital
systems with two Kondo-screening channels have also been
studied extensively in recent years by different theoretical
approaches.16

Rather than studying the usual singlet-triplet transition it-
self, in the present paper, we shall focus on an even simpler
but equally interesting arrangement, where only one of the
dots is coupled to external leads, but the two dots are still
side coupled to each other �see Fig. 1�. Unlike the usual four
lead setup, where the crossover between a RKKY and Kondo
regimes is governed by a quantum critical point correspond-
ing to a finite value of the RKKY coupling J,11,12 in this
side-coupled system, the side-coupled spin is always
screened for any positive J, and a Kosterlitz-Thouless-type
quantum phase transition and a two-stage Kondo effect
occur.17,18 We remark that this transition is essentially the
two-dot analog of the singlet-triplet quantum phase transition
found in single dot devices, when the two dot levels are
coupled to a single conduction electron mode in the
leads.19,20

Although many interesting results have been obtained re-
cently for this side-coupled system,17,18 there is still a lack of
a detailed analytical and numerical understanding of the two-
stage Kondo screening processes in the vicinity of the quan-
tum phase transition. The main goal of the present work is to
have some more detailed theoretical control and understand-
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FIG. 1. Sketch of the two side-coupled quantum dots. Electrons
tunnel from only one of them to the leads and they interact through
an effective exchange interaction J.
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ing of the transport properties of this transition. We shall
reach this goal by combining numerical renormalization
group21 and renormalized perturbative scaling approaches.
As we shall see, the latter relatively simple analytical frame-
work is able to account for the numerical results over a wide
range of energy scales, and together with Fermi-liquid
theory, it provides a reliable theoretical framework to under-
stand the low energy crossover.

We mostly focus on the T matrix but also present results
on the linear ac conductance and the equilibrium current
fluctuations. Both of these quantities can be observed experi-
mentally and show features characteristic of the two-stage
Kondo effect.

MODEL

For the numerical calculations, we shall describe the two
side-coupled dots in Fig. 1 by an Anderson-like model. The
two isolated dots are described by the Hamiltonian

HDD = �
i=1,2

Ui

2
�Ni − ngi�2 + JS1S2, �1�

where i=1,2 labels the two dots, Ni=��di�
† di� is the number

of electrons occupying dot i, and Si= �1 /2�����di�
† ����di�� is

their spin. Each dot is subject to a charging energy, U1
�U2=U=EC, and the two dots are coupled by an exchange
coupling, which is assumed to be antiferromagnetic, J�0.
The ngi in Eq. �1� denote dimensionless gate voltages that set
the occupation numbers, �Ni�. In the rest of the paper, we
restrict ourselves to the case of particle-hole symmetry, ng1
=ng2=1. However, this assumption is expected to be unim-
portant as long as ng1�ng2�1.

The coupling of dot 1 to the leads is modeled by the usual
tunneling Hamiltonian

Ht = �
�=L,R

�
�,�

�V�c���
† d1,� + H.c.� . �2�

Here, VL and VR denote the tunneling amplitudes to the left
and right leads, respectively, and c���

† creates an electron in
lead �=L ,R with spin � and energy �. This tunnel coupling
leads to a broadening of the level on dot 1, the width of
which is given by �=�L+�R=2��VL

2�L+VR
2�R�, with �L/R

the density of states in the leads.

ac CONDUCTANCE AND NOISE

Our main goal is to determine ac transport properties in
the linear response regime and see how the two-stage effect
appears in these quantities. Fortunately, since there is no
charge transfer between the two dots, the derivation of Ref.
22 carries over to our case, and the real part of the optical
conductance is simply given by

G���� =
G0

4�
�
�
� d���f��� − �� − f��� + ��	T����� ,

�3�

where T��� is the “transmission probability” at energy �,
f��� is the Fermi function, and

G0 =
2e2

h

4�L�R

��L + �R�2 �4�

denotes the maximum conductance through the dot. The
transmission coefficient T���� appearing in Eq. �3� can be
expressed as

T���� = − � Im G11���� , �5�

where we have introduced the retarded Green’s function on
dot 1: G11��t�=−i	�t��
d1��t� ,d1�

† ��. The transmission coeffi-
cient above is essentially the same as the single particle ma-
trix element of the on-shell many-body T matrix.23 We re-
mark that Eq. �3� neglects displacement currents.24 This
approximation is justified in the Coulomb blockade regime,25

i.e., for large charging energies and relatively large conduc-
tances that satisfy G��� /G0
� /EC.

The Green’s function above can be computed accurately
using numerical renormalization group methods,21 but as we
shall see, substantial analytical progress can be made by a
special version of renormalized perturbation theory.1 Al-
though Eq. �5� is valid at any temperature, in the following,
we shall focus our attention to the high-frequency regime,
�
T, and set the temperature to zero, T=0.

The noise spectrum of the device is also of experimental
relevance. This is defined as

C��� = �
−�

�

dtei�t��I�0�I�t�� − �I�2	 . �6�

At equilibrium, this is simply related to the linear conduc-
tance G���� by the fluctuation-dissipation theorem,22

C��� =
2��

exp���/kT� − 1
G���� . �7�

This formula simplifies further at T=0 temperature to C���
=2����G����	�−��. Clearly, to determine the equilibrium
noise spectrum of the device and its ac conductance, only the
Green’s function of the first dot needs to be determined.

RENORMALIZED PERTURBATIVE SCALING

Before presenting our numerical results, let us reach some
analytical understanding of the physics of the side-coupled
dot in the limit J→0. In this regime, “two-stage Kondo
screening” takes place:17 In the first stage, the spin of dot 1
gets screened below the Kondo temperature TK�De−�U/�,
where the high energy cut-off D denotes the effective half
bandwidth of the conduction electrons.26 Clearly, for the
Kondo effect to take place, J
TK is required; otherwise, the
two spins are locked together to a singlet before the Kondo
effect can take place. Then, below the Kondo scale TK, the
electron on the first dot is dissolved in the conduction elec-
tron sea of the leads and presents an effective fermionic bath
for the electron on the second dot. Since the coupling be-
tween the two dots is antiferromagnetic, another Kondo ef-
fect shall take place at a much smaller energy scale T�,
where the spin of the second dot is also screened. Our aim is
to understand the formation of this second Kondo singlet in
detail.
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We first observe that in the regime of interest, �
TK, the
Matsubara Green’s function of dot 1 can be approximated by
the resonant level expression1

Gd1
0 �i�n� =

z

i�n + iT̃K sgn��n�
, �8�

where z=c
TK

� denotes the quasiparticle weight at the Fermi

energy, and T̃K=z�=cTK is an energy of the order of the
Kondo temperature TK. The precise value of the universal

constant c relating TK and T̃K depends on the definition of
TK. Throughout this paper, we shall define TK as the half-
width of the transmission T���. Then, from fitting the nu-
merical renormalization group �NRG� data, we get c�0.5.
Note that the Lorentzian representing the Kondo resonance
has a very small spectral weight, z
1, and most of the spec-
tral weight goes to the Hubbard peaks.

Fermi-liquid theory and the basic principles of renormal-
ization group also imply that the exchange interaction be-
tween the dot spins is renormalized by the same z factor, i.e.,
in the regime �
TK, the effective RKKY interaction reads

HRKKY →
J̃

z
S1S2. �9�

In a first approximation, one would think that J̃=J; however,
the fact that Im Gd1 has a large logarithmic tail above TK
leads to a slight renormalization of this relation. From a fit-
ting of the numerical data shown later, we obtain the ap-

proximate relation J̃�1.1J.
We are now in the position to develop a perturbative scal-

ing theory in the small coupling, J̃. To do this, we used
Abrikosov’s pseudofermion representation to compute the
second order self-energy and vertex corrections, shown in
Fig. 2. The dimensionless vertex function is given by the
following expression:

���� 
 �������� = �̂���J̃ + ��̂���J̃	2 log� T̃K

− �
�¯ ,

�10�

where T̃K=cTK is the effective width of the Kondo reso-
nance, � is the energy of the incoming electron, and �̂���
denotes the rescaled effective density of states of dot 1, serv-
ing as a many-body reservoir for dot 2,

�̂��� 

����

z
=

T̃K

���2 + T̃K
2 �

. �11�

Equation �10� is only of logarithmic accuracy, irrelevant

terms of order � / T̃K have been neglected.

The Kondo temperature TK� T̃K appears in Eq. �10� as a
high energy cutoff. We can therefore perform a scaling trans-

formation by reducing this cutoff, T̃K→ T̃K� , and requiring the

invariance of the vertex function for frequencies �� T̃K at
the same time. This transformation sums up all leading loga-
rithmic diagrams and leads to the following scaling equation:

d��̂���J̃	
dl

= ��̂���J̃	2, �12�

with the scaling variable defined as l
 log�T̃K / T̃K� �. Integrat-

ing this differential equation up to l
 log�T̃K /��, one obtains
the dimensionless vertex function in the leading logarithmic
approximation:

���,T̃K� =
�̂���J̃

1 + �̂���J̃ log�− �/T̃K�
. �13�

This equation can be rewritten with a little algebra as

���,T̃K� =
1

�2

T̃K
2

log
T̃K

T* + log
− �

T*

, �14�

with the second scale T* defined as

T* = T̃K exp�− �T̃K/J̃� . �15�

This scale also appears in the slave boson approach of Ref.
17. However, while the slave boson approach describes cor-
rectly the Fermi-liquid regimes, �
T* and TK / ln�TK /T*�

�
TK, it cannot account for the logarithmic corrections
dominating the rather extended crossover regime, T*��
�TK / ln�TK /T* �, that is of our main interest here.

Clearly, the dimensionless vertex diverges at an energy
��T*, implying that the effective RKKY interaction be-
comes dominant below this scale and diverges in the limit
�→0.21 In other words, below T*, a singlet is formed from
the two dot spins, and the scale T* can thus be viewed as the
effective singlet-triplet binding energy. Note that the spin
singlet is always the ground state for any arbitrary RKKY
coupling J�0.

The point J̃=0 is special: It separates the ferromagnetic
phase �J�0� from the antiferromagnetic phase discussed so
far �J�0�. While in the antiferromagnetic phase the two dot

Jeff
J J J J J

JeffJeff

1

2

= + + +...

Σ =

FIG. 2. Top: leading logarithmic contribution to the self-energy
of the first dot’s Green’s function. Solid lines represents the propa-
gator Gd1

0 of quantum dot 1, given by Eq. �8�, while dashed lines
denote the pseudofermion propagator associated with the side-
coupled dot’s spin S2. Full squares stand for the full leading loga-
rithmic vertex function, given in the lower part of the figure. Cross-
ings of dashed and continuous lines correspond to an interaction

through the renormalized RKKY interaction, Jeff= J̃ /z, given by
Eq. �9�.
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spins are locked into a singlet, in the ferromagnetic phase,
the spins of the dots are bound to a triplet, which is then
partially screened by the lead electrons, and correspondingly,
the ground state is a doublet for J�0. Thus, for J�0, the
side-coupled system has a residual entropy. At the critical
point, J=0, the scale T* diverges exponentially, correspond-
ing to a Kosterlitz-Thouless phase transition between these
two states.17,18

The second order self-energy correction to the retarded
Green’s function Gd1

0 simply gives the expression

���� = S�S + 1�
J̃2

4z

1

� + iT̃K

, �16�

where S=1 /2. Note that this correction scales as �J2 / �TKz�
and, although it looks to be very large at first sight, it is

actually small compared to �Gd1
0 �−1�TK /z as long as J


TK. In the leading approximation, this self-energy results
in the following Green’s function:

�Gd
�2���� =

T̃K

� + iT̃K −
J̄2S�S + 1�

4

1

� + iT̃K

. �17�

Summing up the leading logarithmic corrections to the

self-energy simply amounts to replacing J̃ in Eq. �17� by
���� / �̂��� and thereby results in the following transmission
coefficient:

T���� = − Im� T̃K
3

��T̃K
2 − 1

4S�S + 1��2��2 + T̃K
2 ��2���	 + iT̃K�T̃K

2 + 1
4S�S + 1��2��2 + T̃K

2 ��2���	� . �18�

The logarithmic corrections hidden in � result in the forma-
tion of a dip in the spectral density of dot 1, corresponding to
a suppression of the transmission coefficients at energies �
�T*
TK. This dip in T���� also implies the appearance of
a dip in the ac conductance discussed later and is a clear
signature of the formation of a singlet ground state. Physi-
cally, it is a consequence of the fact that electrons promoted
from one side of the device to the other must first break up
the singlet of energy T* formed by the two dot spins. Clearly,
electrons of energy ��T* are not energetic enough to break
up this singlet and therefore their transport is suppressed.

The logarithmic approximation breaks down below �
�T*. There a Fermi liquid is formed and T���� scales as

T���� � a + b
�2

�T*�2 �� 
 T*� . �19�

The constant a vanishes for electron-hole symmetry and re-
mains typically small unless electron-hole symmetry is dra-
matically broken, while the coefficient b is a number of the
order of unity.

COMPARISON WITH NUMERICAL RENORMALIZATION
GROUP

The transport properties of the side-coupled quantum dot
system can also be studied numerically by numerical renor-
malization group �NRG� methods. The transmission coeffi-
cient T��� through dot 1 obtained from NRG at different
RKKY couplings J is plotted in Fig. 3. In all figures, we
compensated for a 6% loss of the spectral weight. The large
resonance is a manifestation of the Kondo effect displayed
by the first dot, and the sharp dips in the transmission at �

�0 are due to the formation of the singlet state below the
energy T*.

The numerically obtained transmission coefficients are
compared to the analytical formula �Eq. �18�	 in Fig. 4. The
perturbative expression agrees well with the numerical re-
sults over a wide range of energy scales between T* and TK.
It is interesting to observe the deviations above TK, where the
simple Lorentzian approximation we made for Gd

�0� fails to
account for the fact that the resonance on dot 1 is also a
Kondo resonance. This Lorentzian approximation thus com-
pletely neglects the large logarithmic tails for ��TK. In the
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FIG. 3. �Color online� Transmission coefficient through dot 1 at
zero temperature for different RKKY couplings J. The energy unit
is the half bandwidth, D=1. The Anderson model’s parameters were
U=1, �d1=�d2=−0.5, and �1L=�1R=0.1, resulting in a Kondo tem-
perature of TK�0.0055. We used a discretization parameter �=2.
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inset, we also show the scale T* as extracted from our fits as
a function of 1 /J. The extracted scales compare very well
with the analytical expression, Eq. �15�, indicated by the
solid line.

The two-stage Kondo effect and the K-T transition can
also be observed in the ac conductance of the two-dot device
or the noise spectrum. Such measurements have been indeed
done in recent experiments of high-frequency current
fluctuations,27 though the linear ac conductance measure-
ments in the relevant frequency regime are very difficult due
to background currents from the capacitors.28 According to
Eq. �3�, the real part of the conductance through the device
can be computed from the transmission coefficient through a
simple integration. The resulting curves are displayed in Fig.
5.

It is interesting to remark that the low energy crossover of
the transmission coefficient and the conductance is described
by universal crossover functions for � ,T*
TK.29 The con-
ductance, e.g., is approximately given by

G���� � G0g��/T*� �20�

in this regime. Here, the scaling function g depends some-
what on electron-hole symmetry breaking, but in case of
electron-hole symmetry, it is completely universal. Then, for
very small frequencies, it scales to zero as g���
�0.06�� /T*�2, while at high energies, it approaches 1 loga-
rithmically, g�� /T*��1−� / log2�� /T*�. This universal
crossover function can be extracted from the NRG results
and is displayed in Fig. 6. The transmission coefficient T����
displays similar universal scaling properties.

Finally, let us discuss the current noise at zero tempera-
ture, plotted in Fig. 7. At T=0 temperature, C��� has only
weight for ��0. For T*�−��TK, we have C���� ��� cor-
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FIG. 4. �Color online� Fit of the numerically obtained transmis-
sion coefficient T��� by the perturbative expression �Eq. �18�	 for

various values of J̃. For all fits, we used T̃K=0.5TK=0.003. The
inset shows the scale T* extracted from the fit as a function of 1 /J.
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FIG. 5. �Color online� ac conductance normalized by G0 for the
same parameters as in Fig. 3.
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values of J. Below the Kondo scale, all curves collapse to a univer-
sal curve. Inset: small frequency part of this universal curve on a
linear scale. We also show the quadratic behavior characteristic of
electron-hole symmetry, determined from a log-log fit of the curves.
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FIG. 7. �Color online� Equilibrium current noise C��� in case of
electron-hole symmetry for ��0. C��� exhibits linear dependence
on � for T*� ����TK that crosses over to a cubic behavior below
T*. Note that C���=0 for ��0. The parameters are the same as in
Fig. 3.
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responding to the Fermi-liquid property of a perfectly trans-
mitting quantum dot.22 However, for −��T*, this behavior
crosses over to a power law scaling, where in the case of
electron-hole symmetry one has C���� ���3 / �T*�2. This be-
havior is somewhat modified once electron-hole symmetry is
broken. Then, the conductance remains finite even in the �
→0 limit, and correspondingly, another crossover may take
place from the C���� ���3 regime to a linear regime, C���
� ���, at some energy T**
T*. Note that the axis of the
logarithmic plot in Fig. 7 has not been rescaled, in contrast to
Fig. 6. However, the low-frequency part of C��� /T* would
also exhibit a universal crossover as a function of � /T*,
similar to G���.

CONCLUSIONS

We provided a complete analytical and numerical analysis
of the ac transport properties and the two-stage Kondo
screening in side-coupled quantum dots. Our analytical re-

sults were based on renormalized perturbation and scaling
theory, and they agree well with the NRG result over a wide
frequency range. We also determined the linear ac conduc-
tance and the equilibrium current noise which can both be
measured experimentally and reflect the two-stage Kondo
effect and the K-T transition. We also computed the universal
crossover functions that describe the emergence of the triplet
state at the energy T*.
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