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This study elucidates the theory of phonon-induced decoherence of a double dot charge qubit that is
embedded inside a suspended semiconductor slab. The influences of the lattice temperature, width of the slab,
and positions of the dots on the decoherence are analyzed. Numerical results indicate that the decoherence in
the slab system is weaker than that in a bulk environment. In particular, the decoherence is markedly sup-
pressed by the inhibition of the electron-phonon coupling. Such a system with low decoherence may be useful
for manipulating the qubits.
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Various candidates for building blocks of quantum com-
puters have been proposed1–4 and demonstrated5–8 using
nanoscale solid state structures. Among them, the semicon-
ductor double quantum dot �DQD� is a prototype of a solid
state qubit, which comprises a pair of quantum dots con-
nected through an interdot tunneling barrier.9 The DQD acts
as a two-level system when at most one excess electron is
allowed in the double dot potential.10 The two logical states
correspond to the localized states of the excess electron in
one or the other dot. Accordingly, the state of the charge
qubit can be expressed as a linear superposition of the two
localized states, and has recently been demonstrated in a
GaAs /AlGaAs heterostructure.6,7 An important advantage of
this system is that all of the qubit parameters can be con-
trolled by varying the external gate voltages. Furthermore, it
may have great potential for scalability and integration with
current microelectronic technologies.

However, various mechanisms may destroy the coherence
of the system since the charge qubit can never be isolated
completely from its environment.6 The electron-phonon in-
teraction is one possible decoherence channel and has been
theoretically investigated. It ranges from a single charge
qubit11–16 to two coupled charge qubits.17 Although many
works have focused on bulk cases, the decoherence of a
charge qubit in a confined structure has received little atten-
tion. Unlike bulk material, the confined structure supports
the tailoring of the phonon density of states by altering the
dimensions.18–21 Therefore, the charge qubit in a confined
structure is expected to exhibit some interesting characteris-
tics.

This work investigates the decoherence of a DQD qubit
that is embedded inside a suspended semiconductor slab. To
study the decoherence of the qubit, the master equation is
solved under the Born-Markov approximation.22–24 The qubit
of higher quality is found in the slab system. In particular,
the decoherence is dramatically suppressed by the inhibition
of the electron-phonon coupling, suggesting that a robust
DQD qubit can be achieved in a suspended structure.

Consider the setup shown in Fig. 1, in which a single
electron is confined in a GaAs double dot structure that is
embedded inside a freestanding slab. With advances in novel
nanofabrication technology, quantum dots can now be em-
bedded into the suspended structure.20,21 Most of the struc-
ture is spatially separated from most of the substrate such

that the acoustic modes between the surfaces can be ideally
and completely confined. The in-plane scale is assumed to
exceed substantially the width and dot size. If the effect of
the contact with the semiconductor substrate �distortion of
the acoustic vibrations� is neglected, then the slab is just like
a cavity.19 Before the calculation, the relative importance of
piezoelectric potential and deformation potential is deter-
mined. The ratio of the piezoelectric potential strength to the
deformation potential strength depends on �ee14 /Eaq�2,
where e is the electronic charge, e14 is the piezoelectric con-
stant, Ea is the deformation potential constant, and q is the
wave vector.25,26 In bulk GaAs systems, piezoelectric inter-
action normally prevails for long-wavelength acoustic
phonons.14,15 In a phonon cavity, however, the confinement
yields a lower bound on the wavelength, and this cuts off
phonons with low momenta that determine the strength of
the piezoelectric electron-phonon coupling. Thus, deforma-
tion potential can be argued to be the main contributor to
confined phonon geometries.18,19

The Hamiltonian of this model is written as H=He+Hp
+Hep, corresponding to the electron Hamiltonian, the phonon
Hamiltonian, and electron-phonon interaction, respectively.
Based on the basis of two localized states, �L� and �R�, the
electron Hamiltonian in a DQD is given by

FIG. 1. �Color online� �a� Schematic view of a DQD embedded
in a suspended semiconductor slab with a width of w. The surfaces
of the slab are z= ±w /2, and the dots are located at z=0. �b� The top
view shows that two identical dots are performed with the dot radii
of a and interdot distance of d.
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He =
�

2
�z + ��x, �1�

where �x,z are Pauli matrices, � is the level difference, and �
is the tunneling coupling between the dots. The parameters �
and � can be experimentally controlled through external gate
voltages.6,7 The phonon Hamiltonian for the slab is

Hp = �
q�,n

��q�,n
bq�,n

† bq�,n
, �2�

where �q�,n
is the frequency and bq�,n

† �bq�,n
� is the creation

�annihilation� operator of the phonon, respectively, character-
ized by the in-plane wave vector q� and the branch n.

To calculate the phonon dispersion relations, one has to
study the acoustic phonon quantization in an infinite film
with width w �Fig. 1�. The starting point is the elastic con-
tinuum model of acoustic phonons. In this model, the elastic
properties of the slab are assumed to be isotropic. Small
elastic vibrations of a solid slab can then be defined by the
displacement vector u. Under the isotropic elastic continuum
approximation, the equation for the displacement vector u
can be written as27

�2u

�t2 = ct
2�2u + �cl

2 − ct
2� � �� · u� , �3�

where cl and ct are the velocities of longitudinal and trans-
verse bulk acoustic waves. To define a system of confined
modes, Eq. �3� should be complemented by the boundary
conditions at the slab surface z= ±w /2. Due to the confine-
ment, phonons will be quantized in subbands. For each in-
plane component q�, there are infinitely many subbands.
Since we consider only the deformation potential, there are
two confined acoustic modes: dilatational waves and flexural
waves. Shear waves are neglected because of their vanishing
interaction with the electron. The dispersion relations for two
waves are described by18

�q�,n
2 = cl

2�q�
2 + ql,n

2 � = ct
2�q�

2 + qt,n
2 � , �4�

where ql,n and qt,n can be determined from the equations

tan qt,nw/2
tan ql,nw/2

= −
4q�

2ql,nqt,n

�q�
2 − qt,n

2 �2 �5�

and

tan ql,nw/2
tan qt,nw/2

= −
4q�

2ql,nqt,n

�q�
2 − qt,n

2 �2 �6�

for the dilatational and flexural waves, respectively. More-
over, the electron-phonon interaction is written as10

Hep =
�z

2 �
q�,n

i=d,f

gq�,n
i �bq�,n

† + b−q�,n
� , �7�

with gq�,n
i =�i,nP�q���1−e−iq�·d�. The function �i,n describes

the intensity of the electron interacting with the dilatational
waves,

�d,n�q�� = Fd,n� �Ea
2

2A��q�,n
�qt,n

2 − q�
2��ql,n

2 + q�
2�

	sin�wqt,n

2
	cos�ql,nz� , �8�

and with the flexural waves,

� f ,n�q�� = Ff ,n� �Ea
2

2A��q�,n
�qt,n

2 − q�
2��ql,n

2 + q�
2�

	cos�wqt,n

2
	sin�ql,nz� , �9�

where Fd,n �Ff ,n� is the normalization constant, A is the area
of the slab, and � is the mass density. The dot form factor is

P�q�� =
 n�r��e−iq�·r�d3r . �10�

Here, the charge density distribution on the dot n�r�� is as-
sumed to be Gaussian in the xy plane and localized in the z
direction. Correspondingly, the form factor reads P�q��
=exp�−�q�a�2 /2�.14,15 It is worth noting that the parameters
�q� ,ql,n ,qt,n� of dilatational and flexural waves independently
satisfy the dispersion relations. In general, both waves are
contributive. However, one can consider only the dilatational
wave for simplicity if the dots are located in the center of the
slab �z=0�. This is because the function � f ,n for flexural
waves plays no role.

To investigate the decoherence of the qubit, we solve the
master equation in the Born-Markov approximation.22–24 The
system and phonon bath are assumed to be isolated at t=0.
Accordingly, the density matrix ��t� is

�̇�t� =
i

�
���t�,He� −

1

�2

0

t

dt�
�S, S̃�t� − t���t��K�t − t��

− �S,��t�S̃�t� − t��K�t − t��*� , �11�

where S=�z /2 is the system part of Eq. �7� with its interac-

tion representation S̃. The correlation function of the envi-
ronment K is written as

K�t� = 

0




d�J����cos��t�coth� ��

2kBT
	 − i sin��t�� ,

�12�

with Boltzmann constant kB, temperature T, and K�−t�
=K�t�*. The spectral density of the phonon bath for the slab
is defined according to

J��� = �
q�,n

i=d,f

�gq�,n
i �2��� − �q�,n

� . �13�

In the recent experiment by Hayashi et al.,6 the electron is
initially in the left dot. If the tunneling coupling is turned on,
the electron can tunnel resonantly back and forth between
two dots under the condition of �=0. To be close to the
experimental situation, we can simplify the master equation.
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Following the standard treatment, the population of the left-
dot state is written as

nL�t� �
1

2
�1 + e−t/Td cos��t�� , �14�

with the population nR�t�=1−nL�t� for the right-dot state.
Further analyzing the parameters, one finds that the decoher-
ence time is Td=4�2 / ��J�2� /��coth�� /kBT�� and the tun-
neling coupling mainly determines the oscillation frequency
��2� /�. From the evolution, it is evidently shown that the
oscillation of the population will be damped by decoherence.
In the course of manipulation, two parameters strongly influ-
ence the quality of the qubit. Therefore, we introduce the
quality factor Q �=�Td /2�� to quantify the loss within the
decoherence time.14–16

In the following, we address the experimental parameters
of the dot radius a=60 nm and the interdot distance d
=180 nm.28 The material parameters for GaAs quantum dot
are Ea=2.2	10−18 J, �=5.3	103 Kg /m3, ct=3.0
	103 m /s, and cl=5.2	103 m /s.25 We first analyze the
characteristics of the slab with width 130 nm.20,21 The dots
are assumed to be located in the center of the slab. Figure
2�a� shows the spectral density of the confined phonons. In
small and large energy regimes, the values are relatively
small. This implies that the influence of phonon cavity is
weak in these regimes. In addition, we obtain a suppressed
spectral density �J→0� at certain frequency �arrow�. By ana-
lyzing the components of Eq. �13�, the suppressed phenom-
enon is unaffected by the geometric parameters of the dots.
As can be seen in Figs. 2�b� and 2�c�, the suppressed point is
independent of the dot size and interdot distance �arrows�. At
this point, a vanishing divergence of displacement field u can
be found such that the electron-phonon interaction becomes
ineffective.19,29

Figure 3�a� shows the high quality factor of the qubit as a
function of tunneling coupling. With the increase of the tun-
neling coupling, the minimal value remains ten times higher
than that in a bulk environment �upper inset�. In most cases,
the quality factor is several orders of magnitude higher than
that in the bulk case. This result indicates that such a system
has relatively smaller decoherence. Most important of all, a
perfect quality factor �Q→
�, which is independent of tem-
perature, is found around ��33.7 
eV �arrow�. One can
expect that, at this point, the coherence of the qubit, indeed,
is long kept without losses. This can be understood by the
fact that the particular phonon modes of the slab give rise to
drastic suppression of J as shown in Fig. 2. To learn more
about the characteristic of the slab, in Fig. 3�b� we plot the
required tunneling coupling to achieve a perfect quality fac-
tor for different widths of the slabs. It is clearly shown that a
smaller tunneling coupling is required for a wider slab. Cor-
respondingly, the system has a larger period of the oscillation
between two states �lower inset�.

Let us now turn to the discussions on the quality factor for
different positions of the dots. As shown in Fig. 4, if the dots
are far away from the center, the flexural waves actually
contribute to the decoherence channel. Correspondingly, a
reduced quality factor is found with the increase of the tun-
neling coupling, and the influence becomes apparent in small
and large tunneling coupling regimes. This is due to the com-
petitions between dilatational and flexural waves. As can be
seen in the inset, the total spectral density contains two com-
ponents: dilatational and flexural parts. It is clearly shown
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FIG. 2. �a� Phonon spectral density J as a function of energy ��
for dot radius a=60 nm and interdot distance d=180 nm. The re-
sults of different geometric parameters are plotted for fixed �b� d
=180 nm and �c� a=60 nm, respectively. It is found that a sup-
pressed spectral density can occur �arrows�.
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FIG. 3. �Color online� �a� Quality factor Q as a function of
tunneling coupling � for slab and bulk systems �upper inset�. The
temperatures are T=20 mK �black solid line�, 200 mK �red dashed
line�, and 400 mK �blue dotted line�, respectively. A drastic en-
hancement of quality factor is found to be independent of tempera-
ture �arrow�. �b� Dependence of the specific tunneling couplings �
for perfect quality factor on the width w. The corresponding period
of time-dependent population is shown in the lower inset.
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that the flexural wave is dominant in small and large tunnel-
ing coupling regimes. Different from the bulk system, the
dominant contributor of the decoherence can be transferred
between two waves by varying the tunneling coupling. It is
also worth mentioning that the condition for perfect quality
factor strongly depends on the positions of the system. For
example, the quality factor becomes of the order of 103 as
tunneling coupling ��33.7 
eV and vertical position z

=30 nm. Although the value is no longer infinite, it is still
high enough in comparison with bulk system.

A few remarks regarding the comparison of our model
with the related work should be made here. For instance, a
measure based on the norm of the deviation of the density
matrix has been used to quantify decoherence at the NOT gate
and the � gate.30 A spherically symmetric charge distribution
is assumed therein, while the model herein assumes a two-
dimensional pancake form. The most important difference is
that the phonon environment with restricted geometry is con-
sidered herein. We believe that if our model is analyzed us-
ing the approach presented elsewhere,30 then the suppressed
decoherence should become evident.

In summary, the decoherence of a double dot qubit em-
bedded inside a semiconductor suspended slab was studied.
Particular phonon modes can significantly suppress the deco-
herence, and a qubit with high quality can be achieved. We
suggest that such a system is useful for the performance of
qubit manipulations.
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