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Stable Synchrony in Globally Coupled Integrate-and-Fire Oscillators∗
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Abstract. A model of integrate-and-fire oscillators is studied. In the special case of identical oscillators, the
model was first proposed and analyzed by Mirollo and Strogatz [SIAM J. Appl. Math., 50 (1990),
pp. 1645–1662]. We assume, as in Mirollo and Strogatz’s model, that each oscillator xi evolves
according to a map fi. Our main results are to demonstrate that the concavity structure of fi plays
an important role in determining whether Peskin’s second conjecture holds true. Specifically, the
following statements are proved. First, the system of convex oscillators (i.e., f ′′

i < 0 for all i), in
general, synchronizes when the oscillators are not quite identical. Second, the system of a certain
class of concave oscillators (i.e., f ′′

i > 0 for all i) will not achieve synchrony for initial conditions
in a set of positive measure when the oscillators are nearly identical. Third, the system of concave
oscillators may achieve synchrony under certain sufficient conditions, provided that the oscillators
are not quite nonidentical and that its concavity is small.
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1. Introduction. Large assemblies of oscillator units can spontaneously evolve to a state
of large scale organization. Synchronization is the best known phenomenon of this kind, where
after some transient regime a coherent oscillatory activity of the set of oscillators emerges. This
interesting phenomenon is quite common in many different disciplines such as engineering [62],
physics [15, 35, 51], chemistry [36], as well as biology [61]. For example, in southeastern
fireflies, thousands of individuals gathered on trees may flash in unison. Other examples of
biological oscillators are the rhythmic activity of cells of the heart pacemaker [29, 40, 43, 55],
of cells of the pancreas [48, 49], and of neural networks [9, 13, 20, 43, 45, 50]. Synchronization
of oscillators has been studied in both phase-coupled models [3, 4, 5, 6, 11, 16, 17, 18, 19,
30, 33, 37, 38, 39, 42, 44, 52, 53, 55, 56, 57, 60, 58, 63], where the interaction between the
oscillators is smooth and continuous in time, and pulse-coupled models [1, 7, 10, 12, 23, 24,
25, 27, 28, 31, 32, 36, 41, 46, 47, 57, 59], where the membrane voltage is discontinuously reset
to a fixed value once it reaches a certain threshold. It should be noted that pulse-coupled
models are of greater relevance for neuroscience applications since synaptic coupling is often
spike mediated.

This paper deals with a population of integrate-and-fire oscillators with all-to-all pulse
coupling. We begin with describing Peskin’s model of n integrate-and-fire oscillators. Let
the state of the ith oscillator be denoted by xi, where xi are subject to the dynamics dxi

dt =
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1446 YU-CHUAN CHANG AND JONQ JUANG

−rixi+Ii, 0 ≤ xi ≤ 1, i = 1, 2, . . . , n, with input Ii > 0, a normalized threshold 1, and leakiness
ri ≥ 0. When xi = 1, the ith oscillator fires and xi jumps back to zero. As a consequence of
the firing of the ith oscillator, the activation of any other oscillator j is incremented by the
coupling ωi,j. Should no confusion arise, we write ωi,j as ωij. This model was later generalized
by Mirollo and Strogatz [41]. It was assumed that the state variable xi evolves according to
a map fi. When xi reaches the threshold, the oscillator fires and xi jumps back instantly to
zero, and the activation of any other oscillator j is incremented by the positive coupling ωji.
Specifically, xi evolve according to xi = fi(φi), where fi : [0, 1] → [0, 1] is smooth and strictly
increasing, i.e., f ′

i > 0 on (0, 1). Here φi is a phase variable so that (i) dφi

dt = 1
Ti

, where Ti

is the cycle period for oscillator xi when evolving freely; (ii) φi = 0 when the oscillator is at
its lowest state xi = 0; and (iii) φi ≡ 1 at the end of cycle when the oscillator reaches the
threshold xi = 1. Therefore, fi satisfy fi(0) = 0, fi(1) = 1. These maps fi are to be called
evolution maps. The inverses of fi are to be denoted by gi. If fi ≡ f , Ti ≡ T , and ωij ≡ ω for
all i, j, then the corresponding system is called identical. Otherwise, it is called nonidentical.
To describe the dynamics of the model, let Φ0 = (φ0

1, φ
0
2, . . . , φ

0
n) ∈ R

n be the initial condition
of the oscillators. Here 0 = φ0

1 ≤ φ0
2 ≤ · · · ≤ φ0

n < 1. Further, Φk = (φk
k1

, φk
k2

, . . . , φk
kn

), where
0 = φk

k1
≤ φk

k2
≤ · · · ≤ φk

kn
< 1, is the state of n oscillators after the kth firing. Denote

by Vk(Φ0) the set of the indexes of oscillators reaching threshold simultaneously and thus
firing the kth time at the same instance. After the (k − 1)th firing, there will be at least
one oscillator ready to fire at the next instance. Such an index set Vk(Φ0) of the next firing
oscillators is called the trigger set with respect to the initial condition Φ0 at the kth stage.
Let Uk(Φ0) be the index set of oscillators which reach the threshold at the kth stage. Note
that Uk(Φ0) ⊃ Vk(Φ0). Hence, Uk(Φ0) may contain the index of the oscillators which reach
the threshold after receiving activations from other oscillators in Vk(Φ0). Such a set Uk(Φ0) is
to be termed the spike set with respect to the initial condition Φ0 at the kth stage. The terms
for sets Uk and Vk were first used in [57]. Should no confusion arise, we shall write Vk(Φ0)
and Uk(Φ0) as Vk and Uk, respectively. Immediately after the first firing, the resulting state
Φ1 = (φ1

11
, φ1

12
, . . . , φ1

1n
), 0 = φ1

11
≤ φ1

12
≤ · · · ≤ φ1

1n
< 1, is given by

φ1
1�

= g1�

(
f1�

(
Ti0

T1�

(1 − φ0
i0) + φ0

1�

)
+
∑
j∈U1

ω1�,j

)
=: g1�

(f1�
(δ1�

) + ω1�
), i0 ∈ V1 and 1� ∈ {1, 2, . . . , n} − U1 =: Sn − U1.(1.1)

Note that the first firing consists of firings due to some oscillators reaching threshold simul-
taneously as well as any other oscillators then reaching threshold due to chain reaction of the
earlier firings that are infinitesimally apart. All those chains of firings can be lumped into one
set of “simultaneously firing” oscillators. The states Φk = (φk

k1
, φk

k2
, . . . , φk

kn
) of n oscillators

after the kth firing can then be defined accordingly. If the cardinality of the spike set Uk,
k = 1, 2, . . . , n, is one, then we shall say that the system of n oscillators undergoes one whole
cycle of firings or no absorption occurs for the system of n oscillators within one cycle of firings.
For Peskin’s model, fi(φ) = Ii

ri
(1 − e−riTiφ) and Ti = ln( Ii

Ii−ri
)/ri. Peskin conjectured that,

first, for identical oscillators, the system approaches a state in which all oscillators are firing
synchronously for almost all initial conditions and that, second, this remains true even when
the oscillators are not quite identical. The first part of the conjecture was essentially provedD
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STABLE SYNCHRONY INTEGRATE-AND-FIRE 1447

by Mirollo and Strogatz [41] with convex oscillators (i.e., f ′′
i < 0). The second part of Peskin’s

conjecture was verified by Urbanczik and Senn [57] with flat oscillators (i.e., f ′′
i ≡ 0). The

key feature in those proofs relies on the nonconcavity of the evolution functions fi. However,
Bottani [8] numerically showed that even concave oscillators (i.e., f ′′

i > 0) can synchronize,
provided that the concavity is not too large. The purpose of this paper is two-fold. First, we
prove the second part of Peskin’s conjecture for the system of convex oscillators. Second, we
prove Bottani’s numerical results and more. Specifically, we shall show that for the system of
n “identical” concave oscillators, no synchronization occurs for initial values in a set of posi-
tive measure, provided that n = 3 or n is even or phase responding curve h(x) = g(f(x) + ω)
is concave upward. That is to say, in general, concave oscillators may synchronize for almost
all initial conditions only if the concavity of the evolution maps is small. Indeed, we prove
that the imbalance between the speeds and/or coupling strengths of the oscillators induces the
synchronization of the system, provided that the concavity of the evolution maps is sufficiently
small.

Since the work of Mirollo and Strogatz, current research into pulse-coupled or integrate-
and-fire oscillators has become motivated by more elaborate questions (see, e.g., [25, 32, 47]).
There have been many papers [7, 13, 25, 26, 39, 45, 46, 47] discussing those more advanced
and complicated models. Some progress has also been made for more realistic biophysical
models such as oscillators subject to small noise [36], constant delays [21], or a finite duration
of synaptic response [2, 14, 22, 26].

We conclude this introductory section by mentioning the organization of the paper. Sec-
tion 2 is devoted to the stability conditions for systems of two or more oscillators. In section 3,
we derive the absorption conditions for systems of two or more oscillators. In particular, the
necessary and sufficient condition for the absorption of two oscillators is given. This, in turn,
provides some insight into the role that concavity of the evolution maps plays in determining
the absorption process for systems of more than two oscillators. Some sufficient conditions
for the absorption conditions for systems of more than two oscillators are derived. The main
results of the paper are also recorded in this section.

2. Stable partial and full synchrony. Before beginning the analysis, we give an intuitive
account of the way that synchrony develops as the system evolves: oscillators begin to clump
together in “groups” that fire at the same time. For nonidentical oscillators, such groups of
oscillators when they reach partial/full synchrony may break up again as the system continues
to evolve. Consequently, it is desirable to find stability conditions for which a group of oscilla-
tors reaching the threshold at the same time will remain coordinated in the future. Such stable
partial synchrony then gives rise to a positive feedback process, and thereby tends to grow by
“absorbing” other oscillators. Absorptions reduce the number of groups until ultimately only
one group remains—at that point the population is synchronized. The scenario above was first
pointed out for a different system by Winfree [60], and the phrase “absorption” was coined
by Mirollo and Strogatz [41]. With the characteristic of constant speed and equal coupling
strengths, the system of identical oscillators always has the stability conditions satisfied. In
this section, we shall derive stability conditions. The absorption conditions of the system are
to be derived in section 3.

Unless otherwise stated, throughout this paper, the system of oscillators under consider-
ation is either one of two types: convex or concave oscillators.D
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1448 YU-CHUAN CHANG AND JONQ JUANG

2.1. Stability conditions for two oscillators. We begin with the study of the system of
two oscillators, which provides some insight as to why the system may or may not synchronize.
The stability condition for two oscillators is to be derived in this subsection. To this end, we
first need certain common properties shared by f and its inverse g.

Lemma 2.1. Let hi : [0, 1] → [0, 1] be smooth and strictly increasing maps with hi(0) = 0
and hi(1) = 1. Moreover, we assume that hi have no inflection points and that limx→0+ xh′

i(1−
x) = 0 and limx→0+ xh′

i(x) = 0. For each i, let two points, A = (a1, a2) and B = (b1, b2), be
on y = hi(x) with b1 − a1 ≥ ωmin. Here ωmin, the minimum of coupling strength, is defined to
be

(2.1a) ωmin = min
i,j

ωij.

Let mh and Mh be, respectively, the minimum and maximum slope of the secant to hi with the
difference in x being at least ωmin. They are, respectively, defined as follows:

(2.1b) mh = min
i

{
min

{
hi(ωmin)

ωmin
,
1 − hi(1 − ωmin)

ωmin

}}
and

(2.1c) Mh = max
i

{
max

{
hi(ωmin)

ωmin
,
1 − hi(1 − ωmin)

ωmin

}}
.

Then

(2.2) Mh ≥ hi(b1) − hi(a1)
b1 − a1

≥ mh, mh ≤ 1 and Mh ≥ 1.

The equalities hold only if b1 − a1 = ωmin and a1 = 0 or b1 = 1.
Proof. We illustrate only the case that h′′

i (x) > 0 on (0, 1). Clearly, hi(a+x)−hi(a)
x ≥ hi(x)

x

for any a ≥ 0, x > 0, and 1 ≥ a + x ≥ 0. Moreover, hi(x)
x is increasing and bounded above

by 1, and 1−hi(1−x)
x is decreasing and bounded below by 1. Consequently, Mh ≥ 1−hi(1−ωmin)

ωmin
≥

hi(b1)−hi(a1)
b1−a1

≥ hi(ωmin)
ωmin

≥ mh.
Remark 2.1.

1. The geometric and physical meanings of mh and Mh can be roughly interpreted as
follows. Let the difference of two points in the vertical axis be the sum

∑
ωij of certain

coupling strengths due to the firings of certain oscillators; then the resulting difference
in h is no smaller than mh

∑
ωij and no better than Mh

∑
ωij. See Figure 1.

2. Let ωmax = maxi,j ωij. An immediate application to Lemma 2.1 and Remark 2.1.1 is
the following interpretation of the meaning of the quantities Mgωmax and mgωmin.
(a) If an oscillator is within the distance mgωmin of the threshold, then it will reach

the threshold whenever it receives an activation jump due to the firings of other
oscillators. On the other hand, if an oscillator is at least Mgωmax away from the
threshold, then it will not reach the threshold whenever it receives an activation
jump due to a single firing of another oscillator.D
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STABLE SYNCHRONY INTEGRATE-AND-FIRE 1449

Figure 1. Points O, C, A, B, D, and E are on a convex map y = h(x). In this situation, mOC is defined
as the slope of OC = Mh and mDE = mh. The assertions of Lemma 2.1 can easily be seen from the figure.

(b) If the ith oscillator has just received an impulse of strength ωij at x from the jth
oscillator, then its phase jump, gi(fi(x)+ωij)−x, is at least mgωmin and at most
Mgωmax away from the origin.

Theorem 2.2. Let

(2.3) tmax = max
i,j

Ti

Tj
, ΔT = tmax − 1, and ωmin = min

i,j
ωij.

Suppose that fi satisfy the same assumption as those maps hi in Lemma 2.1. Let

(2.4) mgωmin ≥ ΔT.

Then the system of two oscillators is stable.
Proof. Let Φ0 = (φ0

1 = 0, φ0
2 = 0) ∈ R

2. We may assume that φ0
2 has a greater speed 1

T2

and, hence, is the one that first reaches the threshold. Thus, φ1
1 = g1(f1(T2

T1
)+ω12). Therefore,

φ1
1 < 1 if and only if 1−g1(1−ω12)

ω12
ω12 < 1 − T2

T1
. If f ′′

i (x) > 0, or equivalently, g′′i (x) < 0, and
(2.4) holds, then we conclude, via (2.2), that φ1

1 ≥ 1. Consequently, the assertion of the
theorem holds. Suppose that f ′′

i (x) < 0, or equivalently, g′′i (x) > 0, and that (2.4) is satisfied.
Then 1−g1(1−ω12)

ω12
ω12 ≥ g1(ω12)

ω12
ω12 ≥ mgωmin ≥ ΔT ≥ 1 − T2

T1
. We have completed the proof of

the theorem.
The quantity ΔT is the phase difference between the fastest and slowest oscillators when

evolving freely from their lowest state 0 toward the threshold. Therefore, if (2.4) holds, then
two oscillators will remain firing synchronously according to Remark 2.1.2(a). To derive the
stability condition and the absorption condition of the system, we make use of Lemma 2.1.
From here on, we shall consider only the evolution maps that cannot turn “too” sharply
at both ends. That is, the evolution maps fi under consideration have the property that
limx→0+ xf ′

i(1 − x) = 0 and limx→0+ xf ′
i(x) = 0. It should be noted that each of the inverses

of maps fi cannot turn too sharply at both ends either.

2.2. Stable partial synchrony for n oscillators. To derive stable partial synchrony for
n oscillators, we first need to derive conditions to exclude the possibility that one oscillator
will run “too fast.” The following proposition gives conditions that will prevent any oscillator
from running too fast.D
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1450 YU-CHUAN CHANG AND JONQ JUANG

Proposition 2.3. Let hi be given as in Lemma 2.1, and let Δh and Δω be given as follows:

(2.5a) Δh = max
i,j

max
0≤φ≤1

|hi(φ) − hj(φ)|

and

(2.5b) Δω = max
i,j
i�=j

max
T

(∑
�∈T

|ωi� − ωj�|
)

,

where T ⊂ Sn − {i, j}. If n = 2, then
∑

�∈T |ωi� − ωj�| is to be interpreted as |ωij − ωji|.
1. Let Φ0 = (φ0

1, . . . , φ
0
n) with φ0

1 just reaching the threshold and being reset to zero.
Assume Uk′ , k′ = 1, 2, . . . , k, are mutually exclusive and that 1, i ∈ Sn − ⋃k

k′=1 Uk′

with φ0
i 	= 0. Suppose

m2
gmfωmin ≥

⎛⎝k−1∑
j=0

1
(mfmg)j

⎞⎠ (MgΔω + Δg + Mg(Mf (ΔT + 1)ΔT + Δf))(2.6a)

=:

⎛⎝k−1∑
j=0

1
(mfmg)j

⎞⎠Δ.

Then φk′
i ≥ φk′

1 , k′ = 1, 2 . . . , k.
2. Let

(2.6b) m2
gmfωmin ≥

⎛⎝n−1∑
j=0

1
(mfmg)j

⎞⎠Δ.

Suppose an oscillator has just reached the threshold. Then such an oscillator will not
reach the threshold again until every other oscillator does. Moreover, suppose that the
system of n oscillators undergoes one whole cycle of firings. Let the resulting phase of
the system of oscillators be Φn = (φn

i1
, φn

i2
, . . . , φn

in). Then the firing order for the next
cycle with respect to the new initial condition Φn is preserved. That is, φik2

fires no
earlier than φik1

does whenever k1 > k2.
3. Let φm

i and φm
j be any two oscillators with φm

i = φm
j < 1 and i, j /∈ Um+1. Then

the quantity Δ represents the maximum phase difference between these two oscillators
after the next firing. That is, |φm+1

i − φm+1
j | < Δ.

Proof. Let δi and ωi be given as in (1.1). Applying the mean value theorem, we get that

fi(δi) − fi(δ1) = f ′
i(ξ)

(
(1 − φ0

i0)
Ti0

Ti

(
1 − Ti

T1

)
+ φ0

i

)
≥ f ′

i(ξ)
(

(1 − φ0
i0)

Ti0

Ti

(
1 − Ti

T1

)
+ g(ωi1)

)
≥ mfmgωmin − Mf tmaxΔT.(2.7a)
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STABLE SYNCHRONY INTEGRATE-AND-FIRE 1451

Here f ′
i(ξ) = fi(δi)−fi(δ1)

δi−δ1
. The assumption that φ0

1 just reach the threshold and Lemma 2.1
have been used to justify the inequalities in (2.7a). Using (2.5a), (2.5b), (2.6a), and (2.7a),
we get that

φ1
i − φ1

1 = [gi(fi(δi) + ωi) − gi(fi(δi) + ω1)] + [gi(fi(δi) + ω1) − gi(fi(δ1) + ω1)]
+ [gi(fi(δ1) + ω1) − gi(f1(δ1) + ω1)] + [gi(f1(δ1) + ω1) − g1(f1(δ1) + ω1)]

≥
⎛⎝k−1∑

j=1

1
(mfmg)j

⎞⎠Δ.(2.7b)

Inductively, we have that

φk′
i − φk′

1 ≥
⎛⎝k−1∑

j=k′

1
(mfmg)j

⎞⎠Δ, k′ = 1, 2, . . . , k − 1,

and φk
i − φk

1 ≥ 0,(2.8)

and the first part of the proposition follows. It should be noted that on the induction part,
φ0

i in (2.7a) is to be replaced by φk′−1
i −φk′−1

1 . Other parts of the estimates remain the same.
Let Φ0 be given. Suppose that the second assertion of the proposition were false. Then there
exists a pair of indexes (i, j) such that the ith oscillator is the first oscillator reaching the
threshold and the jth oscillator is the index of the first nonzero state oscillator that is outrun
by the ith oscillator. To save notation, let the resulting phase state when the ith oscillator
reaches the threshold be reset as φ0

1, and the old index j be reset as j again. That is, φ0
1

has just arrived at the threshold. Let k be the number of firings needed for φ0
1 to reach the

threshold. From how the indexes of 1 and j are chosen, we conclude that k ≤ n − 1 and that
the spike sets associated with those firings are mutually disjoint. It follows from the first part
of the proposition that if φk

1 ≥ 1, then φk
i ≥ φk

1 ≥ 1, a contradiction. We have just completed
the proof of the first assertion of the second part of the proposition, and the second assertion
of the second part of the proposition follows. To complete the proof of the last assertion
of the proposition, we see that φm+1

i − φm+1
j can be similarly expressed as those in (2.7b).

The corresponding four terms in the brackets of (2.7b) are, respectively, bounded by MgΔω,
MgMf tmaxΔT , MgΔf , and Δg.

We are now ready to state the stability conditions for synchrony.
Theorem 2.4. Assume that the following stability condition holds:

(2.9) m2
gmfωmin ≥ max

⎧⎨⎩
n−1∑
j=0

1
(mfmg)j

,

n−2∑
j=0

(MfMg)j

⎫⎬⎭Δ.

Then any group of oscillators which reaches the threshold simultaneously at some point will
keep doing so in the future.

Proof. Let the ith and the jth oscillators be any two oscillators in the group spiking
synchronously. Now reset both oscillators as φ0

1 = φ0
2 = 0. Suppose 1 ∈ Uk+1 and 2 /∈⋃k+1

k′=1 Uk′ . It then follows from Proposition 2.3.2 that Uk′ , k′ = 0, 1, . . . , k + 1, are mutuallyD
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1452 YU-CHUAN CHANG AND JONQ JUANG

disjoint and that k ≤ n− 2. Following from Proposition 2.3.3, we conclude that |φ1
1 −φ1

2| ≤ Δ
and, inductively, |φk

1 − φk
2 | ≤ (

∑k−1
j=0

1
(Mf Mg)j )Δ. Since φk+1

2 = g2(f2(T1
T2

(1 − φk
1) + φk

2) +∑
�∈Uk+1

ω2�), the index 2 being not in the set
⋃k+1

k′=1 Uk′ implies that T1
T2

(1 − φk
1) + φk

2 <

g2(1 −∑�∈Uk+1
ω2�). Upon using (2.2), we conclude that mgωmin ≤ g′2(ξ)

∑
�∈Uk+1

ω2� <

1− T1
T2

(1−φk
1)−φk

2 ≤ ΔT +(
∑k−1

j=0 MfMg)Δ ≤ (
∑n−2

j=0 MfMg)Δ, a contradiction to (2.9).
Each of the terms in (2.9) can be verified analytically. Moreover, the inequality in (2.9)

gives a measurement as to how not quite identical the system can be to get the stability condi-
tion. Roughly speaking, stability condition (2.9) amounts to saying that the total “weighted”
measurements in how “nearly” identical the system is should be less than the minimum of
the coupling strengths of the oscillators. In particular, the system of identical oscillators is
always stable.

3. Absorption conditions. In this section, we shall derive the conditions for which the
absorption process of the system will forge ahead. In fact, we will show that the absorption
process always occurs for a system of convex oscillators satisfying stability condition (2.9).
On the other hand, the absorption process generally will not occur for a “nearly” identical
system of concave oscillators. However, for a system of concave oscillators whose concavity is
small, the absorption process is made possible by inducing an imbalance between the speeds
and coupling strengths of the oscillators.

3.1. Absorption conditions for two oscillators. We begin with the study of two oscil-
lators. Let Φ0 = (φ0

1, φ
0
2) with 0 ≤ φ0

1 < φ0
2 < 1. Assume that U1 = {2} and U2 = {1}.

Letting φ0
2 = φ, the return map R2(φ) is defined to be φ2

2, the phase of the second oscillator
immediately after the second firing. Specifically,

φ1
1 = g1

(
f1

(
T2

T1
(1 − φ0

2) + φ0
1

)
+ ω12

)
=: h1(φ),(3.1a)

φ2
2 = g2

(
f2

(
T1

T2
(1 − φ1

1)
)

+ ω21

)
=: h2(φ1

1),(3.1b)

φ2
2 = h2h1(φ) =: R2(φ).(3.1c)

Define the absorption map A2(φ) as

(3.1d) A2(φ) = R2(φ) − φ.

The domain of the return map is the set of points for which U1 = {2} and U2 = {1}. That
is, no absorption occurs within one cycle of the firings whenever the initial values are in the
domain of the return map. Now, U1 = {2} if and only if

(3.2a) φ0
2 > �12, where �ij =: 1 − Ti

Tj
gi(1 − ωij),

and U2 = {1} if and only if

(3.2b) φ1
1 > �21.D
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STABLE SYNCHRONY INTEGRATE-AND-FIRE 1453

It should be noted that the positivity of �ij can be guaranteed by (2.4). The inequalities (3.2a)
and (3.2b) amount to saying that there are limitations as to how close φ0

2 can be to 0(= φ0
1)

and 1(= φ0
1), respectively. To see why the second observation holds true, let

(3.3) γij = gj(ωji) − �ij.

Note first that (3.2b) is equivalent to

(3.4a) f1

(
T2

T1
(1 − φ0

2) + φ0
1

)
+ ω12 > f1(�21).

If

(3.4b) ω12 > f1(�21) or, equivalently, γ21 > 0,

then φ0
2 can be taken arbitrarily close to 1 from the left and (3.4a) still be satisfied. On the

other hand, if γ21 < 0, then φ0
2 cannot get too close to 1. In fact, φ0

2 < h−1
1 (�21) < 1. Thus,

the sign of γ21 determines how close φ0
2 can be to 1 and therefore determines what is the

boundary of the domain of the return map at the right end, which, in turn, influences the
direction of the flow of the return map near the boundary of the domain. Such direction of
the flow then determines whether the absorption process for the system of concave oscillators
is to occur. (See Proposition 3.3.) We next show that for “nearly” identical oscillators the
signs of γij are determined by the concavity structure of the evolution maps.

Lemma 3.1. Let ∇g be a measurement for the concavity of gi, which is defined as follows:

(3.5) ∇g = min
i

∣∣∣∣gi(ωmax) + gi(1 − ωmax) − 1
ωmax

∣∣∣∣ .
Let Δ̃ω = maxi�=j |ωij − ωji|. Assume that (2.4) and the following inequality, which is to be
called the nearly identical condition, hold:

(3.6) ωmin∇g > Δg + MgΔ̃ω + ΔT.

Then γij < 0 (resp., > 0) for all i 	= j, provided that f ′′
i < 0 (resp., > 0) for all i.

Proof. Let h̃(x) =: h(x)+h(1−x)−1
x . Here h is a map satisfying the assumptions of the

maps given in Lemma 2.1. Then h̃(x) is increasing (resp., decreasing) on (0, 1), provided that
h′′(x) > 0 (resp., < 0). To see this, we have that h̃′(x) = x(h′(x)−h′(1−x))−(h(x)+h(1−x)−1)

x2 =:
h̃1(x)

x2 and h̃1
′
(x) = x(h′′(x) + h′′(1 − x)) > 0. Therefore, limx→0+ h̃1(x) = 0, and so h̃(x) is

increasing on (0, 1). The case for h′′(x) < 0 can be similarly obtained. It is also clear that
h̃(x) ≤ 0 (resp., ≥ 0) whenever h′′(x) > 0 (resp., < 0). Consequently,

|−1 + g1(ω12) + g1(1 − ω12)| =
∣∣∣∣−1 + g1(ω12) + g1(1 − ω12)

ω12
ω12

∣∣∣∣ ≤ ∇gωmin.

Suppose (3.6) holds. Then

γij = −1 + gj(ωji) + gj(1 − ωji) + gi(1 − ωji) − gj(1 − ωji)

+ gi(1 − ωij) − gi(1 − ωji) +
(

Ti

Tj
− 1
)

gi(1 − ωij) < 0 (resp., > 0),(3.7)
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1454 YU-CHUAN CHANG AND JONQ JUANG

provided that f ′′
i (x) < 0 (resp., > 0), and the assertions of the lemma now follow.

Remark 3.1.
1. The consequences of Lemma 3.1 give that if the system of two oscillators is “nearly”

identical in the sense that (3.6) are satisfied, then the domain of the absorption map
A2 is (T1

T2
φ0

1+�12, h
−1
1 (�21)) (resp., (T1

T2
φ0

1+�12, 1)), provided that f ′′
i < 0 (resp., f ′′

i > 0)
for all i.

2. If φ0
2 is not in the domain of the absorption map, then the two oscillators must fire

simultaneously within one cycle of the firings. The corresponding system then will stay
firing synchronously, provided that stability condition (2.4) is satisfied.

The domain and monotonicity of the absorption map A2 play an important role in deter-
mining whether the system is to forge ahead in the absorption process. The following lemma
shows that the monotonicity of the absorption map depends on the concavity structure of f .

Lemma 3.2. ∂A2
∂φ > 0 (resp., < 0) on its domain, provided that f ′′

i < 0 (resp., > 0) on
[0, 1] for all i.

Proof. We illustrate only the case that f ′′
i < 0. The other cases can be similarly obtained.

Applying the chain rule, we get

∂R2

∂φ
=

∂φ2
2

∂φ

= g′2

(
f2

(
T1

T2
(1 − φ1

1)
)

+ ω21

)
f ′
2

(
T1

T2
(1 − φ1

1)
)

· g′1
(

f1

(
T2

T1
(1 − φ0

2) + φ0
1

)
+ ω12

)
f ′
1

(
T2

T1
(1 − φ0

2) + φ0
1

)
.

Using the facts that g′′i > 0 and g′i(fi(x)), f ′
i(x) = 1, i = 1, 2, we see immediately that ∂R2

∂φ > 1,
and hence ∂A2

∂φ > 0.
Proposition 3.3. Assume that (2.4) is satisfied. Then the following statements hold:
1. Let (3.6) hold or γ21 < 0. Then R2(φ) has a repelling fixed point, provided that f ′′

i < 0
for all i. If γ12 − T1

T2
φ0

1 > 0, then R2(φ) − φ > 0 for all φ in its domain.
2. If f ′′

i > 0 for all i and γ21 < 0, then R2(φ) − φ > 0 for all φ in its domain.
3. Let f ′′

i > 0 for all i. Assume that (3.6) holds. If φ0
1 < T1

T2
γ12, then R2(φ) has a stable

fixed point. If φ0
1 > T2

T1
γ12, then R2(φ) − φ < 0 for all φ in its domain.

Proof. Let φ = T1
T2

φ0
1 + �12. Then

(3.8a) A2(φ) = γ12 − T1

T2
φ0

1.

Thus A2(φ) < 0, provided that γ12 < 0. On the other hand,

(3.8b) A2(h−1
1 (�21)) = h2(�21) − h−1

1 (�21) = 1 − h−1
1 (�21) > 0,

and the first part of the proposition now follows. The second part of the proposition is a
direct consequence of Lemma 3.1, Lemma 3.2, and (3.8a). To complete the last part of the
proposition, it remains to show that A2(1) < 0 or, equivalently, f2(T1

T2
(1− g1(ω12))) + ω21 < 1D
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or, equivalently, γ12 > 0, which follows from Lemma 3.1. We have just completed the proof
of the proposition.

Theorem 3.4.
1. Assume that (2.4) holds. Then we have the following:

(a) The system of two convex oscillators, in general, fires synchronously. Specifically,
if γ21 > 0, then the synchrony of the system occurs for all initial values. Other-
wise, that is, if γ21 ≤ 0, it synchronizes for almost all initial values. Consequently,
for such a system, stability alone implies synchronization.

(b) The system of two concave oscillators converges for all initial values to synchro-
nous firing if and only if

(3.9) γ21 < 0 or γ12 < 0.

The inequalities in (3.9) are to be called the absorption condition for the system
of two concave oscillators.

2. Assume that (2.4) and (3.6) hold. Let φ0
1 = 0. Then the system of two concave

oscillators will settle into a fixed nonfiring state if and only if φ0
2 is in the domain of

the absorption map A2, that is, if �12 < φ0
2 < 1.

Proof. To discuss synchrony for the system of two oscillators, we may just assume φ0
1 = 0.

The statement 1(a) now follows from Proposition 3.3.1. The statement 2 follows easily from
Proposition 3.3.3 and Lemma 3.1. It remains to prove statement 1(b). Consider the worst
possible cases: (i) γ21 < 0 and γ12 > 0 or (ii) γ21 > 0 and γ12 < 0. The system will achieve
synchronization at finite time for all initial conditions. To see this, we consider the case (ii).
Let Φ0 = (φ0

1, φ
0
2) with 0 ≤ φ0

1 < φ0
2 < 1. Then either Φ1 is in synchrony or Φ1 = (φ1

2, φ
1
1) with

0 = φ1
2 < φ1

1 < 1. Consequently, if no synchrony is achieved after the first firing, then the
return map R2 with respect to the initial phase state Φ0 has a stable fixed point, while the
return map R2 with respect to the initial phase state Φ1 has the property that R2(φ)−φ > 0.
However, the latter case will win out because it takes φ1

1 finite time to reach the threshold
and it takes φ0

2 infinite time to reach the fixed point. On the other hand, if both γ21 and γ12

are nonnegative, then the corresponding return map has a stable fixed point.
For the system of two convex oscillators, the associated return map is (volume) expanding;

i.e., there exists some r > 1 such that |A2(φ)−A2(φ)| > r|φ− φ| for all φ 	= φ in the domain.
Thus, the absorption is bound to happen except for the initial value being the fixed point of
the absorption map. The sign of γ12 (or γ21) then plays the role of determining whether the
absorption map has a (repelling) fixed point or not. On the other hand, for the system of
concave oscillators, the corresponding return map is (volume) contracting. If the flow of the
return map at both ends of the domain points inward, which is the case for a nearly identical
system (see Proposition 3.3.3), then its return map has a stable fixed point. As a result, the
corresponding system converges to a nonfiring state. To make the system of concave oscillators
fire synchronously, the flow of the return map at both ends has to point in the same direction,
which in turn makes the absorption process go forward. The above scenario occurs whenever
there is a certain degree of imbalance between oscillators (i.e., γ12 < 0 or γ21 < 0). To see this,
note that γ12 < 0 is equivalent to g2(ω21)+ T1

T2
g1(1−ω12) < 1. For identical concave oscillators,

the inequality above will not be satisfied. Thus, to drive such a system into synchrony, the
variations in the speed and/or the coupling strength cannot be too small.D
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Figure 2. The shaded area is the set of parameters satisfying (3.10).

3.2. Feasible parameter and examples. For practical purposes, we consider how feasible
it is to verify those stability and absorption conditions. Some numerical results are also
provided to support the validity of the theorem. To simplify our calculations, we consider
the following three cases: (i) fi(x) =

√
x, gi(x) = x2, and ω12 = ω21 = ω; (ii) fi(x) = x2,

gi(x) =
√

x, and ω12 = ω21 = ω; (iii) fi(x) = x2, gi(x) =
√

x, and T1 = T2.
Case (i): Since mg = ω, (2.4) becomes

(3.10) ω2 ≥ ΔT.

In the ω − ΔT plane, the equality in (3.10) is a parabola. As shown in Theorem 3.4, no
absorption condition is needed to achieve synchrony for the system considered here. By
choosing parameters randomly from the feasible region (see Figure 2), the numerical results
(see Figure 3) indeed support our theory.

Case (ii): For case (ii), if (3.6) is satisfied, then no absorption occurs. Thus, the system
in general will not fire synchronously unless φ0

2 is too close to φ0
1 = 0. To see this, note that

∇g =
√

ω+
√

1−ω−1
ω , mg = 1−√

1−ω
ω , and Δg = Δω = 0. The stability condition and (3.6) for

the associated system then reduce to

(3.11) (1 −√
1 − ω) ≥ ΔT

and

(3.12)
√

ω +
√

1 − ω − 1 > ΔT,

respectively. The feasible parameters region in the ω −ΔT plane is nonempty (see Figure 4).
Picking parameters from this region, we see, via Figure 5, that if 0 ≤ φ0

2 < �12, then each of
the corresponding systems will fire synchronously. Otherwise, they will settle into a nonfiring
state. In fact, we choose various sets of parameters from different locations of the region, and
all the corresponding systems behave as predicted in Theorem 3.4.2 (see Figure 5).D
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Figure 3. The evolution of the synchronization order parameter χ(k) is defined as the sum of the minimum
distances between any two oscillators at the kth stage =

∑n
i=1

∑n
j=i+1 d(φk

i , φk
j ), where d(x, y) = min(|x −

y|, |x − y + 1|, |x − y − 1|). If χ(k) = 0 for some large k, then the system fires synchronously at finite time. If
limk→∞ χ(k) = 0, then the system fires synchronously eventually or asymptotically.

Figure 4. The shaded area is the set of parameters satisfying (3.11) and (3.12).

Case (iii): The absorption condition studied here is (3.9). Since ΔT = 0, the stability
condition is automatically satisfied. Moreover, (3.9) becomes

(3.13) (ω12)
1
2 + (1 − ω21)

1
2 < 1.

The feasible parameters region in the ω21-ω12 plane, as given in Figure 6, shows the “imbal-
ance” between parameters ω12 and ω21. The numerical results, as demonstrated in Figure 7,
also support our theory.D
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Figure 5. Choosing parameters Ti and ω from the shaded part in Figure 4, we see that after 500 firings,
the synchronization order parameter χ(500) is a step function with respect to the initial state φ0

2. As predicted,
if �12 < φ0

2 < 1, then the system settles into a nonfiring state. Otherwise, it fires synchronously.

Figure 6. The shaded area is the stability region for case (iii).

3.3. Absorption conditions. To understand the absorption process of a system of more
than two oscillators, we begin with defining the return map, which was originally defined
in [41]. Throughout this section, we shall assume that stability condition (2.9) holds. Unlike
the system of two oscillators, the corresponding return map under study in this section is now
a high-dimensional map. Let the system of n oscillators undergo one whole cycle of firings.
Assume that the resulting phase is denoted by (φ0

1 = 0, φ0
2, . . . , φ

0
n). Let Φ0 = (φ0

2, . . . , φ
0
n).

Then the return map Rn : Domain(Rn) =: An ⊂ R
n−1 → R

n−1 is defined to be

(3.14a) Rn(Φ0) = Φn = (φn
2 , φn

3 , . . . , φn
n) =: (r2,n(Φ0), . . . , rn,n(Φ0)).D
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Figure 7. Let the speed of the oscillators be 1. Pick the parameters ωij from the shaded region in Fig-
ure 6. The synchronization order parameter χ(k) reaches zero after 5 firings. The imbalance of parameters in
activation gives the synchrony of the system.

It should be noted, via Proposition 2.3.2, that the maps in (3.14a), (3.14b) are well defined.
Moreover,

(3.14b) Rn(Φ0) = Hn · · ·H2H1(Φ0),

where

(3.14c) Hi = τiΣ(Φ).

Here Φ = (φ2, φ3, . . . , φn),

Σ(Φ) = (σ2, σ3, . . . , σn)

=:
(

Tn

T1
(1 − φn),

Tn

T2
(1 − φn) + φ2, . . . ,

Tn

Tn−1
(1 − φn) + φn−1

)
,

and
τi(σ2, σ3, . . . , σn) = (g1(f1(σ2) + ω1,n), . . . , gn−1(fn−1(σn−1) + ωn−1,n)).

Note that we have implicitly relabeled the oscillators, so each of the image vectors Hi(Φ)
represents the phases of the oscillators 1, 2, . . . , n − 1. That is, the original oscillator 1 has
become 2, oscillator 2 has become 3, . . . , and oscillator n has become oscillator 1. It also follows
from Proposition 2.3.3, Remark 2.1.2(b), and stability condition (2.9) that domain (Rn) ⊂ S,
where S = {Φ0 = (φ0

2, . . . , φ
0
n) ∈ R

n−1 : 0 < φ0
2 < φ0

3 < · · · < φ0
n < 1}. In fact, the domain of

the return map Rn is the set of points in S so that the spike sets Ui = {n−i+1}, i = 1, 2, . . . , n.
Having such spike sets is equivalent to the following inequalities:

(3.15) φi−1
n−i+1 −

Tn−i

Tn−i+1
φi−1

n−i > �n−i, n−i+1, i = 1, 2, . . . , n,
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where �n−i, n−i+1 are defined as in (3.2a) and T0, �0,1, and φ0 are interpreted as Tn, �n,1, and
φn, respectively. Consequently, the domain An of the return map is

(3.16a) An = {Φ0 ⊂ S : the inequalities in (3.15) hold}.

Since An is the finite intersection of open sets, it is open. Moreover, the domain Ak of Hk is
the set of initial points satisfying the inequalities in (3.15) for i = 1, 2, . . . , k. So Ai is the set
of initial values that will have at least i firings before an absorption occurs. Then

(3.16b) A =
∞⋂
i=1

Ai = the set of initial values that live forever without any absorptions.

We next state some properties of the return map Rn : An → S. The first assertion of the
theorem below is essentially due to Mirollo and Strogatz (see Theorem 3.1 of [41]).

Theorem 3.5. Assume that stability condition (2.9) holds for a system of n oscillators. The
following hold true:

1. Let f ′′
i < 0 for all i. Then Rn is volume-expanding on An. Consequently, the set A

has Lebesgue measure zero.
2. Let f ′′

i > 0 for all i. Then Rn is volume-contracting on An.
Proof. To prove the first assertion of the theorem, it suffices to show that the Jacobian

determinant of Rn has absolute value greater than one. From (3.14b) and (3.14c) and the
definitions of τi and Σ, det(DRn) =

∏n
i=1 det(DHi) =

∏n
i=1 det(Dτi) det(DΣ). The map Σ is

affine and satisfies σn = I, so det(DΣ) = ±1. Note that Dτi is a diagonal matrix; thus it is
easily seen that detDΣ > 1 under the assumption that each of the evolution maps is convex.
Hence |det(DR)| > 1. The arguments for proving the second assertion of the theorem are
similar to those of the first.

Since the return map of the system of convex oscillators is volume-expanding, the set of
initial values that live forever without any absorptions has measure zero. Hence, it is the
nature of the system of convex oscillators to grow by absorbing other oscillators. On the other
hand, if the flow of the return map of the system of concave oscillators near the boundary
of the domain points inward, such as that of identical concave oscillators, then the system
converges to a fixed point, which is a nonfiring state. Hence, to break such a natural tendency
of the system one has to introduce some imbalance between the parameters so as to make the
direction of the flow point outward near a certain portion of the boundary, as in the case for
two oscillators, where a necessary and sufficient condition has been established. Due to the
technical difficulty of this, only sufficient conditions are established for systems of more than
two oscillators. Such a result is stated in the following.

Theorem 3.6. Let the number of concave oscillators under consideration be no less than
three. Assume the following absorption condition, which is to say that the imbalance measure-
ment is greater than or equal to the concavity of the inverse of the evolution maps:

(3.17)
Mg

mg
≤ max

0≤i≤n−1

(
Tiωi,i+1

Ti+1ωi+1,i

)
.

Suppose that (2.9) and (3.17) hold. Then the absorption of the system must occur.D
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Figure 8. A visualization of the claim in Step 3 of Theorem 3.6.

Proof. Let max0≤i≤n−1
Tiωi,i+1

Ti+1ωi+1,i
= Tmωm,m+1

Tm+1ωm+1,m
for some m. Suppose that no absorption

occurs after the first (n − m) firings; then we may relabel oscillators so that the indexes
m + 1, . . . , n, 1, . . . ,m of the oscillators become 1, 2, . . . , n, respectively. We then may assume
that max0≤i≤n−1

Tiωi,i+1

Ti+1ωi+1,i
= Tnωn,1

T1ω1,n
. The proof the theorem then breaks into three steps. The

first part is to prove that sufficient condition (3.17) is so given that the inequality in (3.15)
with i = n is violated whenever φ0

n is sufficiently close to 1 from the left. Consequently,
if the system is to undergo one whole cycle of firings, φ0

n must stay away from 1. That is,
φ0

n < un = un(φ0
1, . . . , φ

0
n−1) < 1 for some un depending on φ0

1, . . . , φ
0
n−1 and being away

from 1. Here un = un(φ0
1, . . . , φ

0
n−1) is a portion of the boundary of the domain of the return

map described by φn−1
1 − Tn

T1
φn−1

n = �n,1. The second step of the proof is to show that the
direction of the flow points outward to the boundary whenever φ0

n is sufficiently close to un

from the left. Finally, to complete the proof the theorem, we need to show that the return
map has no periodic points.

Step 1. Let φ0
n be sufficiently close to 1 from the left so that φ1

1 − φ1
n(= 0) < Mgωmin.

We have used Lemma 2.1 to ensure that the above assertion can be done. Note that each of
gi(fi(φ) + ω) − φ, the phase jump at φ, is decreasing in φ. Hence, the phase jump is greater
when the phase position φ is closer to the origin. Upon using Lemma 2.1, we conclude that

φn−1
1 − Tn

T1
φn−1

n < φ1
1 − φ1

n +
(

1 − Tn

T1

)
< Mgω1,n +

(
1 − Tn

T1

)
≤ Tn

T1
mgωn,1 +

(
1 − Tn

T1

)
< �n,1.

We just proved that the boundary of the domain of the return map cannot get arbitrarily
close to φ0

n = 1. Note that if n = 2, then φ1
2 = 0, and so the first inequality above is not

necessarily true.
Step 2. Suppose that φ0

n is close to un. Then φn−1
1 − Tn

T1
φn−1

n is close to �n,1. Consequently,
φn

n is close to 1. Therefore, φn
n > φ0

n whenever φ0
n is sufficiently close to un.

Step 3. Since Rn is volume-contracting, any of its periodic points, if one exists, must
be stable. Assume, to the contrary, that there exists a periodic point Φ with period k. Let
R = Rk

n. Then Φ becomes a stable fixed point of R. Moreover, the direction of the flow under
R near the boundary of the domain still points outward. Consequently, there must exist a
unstable fixed point Φ of R, a contradiction (see Figure 8).D
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1462 YU-CHUAN CHANG AND JONQ JUANG

Using Steps 1–3, we conclude that the direction of the flow of the return map points
outward to the boundary un. Hence, the absorption must occur. We have just completed the
proof of the theorem.

From the proof of the above theorem as well as that of Theorem 3.4.1(b), it is easily con-
cluded that for the system of concave oscillators to undergo the absorption process, the domain
of the return map contains only the points for which their φ0

n’s must stay away from 1. This,
in turn, makes the direction of flow near the boundary un = un(φ0

1, . . . , φ
0
n−1) point outward.

While the best possible condition to ensure such a scenario for the system of two concave os-
cillators can be obtained, it is not clear whether the condition that min1≤i≤n γi−1,i < 0 (here
γ0,1 is to be interpreted as γn,1) is the best absorption condition for the system of more than
two oscillators. Nevertheless, if the concavity of a system is small, then the inequalities in
(3.17) can be satisfied by inducing an imbalance between the speeds and weights of oscillators,
which will be demonstrated in Proposition 3.7.

We next discuss the dynamics under iteration of the absorption maps. Assume an initial
value Φ0, not necessarily in the domain of the return map. Suppose after initial firings that
the system forms k partially synchronous groups. Let the ith group, 1 ≤ i ≤ k, contain ki

oscillators, where
∑k

i=1 ki = n, and let these be treated as one new oscillator, denoted by
φi. Clearly, when oscillator φi is firing, the activation of each oscillator φj in the (i + 1)th
synchronous group, where (

∑i
�=1 k�) + 1 ≤ j ≤ ∑i+1

�=1 k� =: σi+1, is incremented by the
positive coupling

∑σi
k=σi−1+1 ωjk =: ω̃ji. For each j, σi−1 + 1 ≤ j ≤ σi, we may define

ω̃ji+1 similarly. Since the ith and (i + 1)th synchronous groups may contain more than one
oscillator, the new cycle periods T i and T i+1 of the new oscillators φi and φi+1 are chosen as
the minimum cycle periods among the oscillators in each group, i.e., T i = minσi−1+1≤i≤σi Ti

and T i+1 = minσi+1≤i≤σi+1 Ti. That is, the speed of each group is chosen to be the fastest
speed among oscillators in the group. With T i and T j now being fixed, the corresponding
new coupling strengths ωi,i+1 and ωi+1,i are so chosen that

(3.18) max
σi−1+1≤�≤σi

(
max

σi+1≤j≤σi+1

T iω̃�,i+1

T i+1ω̃j,i

)
=

T iωi,i+1

T i+1ωi+1,i

.

The idea for such choices is to make the inequality (3.17) as easy as possible to satisfy. Due to
the presence of the stability condition, we are allowed to make such choices. For these newly
formed synchronous groups to continue their absorption process, we need to further assume
that for any permissible set {k, k1, k2, . . . , kk}, where 2 < k ≤ n and

∑k
i=1 ki = n,

(3.19)
Mg

mg
≤ max

0≤i≤k−1

(
T iωi,i+1

T i+1ωi+1,i

)
.

The right-hand side of the inequality above is to be called the imbalance measurement for
the system of more than two oscillators. Note that the quantity Mg

mg
is a measurement for the

concavity of g. The closer Mg

mg
is to 1, the more flat the g is. With such an absorption condition,

the system continues to grow by absorption until it reaches full synchrony or reduces to two
synchronous groups of oscillators. To ensure that these two synchronous groups continue to
grow by absorption, we need to have a modified absorption condition for these two groups.D
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To this end, we assume that the first group consists of old oscillators φ�1 , . . . , φ�2 , where
1 ≤ �1 < �2 < n or 1 < �1 < �2 ≤ n, while the second group contains the remaining
oscillators. Then the parameters in γ12 and γ21, as given in (3.3), need to be updated as
well. Let N1 = {�1, . . . , �2} and N2 = {1, 2, . . . , n} − N1. Set ω̃j1 =

∑
i∈N1

ωji, j ∈ N2,
and ω̃j2 =

∑
i∈N2

ωji, j ∈ N1. Define the new cycle periods of groups N1 and N2 to be the
minimum cycle periods among the oscillators in each group. Denote such new periods by T 1

and T 2. Let

(3.20a) γ12(�1, �2) = min
i∈N1
j∈N2

(
gj(ω̃j1) − 1 +

T 1

T 2

gi(1 − ω̃i2)
)

and

(3.20b) γ21(�1, �2) = min
j∈N1
i∈N2

(
gj(ω̃j2) − 1 +

T 2

T 1

gi(1 − ω̃i1)
)

.

Then the absorption condition for any two sizes of synchronous groups of oscillators is

(3.20c) min
{

max
�1,�2

γ12(�1, �2),max
�1,�2

γ21(�1, �2)
}

< 0.

The left-hand side of the inequality in (3.20c) is to be called the imbalance measurement for
the system of two oscillators. With those absorption conditions on hand, one would expect the
full synchrony of the system. The drawback of absorption conditions (3.19) and (3.20c) is that
when n is large, there are enormously many cases needing to be checked. As a consequence,
the question of nonemptiness of the set of parameters satisfying the constraints (3.19) and
(3.20c) has to be addressed.

Proposition 3.7. Let the coupling strengths ωij(= ω) of a system of n oscillators all be
equal. Let the period cycles of oscillators all be different. Assume that ω < 2

n and that

(3.21)
[n3 ] + 1

[n3 ]
> tmax.

Then the absorption conditions (3.19) and (3.20c) are satisfied, provided that the concavity of
the evolution maps is sufficiently small.

Proof. With the speed of oscillators being all different, tmax > 1. Suppose that the
absorption occurs after the initial firings. Assume that the system evolves into k, k > 2,
synchronous groups with sizes of groups being k1, k2, . . . , and kk. If k1 = k2 = · · · = kk,
then the system continues to grow by absorption, provided that Mg

mg
is sufficiently close to 1.

Suppose that the sizes of k synchronous groups are not all equal. Then there must exist an
index i for which ωi,i+1

ωi+1,i
≥ ([n3 ] + 1)/[n3 ] > tmax. Here [x] is the greatest integer that is equal

to or less than x. Consequently, the imbalance measurement for this system is greater than
one. The system then must reach full synchrony or reduce to the system of two synchronous
groups, provided that the concavity of the evolution maps is small. In the case of the latter,D
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we assume that the sizes of these two groups N1 and N2 are � and n− �, respectively, and let
fi(x) = x for all i. Then (3.20c) reduces to

γ12(�, n − �) = �ω −
(

T i

T j

)
(n − �)ω +

T i

T j

− 1, i ∈ N1, j ∈ N2,

γ21(�, n − �) = (n − �)ω −
(

T j

T i

)
�ω +

T j

T i

− 1, i ∈ N1, j ∈ N2.

If n is even and � = n − �, then

γ12(�, n − �) =
(

T i

T j

− 1
)(

1 − nω

2

)
and γ21(�, n − �) =

(
T j

T i

− 1
)(

1 − nω

2

)
.

Since tmax > 1, either γ12(�, n− �) or γ21(�, n− �) is negative. If n− � = � + �1, where �1 ≥ 1,
then γ12(�, n − �) = ( T i

T j
− 1)(1 − �ω) − T i

T j
�1ω. Suppose T i

T j
≤ 1. Then γ12(�, n − �) < 0.

If T i

T j
> 1, then γ12(�, n − �) < ΔT − ωmin ≤ 0. The last inequality is justified by stability

condition (2.4). The case that � = (n − �) + �1, where �1 ≥ 1, can be similarly addressed.
Therefore, the remaining two synchronous groups will achieve full synchrony, provided that
the concavity of the evolution maps is small.

The result of the proposition supports the numerical observation of Bottani [8]. We next
define phase responding function h(x) and phase difference function D(x). Both functions are
helpful in determining the direction of the flow of the system near the boundary of the return
map whenever the number of oscillators is greater than three. Assume that an oscillator
receives an activation ω at x. Let the resulting phase g(f(x) + ω) be denoted by h(x), and
define D(x) as

(3.22) D(x) = h(x + a) − h(x).

Here a > 0 is a constant.
Proposition 3.8.
1. Consider an identical system of three concave oscillators. That is, fi ≡ f , gi ≡ g,

Ti ≡ T , and ωij = ω. Then the direction of the flow near the boundary of the domain
of the return map points inward.

2. Suppose h′′(x) > 0. Then D(x) is increasing in x.
3. Consider an identical system of n concave oscillators. If h′′(x) > 0, then

(3.23) φ0
n − φ0

n−1 < φn
n − φn−1

n−1

whenever φ0
n−φ0

n−1 is sufficiently close to �ij = 1−g(1−ω) from the left. Consequently,
the direction of the flow of the system points inward near the boundary of the domain
of the return map.

Proof. The boundary of the domain of the return map consists of three pieces of curves
Γ1, Γ2, and Γ3 defined by φi−1

n−i+1 − φi−1
n−i = 1− g(1−ω), i = 1, 2, 3, respectively. To prove the

first part of the proposition, it suffices to show that for i = 1, 2, 3

(3.24) φi−1
n−i+1 − φi−1

n−i < φn+i−1
n−i+1 − φn+i−1

n−iD
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Figure 9. The initial position and ending position of each arrow are (φ0
2, φ

0
3) and (φ3

2, φ
3
3), respectively.

The direction of the flow near the boundary of the domain of the return map indeed points inward as predicted.

whenever φi−1
n−i+1−φi−1

n−i are sufficiently close to 1−g(1−ω). The inequalities in (3.24) amount
to saying that R(φ0

2, φ
0
3) = (φ3

2, φ
3
3) are moving further away from their respective boundaries

whenever (φ0
2, φ

0
3) are near Γ1, Γ2, and Γ3, respectively (see Figure 9). To this end, we first

prove that Γ3 can be interpreted as φ0
3 = 1. For any φ0

3 < 1, we have that φ1
1 > g(ω). And

so, for any φ0
2 + 1 − g(1 − ω) < φ0

3 < 1, we see that φ2
1 − φ2

3 = φ1
1 − (φ2

3 − (φ2
1 − φ1

1)) >
g(ω) − (g(ω) − (1 − g(1 − ω))) = 1 − g(1 − ω). We have used the fact that the phase jump
function h(x) − x is decreasing to justify the above inequality. Hence, Γ3 can be interpreted
as claimed. Now, if φ0

3 − φ0
2 ≈ (1− g(1−ω))−, then φ1

2 ≈ 1−, and so φ2
3 − φ2

2 ≈ (g(ω))+. Here
φ2

2 = 0. Consequently, φ3
3−φ3

2 = φ2
3−((φ3

2−φ2
2)−(φ3

3−φ2
3)) > g(ω)−(g(ω)−(1−g(1−ω))) =

1 − g(1 − ω). To prove (3.24) for i = 1, it remains to show that there exists an ε > 0 such
that φ3

3 − φ3
2 = 1 − g(1 − ω) + ε whenever (φ0

2, φ
0
3) is near the boundary of Γ1. To prove

this, we need to make sure that R(φ0
2, φ

0
3) stay away from 1 − g(1 − ω) whenever (φ0

2, φ
0
3)

are near Γ1 ∩ Γ2 and Γ1 ∩ Γ3 (see Figure 9). Suppose that (φ0
2, φ

0
3) is near the boundaries

of Γ1 and Γ2. Then φ2
1 ≈ 1−. Thus, φ3

3 − φ2
3 ≈ g(2ω) − g(ω) = 1 − g(1 − ω) + ε, where

ε > 0. Similarly, if (φ0
2, φ

0
3) is near the boundaries of Γ1 and Γ3, φ3

3 −φ3
2 is also bounded away

from 1 − g(1 − ω). Hence, φ3
3 − φ3

2 is bounded away from 1 − g(1 − ω) whenever (φ0
2, φ

0
3) is

near the boundary of Γ1. Similarly, one can prove that (3.24) holds for i = 2, 3. We have
completed the first assertion of the proposition. The second assertion of the proposition is
obvious. Suppose φ0

n − φ0
n−1 ≈ (1− g(1− ω))−. Then φ1

n−1 ≈ 1−. Since D(x) is increasing in
x, φ2

n − φ2
n−1 ≥ h(ω) − h(0) = g(ω). Inductively, we see that

φn
n − φn

n−1 ≥ g((n − 1)ω) − g((n − 2)ω) > 1 − g(1 − ω).

The second assertion of the proposition has been used repeatedly to justify the first inequality
above. The second inequality above follows from (2.2). Therefore, (3.23) holds whenever φ0

n

is sufficiently close to 1 − g(1 − ω). Hence, the direction of the flow of the system near theD
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Figure 10. For the choice of f , its phase responding function h(x) is concave upward. The system in
general does not synchronize as predicted in Proposition 3.8.3 and Theorem 3.9.2(b).

Figure 11. For the choice of f , its phase responding function h(x) is concave downward. Nevertheless, the
system in general does not synchronize either.

piece of boundary defined by φ0
n − φ0

n−1 = 1 − g(1 − ω) points inward. Similarly,

φi−1
n−i+1 − φi−1

n−i < φn+i−1
n−i+1 − φn+i−1

n−i , i = 2, . . . , n,

whenever φi−1
n−i+1 − φi−1

n−i is close to 1 − g(1 − ω). We have just completed the proof of the
proposition.

Two questions naturally arise from the proposition above. First, is the restriction h′′(x) >
0 necessary for the validity of the second assertion of Proposition 3.8? Second, what kind of
evolution maps with f ′′ > 0 satisfy the constraint h′′(x) > 0? For the first question, we expect
that the answer should be no (see Figures 10 and 11). However, we are unable to prove this.D
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Figure 12. Two graphs of h(x) with two different f ’s are shown above. Their graphs are all concave upward.

For the second question, we see in Figure 12, via the help of the computer, that f(x) = xr,
r > 1, and f(x) = 1 − cos(πx/2) satisfy h′′(x) > 0.

We are now ready to state the main result of the paper.

Theorem 3.9.

1. Suppose that stability condition (2.9) holds. Then the system of convex oscillators will
achieve synchrony for all initial values, except possibly for those in a set of measure
zero. In particular, the system of identical convex oscillators is to fire synchronously
for all initial values, expect for those in a set of measure zero.

2. (a) The identical system with an even number of concave oscillators will not achieve
full synchrony for certain initial values in a set of positive measure.

(b) Suppose that the phase responding function h(x) is concave upward. Then the
identical system of concave oscillators will not synchronize for all initial values
in the domain of its return map.

(c) The identical system of three concave oscillators will not synchronize for all initial
values in the domain of its return map.

3. Suppose that stability condition (2.9) and the absorption conditions (3.19) and (3.20c)
are satisfied. Then the system of concave oscillators will achieve synchrony for all
initial values.

Proof. As shown in Theorem 3.5.1, the natural tendency of the system of convex oscillators
is to grow by absorption regardless of their coupling strengths and speeds. Therefore, the
system will continue to grow by absorption even though we need to update the new coupling
strengths and speeds at each stage. The assertion of the first part of the theorem now follows.
The third assertion of the theorem is now obvious. It remains to prove the second assertion
of the theorem. To this end, let the number of oscillators be 2k, and let ω and T be the
constant coupling strength and constant cycle period, respectively. Pick Φ0 = (φ0

1, φ
0
2, . . . , φ

0
n)D
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Figure 13. The choice of f as above has the properties that f ′′(x) > 0 and h′′(x) < 0. Since the number of
oscillators chosen in this case is even, the numerical result demonstrated as above is consistent with the result
of Theorem 3.9.2(a).

to satisfy that

φ0
j ∈ (1 − mgω,1), j = k + 1, . . . , n, and(3.25)

φ0
1, . . . , φ

0
k ∈ (Mg(k + 1)ω − mgω, Mg(k + 1)ω).

It then follows from Remark 2.1.2(a) that the system will reduce to two synchronous groups
after initial firings. In fact, the first group contains oscillators φ1

1, . . . , φ
1
k. The new coupling

strengths for these two groups are equal. Denote by γ̃21 and γ̃12 the new corresponding γ21

and γ12, respectively. Then γ̃21 = γ̃12 = g(kω) + g(1 − kω) − 1 > 0. Therefore, such a set of
the initial values, which has a positive measure, will converge to a nonfiring state (see Figure
13). The assertions in 2(b) and 2(c) are now direct consequences of Proposition 3.8. We have
just completed the second part of the theorem.

The numerical stimulation suggests that a “nearly” identical system of any number of
oscillators in general will not synchronize with or without the requirement that the phase
responding curve be concave upward. Such a conjecture remains to be completed.

3.4. Examples and discussion. For the illustration of Theorem 3.9, the following three
cases of systems of three oscillators are considered: (i) fi(x) =

√
x, ωij = ω; (ii) fi(x) = x1.3

or fi(x) = 7
2 −

√
(7
2)2 − 6x, Ti = T , and ωij = ω; (iii) fi(x) = xr, where r > 1, and ωij = ω.

Case (i): For this case, mg = ω, mf = 1−√
1−ω

ω , Mg = 2 − ω, and Mf = 1√
ω
. Moreover,

we have that 1
mgmf

≥ MgMf . Thus, as n = 3, equation (2.9) becomes

(3.26)
m4

gm
3
fω

(1 + mfmg + m2
fm2

g)MfMg
≥ ΔT (ΔT + 1).

The corresponding feasible parameters region in ω − ΔT is plotted in Figure 14. In theD
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Figure 14. The shaded part of the region is the set of parameters (ω,ΔT ) satisfying stability condition (3.26).

Figure 15. χ(t), the synchronization order parameter, is defined in Figure 3. The parameters ωij and Ti

are chosen so as to be from the stability region, Figure 14. With initial state being given as above, the system
reaches full synchrony in 10 firings.

numerical simulations, we pick randomly more than 20 sets of parameters with various sets
of initial values; all the numerical results suggest the synchrony of the system. One such
set of parameters and initial values and its corresponding numerical results are recorded in
Figure 15.

Case (ii): The identical system is considered here. Let the number of oscillators be three.
Figures 16 and 17 give the set of initial values not reaching synchrony, which contains the
domain of the return map. Γ3 is interpreted as φ0

3 = 1.
Case (iii): The case under consideration is the system of concave oscillators satisfying

stability condition (2.9) and a modified absorption condition, which is stronger but easier toD
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Figure 16. The set of initial values reaching synchrony numerically is denoted by the dotted region. The
points not in the dotted region, including the shaded region, will not acquire synchrony. In fact, the shaded
region is the domain of the return map. This figure is consistent with the assertion of Theorems 3.9.2(b) and
3.9.2(c).

Figure 17. The set of initial values reaching synchrony numerically is denoted by the dotted region. The
points not in the dotted region, including the shaded region, will not acquire synchrony. In fact, the shaded
region is the domain of the return map. This figure supports the assertion of Theorem 3.9.2(c).

verify. Specifically, we consider the following absorption condition:

(3.27)
n

n − 2
> tmax = ΔT + 1 >

Mg

mg
.

With such a stronger condition, the system will achieve full synchrony or reduce to two
synchronous groups. However, in the case of the latter, to acquire full synchrony, the concavity
of the evolution maps is still required to be sufficiently small. Numerically, we have that theD
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(a) The shaded part above is the region
satisfied by both stability condition (2.9)
and absorption conditions (3.27) for n = 4.

(b) The shaded part above is the region
satisfied by both stability condition (2.9)
and absorption conditions (3.27) for n = 5.

Figure 18.

Figure 19. Let f(x) = x1.005. χ(t), the synchronization order parameter, is defined in Figure 3. The
parameters ωij and Ti are so chosen to be in the stability region, Figure 18. Note that 5 is a prime number.
Hence, when absorption occurs, the system breaks into a number of synchronous groups with their sizes being
not all equal. Such an imbalance in coupling strength speeds the process of full synchrony. With initial state
being given as above, the system reaches full synchrony in 6 firings.

line
{
(ω,ΔT ) : ΔT = [ n

3
]+1

[ n
3
]

}
does not intersect with the boundary of the stability condition.

The parameter regions in the ω−ΔT space satisfying (2.9) and (3.27) are, respectively, shown
in the shaded regions in Figure 18(a) and (b). Picking the parameters from these regions,
we see, in Figures 19 and 20, that the systems of both five and four concave oscillators reach
full synchrony after a number of firings, provided that the concavity of the evolution maps is
small. It should be mentioned that if n is a prime number, whenever the absorption occurs the
system will acquire full synchrony in a short period of time. In this scenario, the imbalance
in coupling strengths for the newly formed system is significant. In fact, it needs only sixD
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Figure 20. With the evolution map, parameters, and initial state being given as above, the system reaches
full synchrony in 180 firings. The reason that it takes so long for the system to synchronize is because n
is an even number. When the absorption occurs, each of the synchronous groups may still have equal cou-
pling strengths. Consequently, it takes longer for the system to synchronize since the imbalance in speed is
insignificant.

Figure 21. The horizontal axis is the exponent of the evolution map of the form f(x) = xr, r > 1. We plot
χ(k), 1000 ≤ k ≤ 1010, on the vertical axis. 1000 firings are needed to determine whether the corresponding
system will achieve full synchrony or not. From the computer simulation, we see that the system will reach full
synchrony, provided that r is roughly less than 1.009.

firings to achieve full synchrony for n = 5. As for n = 4, the number of firings is 180 to
secure synchrony. (See Figures 19 and 20, respectively.) To further support the validity of
Proposition 3.7, we consider the evolution maps of the form f(x) = xr, r > 1. The smaller r
is, the smaller its concavity is. Treat r as a bifurcation parameter; Figures 21–23 show how
we determine the smallest r that will make its corresponding system synchronize with variousD
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Figure 22. Since 5 is a prime number, the imbalance measurement is “relatively” large if and when the
system reduces to two synchronous groups. Therefore, the system is allowed to have a “larger” concavity at
r ≈ 1.3.

Figure 23. With a greater number of oscillators present in the system, the computer simulation is consistent
with the theory predicted in Proposition 3.7.

choices of sizes of oscillators.
In conclusion, we prove stable synchrony for an integrate-and-fire model provided by

Mirollo and Strogatz. Our results include the proof of Peskin’s second conjecture. The
next question is whether the results obtained here can be generalized to higher dimensional
oscillators such as conductance-based models of neurons and/or phase-coupled networks via
phase-response curves (see, e.g., [25] and the work cited therein). Note that the system
presented here is just a special case for the phase-response curves approach. Nevertheless, the
key ingredients for proving the full synchrony for those more current and advanced models
should remain the same even though new technical difficulties might arise. For instance,D
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we still need to derive stability conditions so that the nonidentical system behaves like the
identical system. We also need to have some kind of absorption conditions. For example,
if the underlining model is dissipative, i.e., its time T -map decreases volume for all T > 0,
then the natural tendency of the system would be to settle into a nonfiring state unless the
direction of the flow of the “associated” return map points outward. If, on the other hand,
the underlining model is volume-expanding, then the absorption process of the system tends
to occur. It is certainly worthwhile to work on those problems.

Acknowledgments. The authors would like to thank the editor and referees for their
helpful comments.

REFERENCES

[1] L. F. Abbott, A network of oscillators, J. Phys. A, 23 (1990), pp. 3835–3859.
[2] L. F. Abbott and C. van Vreeswijk, Asynchronous states in networks of pulse-coupled oscillators,

Phys. Rev. E, 48 (1993), pp. 1483–1490.
[3] V. N. Belykh, N. N. Verichev, L. J. Kocarev, and L. O. Chua, Chua’s Circuit: A Paradigm for

Chaos, World Scientific, Singapore, 1993.
[4] V. N. Belykh, I. V. Belykh, K. V. Nevidin, and M. Hasler, Hierarchy and stability of partially

synchronous oscillations of diffusively coupled dynamical systems, Phys. Rev. E, 62 (2000), pp. 6332–
6345.

[5] V. N. Belykh, I. V. Belykh, K. V. Nevidin, and M. Hasler, Cluster synchronization in three-
dimensional lattices of diffusively coupled oscillators, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13
(2003), pp. 755–799.

[6] V. N. Belykh, I. V. Belykh, and M. Hasler, Connection graph stability method for synchronized
coupled chaotic systems, Phys. D, 195 (2004), pp. 159–187.

[7] I. Belykh, E. de Lange, and M. Hasler, Synchronization of bursting neurons: What matters in the
network topology, Phys. Rev. Lett., 94 (2005), paper 188101.

[8] S. Bottani, Pulse-coupled relaxation oscillators: From biological synchronization to self-organized criti-
cality, Phys. Rev. Lett., 74 (1995), pp. 4189–4192.

[9] A. Brailove, The dynamics of two pulse-coupled relaxation oscillators, Internat. J. Bifur. Chaos Appl.
Sci. Engrg., 2 (1992), pp. 341–352.

[10] P. C. Bressloff and S. Coombes, Synchrony in an array of integrate-and-fire neurons with dendritic
structure, Phys. Rev. Lett., 78 (1997), pp. 4665–4668.

[11] P. C. Bressloff and S. Coombes, Desynchronization, mode locking, and bursting in strongly coupled
integrate-and-fire oscillators, Phys. Rev. Lett., 81 (1998), pp. 2168–2171.

[12] P. C. Bressloff and S. Coombes, Symmetry and phase-locking in a ring of pulse-coupled oscillators
with distributed delays, Phys. D, 126 (1999), pp. 99–122.

[13] J. Buck, Synchronous rhythmic flashing of fireflies. II, Quart. Rev. Biol., 63 (1988), pp. 265–289.
[14] C. Chow, Phase-locking in weakly heterogeneous neuronal networks, Phys. D, 118 (1998), pp. 343–370.
[15] H. Daido, Lower critical dimension for populations of oscillators with randomly distributed frequencies:

A renormalization-group analysis, Phys. Rev. Lett., 61 (1988), pp. 231–234.
[16] H. Daido, Intrinsic fluctuation and its critical scaling in a class of populations of oscillators with dis-

tributed frequencies, Progr. Theoret. Phys., 81 (1989), pp. 727–731.
[17] H. Daido, Intrinsic fluctuations and a phase transition in a class of large populations of interacting

oscillators, J. Statist. Phys., 60 (1990), pp. 753–800.
[18] G. B. Ermentrout and N. Kopell, Frequency plateaus in a chain of weakly coupled oscillators, SIAM

J. Math. Anal., 15 (1984), pp. 215–237.
[19] G. B. Ermentrout, Synchronization in a pool of mutually coupled oscillators with random frequencies,

J. Math. Biol., 22 (1985), pp. 1–9.
[20] G. Ermentrout, An adaptive model for synchrony in the firefly Pteroptyx malaccae, J. Math. Biol., 29

(1991), pp. 571–585.D
ow

nl
oa

de
d 

04
/3

0/
14

 to
 1

40
.1

13
.3

8.
11

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

STABLE SYNCHRONY INTEGRATE-AND-FIRE 1475

[21] U. Ernst, K. Pawelzik, and T. Geisel, Delay-induced multistable synchronization of biological oscil-
lators, Phys. Rev. E, 57 (1998), pp. 2150–2162.

[22] W. Gerstner, J. L. van Hemmen, and J. D. Cowan, What matters in neuronal locking, Neural
Computation, 8 (1996), pp. 1653–1676.

[23] W. Gerstner and W. M. Kistler, Spiking Neuron Models. Single Neurons, Populations, Plasticity,
Cambridge University Press, Cambridge, UK, 2002.

[24] W. Gerstner, R. Ritz, and J. L. van Hemmen, A biologically motivated and analytically soluble model
of collective oscillations in the cortex: I. Theory of weak locking, Biolog. Cybernet., 68 (1993), pp.
363–374.

[25] P. Goel and B. Ermentrout, Synchrony, stability, and firing patterns in pulse-coupled oscillators,
Phys. D, 163 (2002), pp. 191–216.

[26] D. Hansel, G. Mato, and C. Meunier, Synchrony in excitatory neural networks, Neural Computation,
7 (1995), pp. 307–337.

[27] D. Hansel and G. Mato, Existence and stability of persistent states in large neuronal networks, Phys.
Rev. Lett., 86 (2001), pp. 4175–4178.

[28] E. Izhikevich, Class 1 neural excitability, conventional synapses, weakly connected networks, and math-
ematical foundations of pulse-coupled models, IEEE Trans. Neural Networks, 10 (1999), pp. 499–507.

[29] J. Jalife, Mutual entrainment and electrical coupling as mechanisms for synchronous firing of rabbit
sinoatrial pacemaker cells, J. Physiol., 356 (1984), pp. 221–243.

[30] J. Juang, C. L. Li, and Y. H. Liang, Global synchronization in lattices of coupled chaotic systems,
Chaos, 17 (2007), paper 033111.

[31] J. Juang and Y.-H. Liang, Synchronous chaos in coupled map lattices with general connectivity topology,
SIAM J. Appl. Dyn. Syst., 7 (2008), pp. 755–765.

[32] N. Kopell and G. B. Ermentrout, Mechanisms of phase-locking and frequency control in pairs of
coupled neural oscillators, in Handbook of Dynamical Systems, Vol. 3, Towards Applications, B.
Fiedler, G. Iooss, and N. Kopell, eds., Elsevier, New York, 2000.

[33] Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators, in International Sym-
posium on Mathematical Problems in Theoretical Physics, Lecture Notes in Physics 39, H. Araki,
ed., Springer, Berlin, 1975, pp. 420–422.

[34] Y. Kuramoto, Chemical Oscillations, Waves and Turbulence, Springer-Verlag, New York, 1984.
[35] Y. Kuramoto and I. Nishikawa, Statistical macrodynamics of large dynamical systems. Case of a phase

transition in oscillator communities, J. Statist. Phys., 49 (1987), pp. 596–605.
[36] Y. Kuramoto, Collective synchronization of pulse-coupled oscillators and excitable units, Phys. D, 50

(1991), pp. 15–30.
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