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Summary. Semicompeting risks data are commonly seen in biom?dical applications in which 
a terminal event censors a non-terminal event. Possible dependent censoring complicates sta 

tistical analysis. We consider regression analysis based on a non-terminal event, say disease 

progression, which is subject to censoring by death. The methodology proposed is developed for 
discrete covariates under two types of assumption. First, separate copula models are assumed 
for each covariate group and then a flexible regression model is imposed on the progression 
time which is of major interest. Model checking procedures are also proposed to help to choose 
a best-fitted model. Under a two-sample setting, Lin and co-workers proposed a competing 
method which requires an additional marginal assumption on the terminal event and implicitly 
assumes that the dependence structures in the two groups are the same. Using simulations, we 

compare the two approaches on the basis of their finite sample performances and robustness 
properties under model misspecif?cation. The method proposed is applied to a bone marrow 
transplant data set. 

Keywords: Copula model; Dependent censoring; Model selection; Multiple events data; 
Transformation model 

1. Introduction 

Many medical studies involve analysis of multiple end points. Such events may be classified into 
two types, namely terminal and non-terminal. Death is an example of terminal events in the 
sense that its occurrence precludes the development of others. Examples of non-terminal events, 

which are subject to censoring by a terminal event, include disease progression or recurrence. If 
the relationship between the two events is completely unspecified, the marginal distribution of 
the time to a non-terminal event is not identifiable owing to possible dependent censoring. 

Let X be the time to the non-terminal event of major interest, which is usually a status of 
disease progression, and let Y be the time to death and C be the time to the external cen 

soring event. Observed variables consist o?? = IaFaC, Y = YaC, 6x = I(X^7aC) and 

6y 
= I(Y < C). Such a data structure was called semicompeting risks data by Fine et al. (2001). 

There has been increasing research attention in developing statistical methods for analysing 
semicompeting risks data. For example, investigation of the degree of association between the 
two events has been pursued by Day et al (1997) and Fine et al (2001) in which the Clayton 

model is assumed and Wang (2003) for a class of copula models. 
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4 J.-J. Hsieh, W. Wang and A. A. Ding 

In this paper, we consider regression analysis based on progression time X. Because of depen 
dent censoring, the marginal distribution of X is not identifiable non-parametrically. Under a 

two-sample setting, Lin et al. (1996) and Chang (2000) modelled the marginal effects on both 

X and Y but did not specify their joint distribution. Specifically Lin et al. (1996) considered a 

bivariate location-shift model and Chang (2000) assumed a bivariate accelerated failure time 

model. This research direction has been further extended to general regression settings in which 

the non-terminal event is generalized to be recurrent events (Ghosh and Lin, 2003; Lin and 

Ying, 2003) whereas death still serves as a terminal event. The technique of artificial censoring 
is used in these references to handle the problem of dependent censoring. Despite being theo 

retically appealing, the efficiency of the resulting estimator is affected by the degree of artificial 

censoring. Furthermore, these methods implicitly assume that the dependence structures for the 

two groups, or for all the levels of covari?tes, are the same. In other words, they do not account 

for the situation that covariates may affect the dependence structure. 

Here we adopt a different approach to assessing the covariate effect on progression time under 

dependent censoring. Without making any assumptions on the marginal distribution of Y, we 

assume that 

h(X) = -Zf6 + e, (1) 

where Z is the pxl discrete covariate vector, 6 is the pxl parameter vector, h(f) is a monotonie 

increasing function and s is the error term. The parameter 6 which measures the covariate effect 

on X is of major interest. Model (1) can be classified into two classes. One class assumes that 

h(t) is a known monotone function but leaves the distribution of s to be unknown. For example, 
when h{t) = t, the model becomes a location-shift model; when h(t) = log(i), the model follows 

an accelerated failure time model. The other class assumes that h(t) is unknown but the distri 

bution of e is completely specified. Examples of the second class include the Cox proportional 
hazard model with s being the Gumbel extreme value distribution and the proportional odds 

model with s being the standard logistic distribution. 

To handle the problem of non-identifiability, we assume that (X, Y) jointly follow an Archi 

medean copula (AC) model in the upper wedge V = 
{(x, y) : 0 < x ^ y < oo} such that 

?r(X>x,Y^y) = 0-^a{?r(X^x)} + (l)a{Vr(Y>y)}l 

where (/> : [0,1] -> [0, oo] has two continuous derivatives on (0,1) and satisfies 0(1) = 0, d(f)(t)/dt < 0 

and d2(?(t)/dt2 > 0 for all 0 < t < 1. Examples of AC models include the Clayton (1978) model 

(?a(v) 
= (v~a 

- 
I) I a (a > 0), the Frank model (1979) <?>a(v) 

= 
log{(l 

- 
a)/(I 

- 
av)} (a > 0), the 

Gumbel (1960) model </>a(v) 
= 

{- logii;)}0^1 (a > 0) and the log-copula model <?>a(v) 
= 

{1 
- 

log(v)/aj}a+l 
? 1 (a, 7 > 0). In the presence of discrete covariates, we assume separate AC 

models for each covariate group to account for the possibility that the dependence structures 

for different groups are different. To simplify the notation, let Fz (x, y) = Pr(Z ^ x, Y ^ y | Z = z), 

Fx,z(jc) 
= Pr(X ^ x\Z = z) and Fy>z(y) 

= Pr(F ^ y\Z 
= z). We assume that 

FZ(X, y) 
= 

^}az[<t>z,az{Fx,z(X)} 
+ <l>Ztaz{Fy9z(y)}l (2) 

Note that, for different groups, we allow not only a different association parameter az but also 

different forms of 0z,az(-). 
The inference method proposed for estimating 6 under models (1) and (2) is discussed in 

Section 2. In Section 3, we propose model checking procedures to verify the copula assump 
tion in model (2) and to select an appropriate regression model in equation (1). Simulation 

results and data analysis are presented in Section 4. Section 5 contains some concluding remarks. 
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Regression Analysis 5 

2. A two-stage inference procedure 

Let (Xi, Yi) (i 
? 

1,... 9n) be independent realizations of (X9 Y) which follow model (2) in the 

upper wedge. The/?-dimensional covariate vector for subject / is denoted as Z?, which takes 

discrete values, say zi,...,zk- Denote n^ = 
E?=1/(Z? 

= zjO as the number of observations for 

the A:th subsample and n = 
Y,?=lnk. Let Q (i = 1,... 9n) be independent and identically dis 

tributed realizations of the external censoring variable C which is assumed to be independent 
of (X, Y). We observe semicompeting risks data {(Xi, 6Xi, Yi, 6y?, Z\) (i 

? 
1,2,..., n)}, where 

Xi = Xi A Yi A Q, Y i = Yi A Cu Sx,i 
= KXi < Yt A Q) and 6y? 

= I(Yt < Q). The inference proce 
dure proposed contains two steps. The parameters in model (2), namely cxz, FyiZ(y), Fz(x, y) and 

Fx>z(x), are estimated in the first stage. In the second stage, the proposed estimating function of 

9 is constructed on the basis of the estimator of FXiZ(x). 

2.1. First-stage: estimating nuisance parameters 
First we obtain the estimators of Fz(x, j), FyiZ(y), Fx,z(x), G(y) 

= Pr(C ^ y) and cxz, which are 

denoted as Fz(x, y), FyyZ(y), Fx,z(x), G(y) and az respectively, by applying existing methods in 

the literature to the subsample with Z = z. 

For x ^ y9 it follows that Fz(x, y) = Fr(X ^x,Y^y\Z 
= 

z)/G(y). Hence, using the plug-in 

approach, Fz(x, y) can be estimated by 

Fz(x,y) = PT(X^x,Y^y\Z 
= 

z)/G(y) 
= 

Zl(Xi>x,Yi^y,Zi 
= z) nzG(y), (3) 

i=l 
' 

where 

G(y)= El f 
1 - E I(Yi = 

u,6yi 
= 

0)/ E KYi^u)}. u<y L i=l i ,=l J 

This estimator is based on the assumption that covariates Z do not affect the distribution of 

censoring variable C In the situation that the distribution of C depends on discrete covariate 

Z, G(y) can be modified by the corresponding Kaplan-Meier estimator Gz(y) which uses only 
those data points with Z/ = z. Similarly the estimator of Fy,z(y) is given by 

Fy,z(y) 
= E IM > y, Zi = 

z)/nz G(y). (4) 
i=l ' 

There are several estimators of az based on semicompeting risks data. Assuming the Clayton 
model in the upper wedge, the estimating function that was proposed by Day et al (1997) was 

constructed on the basis of 2 x 2 tables and that proposed by Fine et al (2001) utilized the con 

cordant information for paired observations. Wang (2003) generalized the former approach to 

general AC models. In the absence of covariates, her estimating function of ce can be expressed 
as 

L(a,fj)=n 
l 

/ / w(x,y){Nn(dx,dy)-?n(dx9dy;a9f))}9 
J J(x,y)eV 

a weight function, 

En(dx9dy;a9r?) 
= - 

(5) 
l(x,y)eV 

where w(x9 y) is a weight function, 

0q,r)(x, y) N\p(dx9 y) Nqi (x9 dy) 

0a,v(x9 y) N\o(dx9 y) + R(x9 y) 
- 

Nio(dx9 y) 
' 

Nn(dx9dy) 
= 

JZKXi=x9Yi 
= 

y9?xi 
= 

\98yi 
= \)9 

?=l 

JVio(dx,y) 
= 

? I(Xi=x96xi = 
\9Y{>y)9 

i=i 
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Noi (x, dy) 
= 

? I(Xi > x, Y i = y, 8yi 
= 1), 

i=\ 

R(x,y) 
= 

Zl(Xi^x,Yi>y) 

and 0a,n(x9 y) 
= 

9a{F(x9 y)} with 

~ 
d2cj>a(v)/dv2 0'? 

ua(v) 
= ?v-= 

? 
v?-? 

d(t>a{v)/dv <pa{v) 

and 77 = F(x9 y) can be estimated by i) 
= F(x9 y) by using formula (3) without further partitioning 

byZ. 
Here we modify Wang's method to estimate az by using only data points with Z[ ? z. Then, on 

the basis of model (2), we can derive Fx^z(x) in terms of 0z,az(O, Fz(x9 y) and Fy,z(y). Fine et al. 

(2001) suggested to consider the relationship on the diagonal line y = x and, by straightforward 
calculation, we obtain 

The marginal function FXyZ(x) can be estimated by 

Kz(x) 
= 

<?zXS$z,az{Fz(x>x)}-<?z^ (6) 

2.2. Second stage: estimating the regression parameter 
The proposed estimating equation of 9 is motivated by the following two-sample test statistic 

with Z = 0,1. Specifically to test Fx$ (t) = 
FXi \ (t) for every t within the range of the data, we can 

use 

UT = 
\/(^r) / 

W^ {^oW 
- 

FX9i(x)}dx, (7) 

where W(x) is a weight function. 

Now we modify the test statistic Uj in equation (7) to construct an estimating equation for 

one-dimensional 6 with Z = 0,1. Let #o be the true value of 9. Model (1) induces a functional 

transformation ?#( ) such that ?e0(Fx,o) 
= 

FXy\. When h(-) is known but the distribution of e is 

unknown, ??(F)(t) 
= 

F[h~l{h(t) + 9}]; when h(-) is unknown but the distribution of s is known, 

?e(F)(t) 
= 

Fs[F~l{F(t)} + 9], where Fs(t) = Pr(e > t) denotes the survival function of e. Now we 

can define a function g(t9 9) such that 

g(t,9) 
= 

te(Fx,o)(t)-FxA(t). 

Then g(t, 90) = 0 for all t. Since 

A )!' 
W(x)g(x,60)dx 

= 0, 

we can then estimate 9 by solving the corresponding estimating equation 

U(e)=y/(^)Jw(x)g(x,e)?x 
= 0, 

where g(t,?) 
= 

&(Fx,0)(t) 
- 

FxA(t). 
The above idea can be modified to account for the situation that Z contains multiple cova 

riates but all of them have finite discrete values. In such a case, let {zk, k ? 1,2,..., K} denote 
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the set of all possible Z-values. Now zk, 0 and #o are p x 1 vectors. When model (1) is true, 

it follows that 
?(z._Zk)j0o(Fx,Zk) 

= 
Fx,Zj. 

Here and throughout the paper, aT denotes the trans 

pose of a. Define 
gkj(t9 0) = 

tzp(FXtZk)(t) 

- 
FXtZJ(t) 

and gkj(t9 0) = 
?zp(FX9Zh)(f) 

- 
Fx,Zj(t), 

where 

Zkj 
= 

zj 
? 

Zk and FXiZk is the estimator (6) based on the subsample 4ith Z ? zk- The estimating 
function then becomes 

U(6) = ? ^oiz^ZkjJi-^-) [kJ Wkj(t) gkj(t9 9) dt (8) 

where wo(-) and Wkj(-) are the weight functions, and tkj is the largest value of X in the pooled 

subsample with Z = zk or Z = 
zj. The proposed estimator of 9 is the solution to U(6) 

= 0, which 

is denoted as 9. 

Asymptotic properties of 9 which solves U(9) = 0 are given in the following theorem. 

Theorem 1. Assume that models (1) and (2) hold. Under the regularity conditions that are 

stated in Appendix A, 6 is a consistent estimator of #o and ?1/2(0 
- 

9o) is asymptotically 
normal with mean 0, where #o is the true value. 

A sketch of the proof is outlined in Appendix B. More detailed discussions are provided in 

Hsieh et al (2007). Since it is not easy to estimate the asymptotic variance of 9 by an analytic 

formula, we suggest the use of a bootstrap or a jackknife method to estimate its variance. 

In practice, the weight function may also be estimated. Replacing Wkj(t) in equation (8) with 

Wifc/(0> we have the estimating function 

U(9) = ? wo(zjje)zkjj(^L-) [kJ Wkj(t) gkj(t9 9) dt. 
k<j 

v ^nj? + nj/ Jo 

The Gehan-type weights are often used (page 230 of Klein and Moeschberger (2003)); these can 

be written as 

y , _(nk+nj) GZk(x) GZj(x) 

nicGZk(x)+njGZj(x) 

where GZk(x) is the Kaplan-Meier estimator of GZk(x) 
= Pr(C ^x\Z = zj?)- Note that Wkj(x) is 

an estimator of 

^ _ (ck + Cj) GZk (x) GZj (x) 
Wkj (x) 

? ? 
/ N 

? 
-~r~ > 

ckGZk(x) + CjGZj(x) 

where ck and Cj are the constants that are defined in the first regularity condition (a) that is 

listed in Appendix A. Let 9 solve ?(9) 
= 0. Its asymptotic properties are stated in the following 

theorem. In Appendix C, we present a sketch of the proof and, for the details, refer to Hsieh 

et al (2007). 

Theorem 2. If Wkj(t) uniformly strongly converges to Wkj(t) then, under the conditions for 

theorem 1, the solution to the estimating equation ?(9) 
= 0 is also asymptotically normal, i.e. 

let 9 denote the solution to ?(9) 
= 0; then nl/2(9 

? 
9o) weakly converges to a mean 0 normal 

random variable, where 9o is the true value. 

For computation, we may use the fact that F^o (0 and FXi \ (t) are piecewise constant functions. 

Let i(i) ^... ^ t(n) be the observed ordered times of X in the pooled sample and set i(0) 
= 0. Then 

Fx^o(t) and FXi\(t) are constants on the time intervals (?(?_i),?(?)]. Usually, the estimated weight 
functions such as the Gehan-type weights can also be taken to be piecewise constant functions 

between t(i-\) and fy) which would enable simplification for computation. For example, with 
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8 J.-J. Hsieh, W. Wang and A. A. Ding 

piece wise constant weight function W(t)9 the quantity correponding to Uj in equation (7) can 

be rewritten as 

UT=j(n^-) ? ^(/))(?(o-?(?-i)){^,o(?(o)-^,ia(/))}. (9) 

For illustration, we now derive the estimating equations under a two-sample setting for 

selected examples. 

2.2.1. Example 1 : Cox proportional hazard model 

When s has the extreme value distribution, model (1) becomes the Cox proportional hazard 

model. Then F?(t) = 
exp{-exp(i)} and ?0(F) 

= FexP(?). When 9 equals its true value 00, it fol 

lows that 

Fx,i(x) 
= 

FXt0(x)^?o\ 

Therefore g(t9 9) = 
^,o(Oexp(6,) 

- 
Fx^(t)9 and the estimating equation is 

0(6) = 
^/(^) jf 

?? 
W(t){Fx,o(trm 

- 
FXil(t)} d/ = 0. 

Under the piecewise constant weight function, the resulting estimating equation becomes 

U(9) = 
J(?) ? W(?(o)(?(0 -?(/_i)){Fx,o(?(/))exp(0) 

- 
?,l(?(0)} 

= 0 

2.2.2. Example 2: the proportional odds model 

When s is the standard logistic distribution, model (1) becomes the proportional odds model, 
where F?(t) = 

1/{1 +exp(0} and ?e(F) 
= 

F/{exp(<9) 
- F exp(0) + F}. When 9 equals its true 

value #o, it follows that 

Fx,i(t) 
= 

exp(?o) 
- 

Fx,o(Oexp(?o) + F,,0(f) 
' 

and 

( g. 
_ 

_^C,0(0_F ( 
v 

9{ ' 
exp(0) 

- 
F,,o(Oexp(fl) + FXf0(t) 

X'U h 

So the estimating equation is 

&(W(?) P *? ?--^-*-/UoU=o. V V n / Jo \ exp(0) - 
FXt0(!)expW + Fxfi(t) 

*'' 
J 

Under the piecewise constant weight function, the resulting estimating equation becomes 

(jm=,/(^i) ? wa(i))(?(0 -?o_,)){-. ?xMki))-s-fx l(i(i))l =o. 
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2.2.3. Example 3: the accelerated failure time model 

When h(t) = 
log(0, model (1) becomes the accelerated failure time model. Now ?o(F)(t) 

= 

F{exp(0)i}. When 9 equals its true value 0o, it follows that 

Fx,i(t) 
= 

Fx,o{exp(90)t}9 

and 

9(t, 9) = 
Fx,o{exp(90)t} 

- 
FxA(t). 

So the estimating equation is 

U(9) = 
y/(^) j 

W(t)[Fx,o{exp(9)t} 
- 

Fx?(t)]dt = 09 

where F,j0{exp((9)i} 
= 

Pr{X ^ exp(0)i|Z 
= 

0} 
= 

Pr{exp(-0)X ^ t\Z = 
0}. Note that the discon 

tinuous points of FXjo{exp(?)i} are different from those of Fx^(t). Denote Fx0(t) as the estima 

tor FXio(t) computed on the basis of the transformed data 

{Qxp(-9)Xi,Qxp(-9)Yi,6xi,6yi} 

for / with Zi = 0. Let ?(i) ̂ ... ^ t(n) be the order times of the pooled sample 

{exp(-o)X//(Z/ 
= 0) + X//(Z/ = 

l)(/=l,...,n)}. 

If the weight function is piecewise constant and takes jumps at {ty), j 
= 1,..., n], the resulting 

estimating function becomes 

?m=*/(?) e w(k))(h) -k-i))iKo(h)) 
- 
KiChq)}=0. v v n J i=l 

3. Model selection 

The procedure proposed is developed on the basis of two assumptions: the dependence structure 

of an AC model characterized by (?z,az(') *n m?del (2) and the regression model in expression 

(1). By specifying the dependence relationship between X and Y for each value of Z, we can 

avoid making unnecessary assumptions about the covariate effect on Y as in Lin et al (1996). 
Now we discuss how to justify the assumptions imposed. 

3.1. Selection of a copula model 

We first consider how to check whether a copula model 4>z,az(-) fits the data at hand for each 

covariate group. Without loss of generality and to simplify the presentation, the discussions here 

are based on a homogeneous sample {(Xi, 6Xi, Yi, 6yi) (i=l,2,...,n)} such that (X, Y) follows 

an AC model 

F(x, y) = Ca{Fx(x), Fy(y)} 
= 0"1 [0Q{FX (*)} + <t>a{Fy(y)}]. (10) 

We briefly summarize our ideas. Consider the function Fn(t\, ^) = Pr(X ^ t\, Y ̂  ti \6X = 1, 6y 
= 

1) which is identifiable non-parametrically in the upper wedge {(t\, tj) : 0 < t\ ̂  ti < oo}. By com 

paring the non-parametric estimator of Fn(t\, ti) and its model-based estimator for F11 (t\, tj) 
on the basis of some distance measure, we can find the most plausible model which is the model 

that yields the smallest distance among the candidates. Furthermore a formal goodness-of-fit test 

can be constructed if the distribution of the distance measure under the null hypothesis can be 

derived. Since analytic derivations are complicated, we suggest using the bootstrap resampling 
method to obtain the cut-off value in the test. 
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10 J. -J. Hsieh, W. Wang and A. A. Ding 

The non-parametric estimator, which is denoted as F (t\, ti) (t\ ^ ?2), is given by 

Zl(Xi^tuYi^t29Sxi = 
\98yi = 

l)/? /(&/ = 
1,^ 

= 1). 
i=l ' i=\ 

Assume that there are K model candidates C$?{Fx(x), Fy(y)} (k=l929...9K)9 each of which 
can be characterized by (ft?. Note that the definition of a depends on the model chosen. For 
an AC model that is indexed by (ft?, the model-based estimator, which is denoted as Fk (t\, ti), 
can be computed over the region {t\ ^ ?2} as follows: 

roo ry 

Jy?ti Jx=t] 

F\\t^2)=JyTrXrT 

Fk(dx9dy)G(y) 
/ oo ry 

Jy=0 Jx=0 
Fk(dx9dy)G(y) 

whenj Fk(dx9dy) = Fk(x9 y) -Fk(x + dx9y) 
- 

Fk(x9 y + dy) + Fk(x + dx, y + dy) and Fk(x9 y) = 

^? i^t\Fx{x)} + (j)f{Fy{y)}]. To verify whether a copula model (ft? fits the data, we can per 
form a formal testing procedure as follows. Consider testing Ho'.(/)a = 

(ft? versus H^'.^a^ (ft? 
Define 

D*=sup|F11(?i,?2)-F?1(?i,f2)|. (H) 

We can reject Ho if Dk > c^, where c? is the critical value satisfying Pr(D^ > ck\Ho) = 7, the 

prespecified type I error rate. 

Because the distribution of Dk is difficult to derive analytically, we suggest using bootstrap 
resampling methods to obtain the cut-off value, /?-value and power. Here we briefly describe the 

procedure. A bootstrap sample under model (ft? can be generated as follows. Recall that, given 
the original data, we have obtained G(c)9 Fy(y) and Fx(x) under the assumption of model (ft?. 

Then generate (Uf, V?) 
~ 

copula model k with U? 
~ 

i/(0,1) and Vf 
~ 

t/(0,1). Then set Xf 
= 

s if Fx(s+) < 1 - Uf < Fx(s)9 Y*=t if Fy(i+) < 1 - V* < 
FyQ 

and C* - 
G(c). Given (Xf, 

Y*9 Cf) (i= 1,...,?), we can construct a bootstrap sample {(X? , 6*i9 Yt , <?* ) (?=1,2,_,n)}9 
where X* = 

Xf a^*a Cf, f 
* = 

Ff a Cf, ?*. = 
/(Xf < If A Cf) and ?*. = 

/(If < C*). With a 
bootstrapped sample, we can compute the corresponding values of Dk. Repeating the boot 

strapping procedure many times, the distribution of Dk can be approximated by the empirical 
counterparts from the bootstrapped samples. 

The above tests will reject the null hypothesis if the data obviously violate the copula model 

(ft?. In practice, we may be more interested in choosing the best-fitted copula model from several 
candidates that are indexed by k = 1,2,..., K. For this, we can select the model that yields the 
smallest Dk. Now we derive theoretical properties of the model selection procedure proposed. 

Theorem 3. Assume that (X9 Y) follow model (10) and both variables are continuous and the 

independent censoring variable C has bigger support than the supports of X and Y. Suppose 
that there are K model candidates in the AC family. Let the kth model C$?(u, v) be charac 
terized by (ft?(t)9 which has regular analytic properties in / and is continuous in a, whose 

parameter space is a closed set. If (ft? is the true copula model, Dk -+F 0 as n -> 00. If (ft? is 
not the true model, Pr?liminf^oo?//) > 0} 

= 1. Furthermore let k denote the copula model 
that yields the smallest Dk among all the candidates. Then (ft? is consistent if the true copula 

model is included in the list of candidates. 

In Appendix D, a sketch of the proof for theorem 3 is given. A more detailed proof can be 
found in section 3 of Hsieh et al. (2007). 
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3.2. Selection of the covariate model 

After specifying the form of model (2), our procedure requires choosing an appropriate regres 
sion model in expression (1). If model (1) is correctly specified, gy (t, 9o) = 0 and it is reasonable to 

expect that faj it, 9) is closer to zero for the correct model than a wrong model for moderate sam 

ple sizes. This fact can be used to check the model assumption (1). Let Dr = 
max?,;,? \gkjif, 9)\. 

A formal model checking procedure can be formulated as testing the hypothesis Ho', the form of 

model (1) is correct versus H^: the form of model (1) is not correct. The null hypothesis is rejected 
if Dr is too big. The cut-off value for the test can be calculated by applying the bootstrapped 

method which can also be used for model selection. Suppose that there are several choices for 

model (1), say model k ? 
1,2,..., K. To select the best-fitting model, we can simply choose the 

model with smallest DhR, where DkR is calculated under model k. 

4. Numerical analysis 

4.1. Simulation results 

We designed several simulation settings to examine the validity and robustness of the methods 

proposed. Data generation algorithms for the Clayton model and the Frank model have been 

given in Prentice and Cai (1992) and Genest (1987) respectively. In the following analysis, we 

set the weight functions as 
wo(z-;#) 

= 1 and 

(ni + n j) GZj (x) Gz. (x) 
Wij(x) 

= \ 
J Zl 

\ J . 

niGZi(x)+njGZj(x) 

For each estimator under evaluation, the average bias and the standard deviation based on 1000 
runs are reported. Here we describe only summary information of the numerical settings. For 

the details, refer to section 4 of Hsieh et al (2007). 
Tables 1 and 2 contain the results of the first analysis that compared our proposed estima 

tor 9 and 9^, the estimator of Lin et al (1996). We set (e,Q\Z to follow an AC model with 
Z = 0,1. Then, on the basis of (s, ?, Z), the value of (X, Y) can be determined from the models 

hx(X) = 
-90Z + s and h2(Y) = 

-770Z + ?. Here we set 90 = r?o = 0.5 and n0 = n\ = 150. Note that 

all the assumptions are satisfied for 9. However, in the evaluation of 0l, the covariate model 

for X is correct but the assumption about common dependence structures for the two groups 
or the extra assumption on a covariate model for Y may be misspecified. 

In the four cases in Table 1, we consider the location-shift model with h \ (t) = hi (t) = t. We shall 

Table 1. Finite sample performance of two estimators 
evaluated under four situations! 

Model 6 <9L 

Case 1 -0.0026 (0.0934) -0.0025 (0.0909) 
Case 2 -0.0013 (0.1136) 0.0969 (0.0849) 
Case 3 0.0022 (0.0950) -0.0122 (0.0888) 
Case 4 0.0008 (0.1100) 0.0982 (0.0840) 

fThe correlation structures are the same for two covari 
ate groups in the first case and different in the last three 
cases. The first number is the average bias of the estimator 

and the number in parentheses is the standard deviation 
based on 1000 replications. 
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12 J. -J. Hsieh, W. Wang and A. A. Ding 

Table 2. Finite sample performance of two estima 

tors evaluated under four situations with different 

covariate models for progression time and death time 

(thus 6\_ becomes invalid)! 

Model 0 0L 

Case 5 -0.0041 (0.0974) 0.0890 (0.1175) 
Case 6 -0.0067(0.1135) 0.3387(0.1127) 
Case 7 0.0025 (0.1156) 0.0884 (0.1170) 
Case8 0.0125(0.1152) 0.3793(0.1081) 

f The first number is the average bias of the estimator 

and the number in parentheses is the standard devia 

tion based on 1000 replications. 

use the notation {Clayton(ro), Frank(ri)} to denote the situation that one group with Z = 0 fol 

lows the Clayton model with r = to and the other with Z = 1 follows the Frank model with r = r\. 
The dependence structures for the four cases are case 1, {Clayton(0.5),Clayton(0.5)}, case 

2, {Clayton(0.8),Clayton(0.1)}, case 3, {Frank (0.5), Clay ton (0.5)}, and case 4, {Frank(0.8), 

Clayton(O.l)}. In case 1 where the conditions for both estimators are valid, #l slightly outper 
forms 9. However, in the last three cases, #l is biased. It seems that the bias of 0l is affected 

more by the discrepancy in the level of associations for the two groups than the difference in 

the dependence structures. 

Table 2 contains the results for another four conditions (cases 5-8). We set h\(t) = t but 

h2(t) = 
log(i), which is a condition that violates the assumption that was made by Lin et al 

(1996). The dependence structures in these four cases follow the same pattern as in cases 1-4 in 

Table 1. We see that 9 outperforms #l even more since, for the latter, the two types of assumption 
are both misspecified. 

The second analysis checks the validity of the proposed method for selecting an appropriate 

copula model. Suppose that there are two copula models under consideration, where model 

k = 1 is the Clayton model and model k ? 2 is the Frank model. First we set the Clayton model 

as the true model and n = 150. The mean and standard deviation (in parentheses) of Dl and D2 

are 0.0780 (0.0187) and 0.1397 (0.0304) on the basis of 1000 replications. The percentages of 

successfully selecting the Clayton model are 93.4% on the basis of the order of Dj 0 
= 1,2). Then 

we set the Frank model as the true model. The mean and standard deviation (in parentheses) 
ofD1 and D2 are 0.1398 (0.0330) and 0.0819 (0.0206). The percentages of successfully selecting 
the Frank model are 92.3% on the basis of the order of Dj (7 

= 1,2). Finally, we examine the 

proposed testing procedure by using the resampling method. Under the Clayton model, we set 

up the goodness-of-fit test Ho : the data follow the Clayton model versus H&: the data do not fol 

low the Clayton model. By resampling 1000 times, we obtained Dx = 0.0511 with/>-value 0.909 

and the cut-off value c\ =0.1004 (at 0.05 significance level). Hence hypothesis Ho is accepted, 
which is the correct decision. For the same data set, we ran the analysis again with Ho : the data 

follow the Frank model versus Ha: the data do not follow the Frank model. We obtained that 

D2 = 0.1247 with/?-value 0.012; the cut-off value (7 
= 

0.05) c2 = 0.1058. Accordingly we reject 

hypothesis Ho, which is also the correct decision. 

Under the Clayton model with to = 0.5 and r\ = 0.6, we examine the method proposed that 

was introduced in Section 3.2 for selecting an appropriate regression model. Table 3 lists the 

proportions of each model being selected by the method proposed on the basis of 500 simulation 

runs. The proportion of times that the true model is selected increases as the sample size grows 
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Table 3. Proportion of the covariate models that were selected by the method proposed on the 
basis of 500 replications! 

True model Proportions (%) for the following chosen models: 

Location- Accelerated Proportional Proportional 

shift failure time hazards odds 

Location-shift 

Accelerated failure time 

and proportional hazard 

100 
200 
400 
100 
200 
400 

96.2 

99.6 

100 
0.8 

0.2 

0 

3.8 

0.4 

0 

43.4 

39 

47.8 

0 

0 

0 

35.6 

43.8 

44.2 

0 

0 

0 

20.2 

17 

|The first column lists the true covariate model; the second column lists the sample size; the last four 

columns contain the proportion of each of the four covariate models selected. 

Table 4. Finite sample performance of 01 

Model Results for the following models: 

Location-shift Accelerated failure time Proportional hazard Proportional odds 

Clayton 

Frank 

-0.0024(0.1113) 
-0.0015(0.1105) 
-0.0042(0.1016) 

0.0011(0.0995) 

0.0029(0.1736) 
0.0058(0.1662) 

-0.0084(0.1734) 
-0.0094(0.1661) 

-0.0022(0.1507) 
-0.0032(0.1514) 

0.0067(0.1544) 
-0.0096(0.1680) 

0.0039 (0.2683) 
-0.0023 (0.2633) 
-0.0028 (0.2573) 

0.0013(0.2602) 

f The first number in each column is the average bias of 9\, the second number in parentheses is the 

standard deviation of 9\ based on 1000 replications, the third number is the average bias of ?2 and the 

fourth number in parentheses is the standard deviation of ?2 based on 1000 replications. 

larger. When the true model changes to the accelerated failure time and proportional hazard 

models, which are both correct in our setting, these two models together are chosen most of 

the time. As n increases, the proportion of a correct decision also increases (79% when n = 100, 
82.8% when n = 200 and 92% when n = 

400). 
We also examined the situation of multiple covariates. With Z' = 

(Z(1), Z(2)) in which Z^ (j = 

1,2) are both binary, the sample can be portioned into four groups with Z\ 
= (0,0) (r = 0.2), 

Z'2 
= (0,1) (r = 0.3), Z'3 

= (1,0) (r = 0.4) and Z\ 
= {\91) (r = 0.5). The sample size in each of 

the four groups is 75. We evaluated two dependence structures, namely Clayton and Frank, and 

four regression models, namely location-shift, accelerated failure time, proportional hazard 

and proportional odds, for each of which 9f0 
= (0.3,0.3). The average bias and the standard 

deviation on the basis of 1000 simulation runs are reported in Table 4. The results show that 

the method proposed still performs well under various regression settings. 

4.2. Data analysis 
The methodology proposed is applied to the bone marrow transplants data that were given in 

Klein and Moeschberger (2003), page 484. There were 137 leukaemia patients receiving bone 

marrow transplants. Let X be the time to relapse of leukaemia, Y be the time to death and C 
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be the time from transplant to the end of study. Let SX = I(X ^ Y a C) be the relapse indica 
tor and let 6y 

= I(Y < C) be the death indicator. The sample can be divided into three groups 
with Z' = (0,0) indicating the acute myelogenous leukaemia (AML) low risk group, Z' = (0,1) 

indicating the acute lymphoblastic leukaemia (ALL) group and Z' = (1,0) indicating the AML 

high risk group. The regression model of interest is h(X) = -Z'9 + s, where 9' = (9\, 92) which 
measures whether the disease type affects the relapse time. 

For each covariate group, we test the hypothesis Ho'.^a^ Clayton model versus Ha: not Ho. 

By bootstrapping 1000 times, the/?-values of Dc for the AML high risk group, the ALL group 
and the AML low risk group are 0.752,0.656 and 0.177 respectively. Hence the Clayton model is 

adopted for all three groups. Using Day's method (or equivalently Wang's method) to estimate 

rz, we obtain f(o,o) =0.7485 (0.1176), f(0,i) 
= 0.7894 (0.0853) and fa,o) =0.7685 (0.0872), where 

the number in parentheses is the estimated standard derivation by using the jackknife method. 

The above analysis implies that the dependence structures in the three groups are similar and 

the two events are highly correlated. 

Then we choose a model for measuring the group effect on X. Fig. 1 shows the fitted log-log 

plot of Fx(x) for the three groups. Since the three curves look parallel, we choose the proportional 
hazard model to measure the group effect. On the basis of the method that was described in 

Section 3.2, we can formally test the proportional hazard model assumption. By bootstrapping 
1000 times, we obtain/?-value 0.774 which implies that this model is appropriate. Fig. 2 depicts 
the three survival curves of Fx(x). Under the proportional hazard regression model and the 

Clayton assumption for each covariate group, we obtain 9\ = 1.3624 (0.3765) and 92 = 0.9503 

(0.3984). The results show that the risk of relapse for the AML high risk group is 3.9 times that 

of the risk for the AML low risk group, and the risk for the ALL group is 2.59 times that of the 

AML low risk group. The difference is statistically significant. 

o 

D) 
O i 

500 1000 

Fig. 1. Log-log-plot for the three groups: 
risk group 

1500 

time 

, AML high risk group; 

2000 2500 

- 
ALL group;., AML low 

This content downloaded from 140.113.38.11 on Wed, 30 Apr 2014 19:51:26 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Regression Analysis 15 

JQ 
C? -Q 

O 

00 
? 

CO 
O 

? 

CM 
O 

q 

i-1-r 

0 500 1000 1500 2000 2500 

time 

Fig. 2. Fx(t) for the three groups:-, AML high risk group;-, ALL group;., AML low risk 
group 

5. Concluding remarks 

In this paper, we model the failure time to a non-terminal event by a flexible transformation 

model. To handle the problem of dependent censoring, we make an additional assumption that, 
for each covariate group, failure times for the two types of event follow a copula model in the 

identifiable region. Model checking procedures are also proposed to examine the appropriate 
ness of these two model assumptions. Compared with existing methods such as that proposed by 
Lin et al. (1996), our approach allows for different dependence structures in each group, avoids 

making additional modelling assumptions on the terminal event and utilizes all the data with 

out paying the price for artificial censoring. The simulation analysis confirms our conjecture 
that the estimator that was proposed by Lin et al. (1996) becomes unreliable if the dependence 
structures in the two groups are different. 

The strategy proposed for checking the copula assumption is to compare the non-parametric 
estimator with its model-based estimator of a chosen reference function, say Fn(t\9t2). This 

technique is similar to that used in Wang and Wells (2000). For possible future research, one 

may examine how to choose such a function or a combination of several functions that contain 

most of the model information that is characterized by </>( ) so that the corresponding test pro 
cedure would detect the departure from the null hypothesis better and hence give higher power. 
To select an appropriate regression model for the non-terminal event, a formal model checking 

procedure is also proposed by using the bootstrap method. The regression method proposed can 

handle multiple covariates with discrete values. Extension to continuous covariates must face 

the challenge of imposing additional regression assumptions on model (2) or adopting some 

non-parametric techniques like smoothing. This goes beyond the scope of the current paper but 

may deserve further investigation. Note that in model (3) we suggest use of the Kaplan-Meier 
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estimator based on data {(Y/, 1 - 6yi) (i = 
1,...,n)} to estimate G(t). Since C is also censored 

by X a F, another estimator based on data {(X?, 1 - 6x?6x?) (i = 
1,...,n)} can be constructed. 

Obviously the latter yields a worse estimator of G(t). However, it has been shown in other con 

texts, such as in Tsai and Crowley (1998), that plugging in a worse estimator of the nuisance 

parameter sometimes improves the result. 
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Appendix A: Regularity conditions of theorem 1 

Let 

?(e) = 
J2^o(z?jO)zkjj(^1-) [ 

" 
Wkj(t) gkj(t90) dt (12) 

k<j 
v 

\Ck+Cj/ JO 

where ck = \imn^ (nk/n)9 and (0, Tkj) is the support of X in the subgroup with Z = zk or Z = 
Zj. To derive 

large sample properties of 9, we assume the following regularity conditions. 

(a) As n - 
oo, ck = 

\imn^ (nk/n) > 0 for all k values. 

(b) For each Z = zk, the HZk(u, v, a) has bounded partial derivatives with respect to u9 v and a, where 

Hz(u, v9 a) = 
4>^a{4>z,a(?) + 4>z,a(v)} is defined in model (2). 

(c) For each Z = zk, the standard regularity conditions hold for estimating Fz (x,x) and FyiZk(x) (e.g. 
conditions for theorem 6.3.2 in Fleming and Harrington (1991)) so that nk/2{FZk{x9x) 

? 
FZk{x9x)} 

and 
nkl/2{FyfZk(x) 

? 
Fy,Zk{x)} converge weakly to Gaussian processes. 

(d) The weight functions wo(x) and Wkj(t) are positive and bounded and w0(x) is differentiate with 
continuous derivatives. 

(e) For each of the two classes of model (1), we impose the following assumptions: 
(i) for the first case, h(t) is differentiate, h'(t) ̂ 0 and is continuous, Wkj(t) 

= 
Wkj{t)/h'(t) is differ 

entiate and f | Wkj(t) | at < oo; 
(ii) for the second case, the distribution of s has a density f?(t) which is differentiate with bounded 

derivatives._ 

(f) The function U(6) which is defined in equation (12) is differentiable with respect to 9 and the 
matrix 

is non-singular. Furthermore ?(9) ^0for9^90 and liminf^H-??,|?(0)| >0. 

Appendix B: Sketch of proof for theorem 1 

Here we provide a brief sketch of the proof of theorem 1; the details are given in Hsieh et al (2007). 
Consider 

U(9) = ? w0(zTkj0)zkj j{ {nkln)^ln 
\ 

fk} Wkj(t) gkJ(t, 9) at, 
k<j 

J v {nk/n + nj/n) J0 

where Wkj(t) is a deterministic function. Equation (A.5) in Hsieh et al (2007) states that U{9)/nl/2 converges 
(in probability) to 

?(9) = ? woiz^zkjjf^1-) [ 

^ 
Wkj(t) gkj(t, 9) at, 

k<j V \Ck + CjJ Jo 
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in which the convergence is uniform in 0. Consider a compact set Dr 
= 

{|| 0 - 00 || ̂  r} where r is a positive 
constant. By assumption (f) U(0) ^ 0 for 0 =? 0O and liminf||0|Koo|?/(0)| > 0; then the continuity of U(0) 

implies that infp-o0\l>r\U(6)\ >0. The (uniform) convergence of U(0)/nl/2 to U(0) implies that there will 
be no solution for U(0) = 0 outside the compact set Dr when n is large. Since this is true for every r > 0, 0 
is consistent. 

By Taylor series expansion we obtain 

U(0) = 0 = U(00) + ? ?-1/(0)(0, 
- 

0/fO), (13) 

where 0 is an intermediate value between 60 
= 

(#i,0, ,^,o)T and 0 
? 

(0\,...,0P)T. Hence we have the 

expression 

?(?^ '?t/(e))",/2('-?0)=-i/(?0)- 
(14) 

The statement of expression (A.6) in Hsieh et al. (2007) is about the convergence of 

n['? du i 

to 

locally uniformly at 0 = 60. Using this condition along with the consistency of 0, we can show that 

^(?^- ?^"(?^ ^ 
which, by assumption (f), is a non-singular constant matrix. By expression (A.7) in Hsieh et al. (2007), 
U(Oo) is asymptotic normal with mean 0. Therefore nl/2(0 

? 
0O) is asymptotic normal with mean 0 because 

it has the same asymptotic distribution as 
-i 

-^?(6,),...,^-?(6,)) 
U(6o). 

This completes the proof. 

Appendix C: Sketch of proof for theorem 2 

Compared with the previous proof, we need to show only that 

(a) {?(0) 
? 

U(0)}/n?/2 uniformly strongly converges to 0, 
(b) 3[{i/(0) 

- 
U(0)}/ni/2]d0i strongly converges to 0, which takes place locally uniformly at 0 = 00, and 

(c) ?(6o) 
? 

U(Oo) strongly converges to zero. 

Firstly, 

?(0)-U(0) = E wo(zTkjO)zkj j{ (nk/n^nj/" 
\ f kJ{Wkj(t) 

- 
Wkj(t)} gkj(t, 0) dt. (15) 

k<j 
J V {nk/n+rij/n ) J0 

Under the related regularity conditions and the uniform and strong convergence of Wkj(t) to Wkj(t), we 
can establish the uniform and strong convergence of expression (15) to 0. So condition (a) holds. 

Secondly, we can write 

?(00) 
- U(0o) = E woizJjO?Zkj j{ (nk/nlnj/" } ftkJ{Wkj(t) 

- 
Wkj(t)} n1'2 gkj(t, 00) dt. (16) 

k<j 
J v [rik/n + nj/n) Jo 

Under the related regularity conditions as well as nl/2 gkj(t, 00) = 
Op(\) for all t and Wkj(t) 

- 
Wkj(t) 

= 
?^(1), 

we can show strong convergence of expression (16) to 0. So condition (c) holds. 
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Finally 

_d_ j 
u(0) 

- 
u(0) 

'dot 
A/2 --Ewo(zle)ZkjZkj,i 

k<j 

+ EH;0(?/)^7 
k<j 

(nk 

nk/, 

(nk 

nk/> 

./n)nj/n \ 
? n + nj/nf Jo 

./n)rij/n 1 9 /*' - 

n + rij/n ) dOi J0 

{Wkj(t)-Wkj(t)}gkj(t,0)dt 

tkj 

(17) 

The required regularity conditions plus the uniform strong convergence of Wkj(t) to Wkj(t) imply that the 
first term in equation (17) converges uniformly (in 6) and strongly to 0. To prove the second term, we need 
to consider the two regression classes separately. 

For the first case that &(F)(0 = 
F[h~l{h(t) + 0}], 

k<j "*4W{;?^}?[f<*?*,-*"w,fc* 
*,* 

= 
??.<i/>a,7{iT!Ti7Ll k<j J v {nk/n + nj/n) 

h-l{h(tkj)+zTkje} 

* 
? 

h-i{h(0)+z]je} 

(wkj[h~l{h(t*) -zTkje}]- wkJ[h-l{h(t*) -zTkje}])zkj,i 

h'[h-i{h(t*)-zlO}] 
dFx,Zk(t*). 

(See the proof of expression (A.4) in Hsieh et al. (2007).) Note that local boundedness of l/h'[h~l {h(t*) 
- 

zJjO}] 
can be established owing to the continuity of h'(t). The related regularity conditions and the result 

of expression (A.4) in Hsieh et al (2007) imply that the second term in equation (17) locally uniformly 
strongly converges to 0. 

For the second case that ?e(F)(t) = 
Fe[F~l{F(t)} + 0], then ?'0(F)(t) 

= 
fe[F-l{F(t)} + 0]. Hence 

E woizlQztj j{ {nktn)^ln ) 
A 

[ r{Wkj(t) 
- 

Wkj(t)} gkj(t, 0) dt 
k<j 

J V 
{nk/n+rij/n) dOiUo 

= 
Z^(zTkj0)zkjj\ (nk/nln^ 

\ 
[tkJ{Wkj(t)-Wkj(t)}zkjj fe[F^{F(t)} + zTkj0]dt, k<j v 

{nk/n+nj/n ) J0 

which converges uniformly to 0, owing to the related regularity conditions, uniform strong convergence of 

Wkj(t) to Wkj(t) and the boundedness of fe[F~x { F (t)} ~\- zjj?], i.e. the second term in equation (17) locally 
uniformly strongly converges to 0. 

In summary equation (17) locally uniformly strongly converges to 0, i.e. condition (b) holds. This com 

pletes the proof. 

Appendix D: Sketch of proof for theorem 3 

First, the empirical distribution function is uniformly consistent, i.e. supfl^,2 \F (t\, t2) 
? 

Fn(t\,t2)\^ Q 
as n ? co. Then it can be shown that, for t\ ^ t2, Fk (t\, t2) uniformly converges to 

p?? py 
/ / Fk(dx,dy,?)G(y) 

Jy?ti J x=t\ 

~F?\tut2,a)=J-10 poo py 

Jy=0 Jx=0 
Fk(dx,dy,a)G(y) 

where FkCdx, dy, ?) = Fk(x y, ?) 
- 

Fk(x + dx, y, ?) 
- 

Fk(x, y + dy, ?) + Fk(x + dx, y + dy,_?) and Fk(x, y 
?) = 

(j)f [<t>f{Fx(x)} + (t)f{Fy(y)}]. If 0^ is the true copula model, then a^pa and F?x(tx,t2,a) uni 

formly converges to Fn(t\,t2). Therefore, Dk -^p 0. 

y> 
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If 0^is not the true model, letdk(a*) = 
saptl<t2\Fkn(ti,t2,a*)-Fn(ti,t2)l 

We can show that d* (a*) >0 
for all a* e Ak. To see this, let us consider when dk(a*) = 0, i.e. 

poo ry /?oo ry 

I \ Fk(dx,dy,a*)G(y) / / F(dx,dy)G(y) 
J y?ti J x=t\ _ J y=t2 J x=t\ 

~F?? ~Fy /?oo ~Fy 

/ / Fk(dx,dy,a*)G(y) / / F(dx,dy) G(y) 
Jy=0 Jx=0 Jy=0 Jx=0 

for all fi < t2, where F(dx9 dv) = F{x9 y) 
- 

F(x + dx9 y) 
- 

F(x, y + dv) + F(x + dx,y + dy) and F(x, y) = 

<?>a-l[<l>a{Fx(x)} + <l>a{Fy(y)}]. Let 

/ oo /?y 

/?*=/ / Ft(dx,dy,a*)G(y) 
Jy=0 Jx=0 

and 

/?oo /?y 

p= / ?Xdx,dy)G(y). 

Note that/? and p* are constants independent of t\ and t2. Hence the above equation becomes 

Fk(dx,dy9a*) F(dx9dy)* 
roo ry ( 

J y=t2 J x=t\ K {G(y) 
= 0 

P* P J 
for all t\ ^ ?2- Therefore, 

F*(dx, dv, a*)/p* 
- 

F(dx9 dy)/p = 0 

on the region {(x9 y) : x ^ y and G(y) > 0J. Consider the variables u = Fx(x) and v = 
Fy(y); it is easy 

to see that F(dx9dy) = Ca(du9dv) and Fk(dx9dy9a*) = Cik}(du9dv). By the assumption that C has 

larger support than the supports of X and Y9 both Fx(x) and F^(y) change from 1 to 0 on the region 
{(jc, y) : x ̂  y and G(y) > 0}. Therefore we have 

C{k}(du9dv)/p* -Ca(du9dv)/p = 0 

on the region {(?, u) : 0 ̂  Fx{F~l(v)} ^ w ̂  1}. Therefore, the analytical properties of 4>{kl and </>a imply 
that the above equality holds over the region {(u9 u):0<w^l,0^u^l}. This together with the fact that 
C{k} (0,0) = Ca (0,0) = 0 imply that 

pC(?(u,v) 
= 

p* Ca(u9v) 

on the region {(w,u):0^w^ l,0sCi;^ 1}. Since C^)(l,l) 
= Ca(l,l) = l,p = p*. Now, &k}{u9v) = Ca{u9v) 

on the region {(m,d):0^w^1,0^i;^1}. This contradicts the fact that (f)(k) is not the true copula model. 
Hence dk(a*) > 0 for all a* eAk. This fact together with the closedness of Ak and the continuity in a* 

imply that dk = 
infa*eAjfc {dk(a*)} > 0. Therefore, if model k is wrong, Dk -+v dk > 0. 

Suppose that there are K candidate models under consideration. Let 

d= inf(?4) 
{k:\^.k^.K,(f)a^ is not true copula model} 

Then d> 0. And, as n -> oo, Pr(Dk > d/2) -> 1 if model k is wrong whereas Pr(Dk < d/2) -> 1 if model k is 
correct. Therefore k is consistent. 
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