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Abstract— Most investigations on the effect of channel memory
on the performance of block codes use a two-state Gilbert-
Elliott (GE) model to describe the channel behavior. As there are
circumstances that the channel of concern can not be properly
described by the GE model, there are some recent works on
coded performance [5-7] that characterize the channel behavior
by a general finite-state Markov chain. This letter presents a
new efficient systematic approach to analyze the performance
of block codes in such a hidden Markov channel (HMC).
An application example is given to predict codeword error
probability performance of an RS-coded system in a channel
with memory. Numerical results are also provided to validate
our analytic results.

Index Terms— Gilbert-Elliott (GE) model, hidden Markov
channel (HMC), interleaver.

I. INTRODUCTION

THE effect of channel memory on the performance of
an error-correcting code is often analyzed by the use of

some Markovian channel models [1-6]. Most analysis used the
Gilbert-Elliott (GE) channel model to evaluate the influence
of finite interleaving. However, it is known that the simple GE
model can not properly describe some of the important channel
characteristics [3]. Performance analysis for block codes in
general finite-state Markov channels can be found in [5-7], this
letter presents a new systematic and computational-efficient
method and derives the associated conditional probabilities
to accurately predict the codeword error probability (CEP).
Because of space limitation we only present one application
example here although our general analysis can be applied to
other cases.

In the following section we discuss a communication system
in which the corresponding channel is best described as a
hidden Markov model (HMM) with at least four states and
evaluate the corresponding parameters. Section III focuses
on the evaluation of the CEPs. We first give a general CEP
expression which is in turn decomposed into some conditional
CEPs. Based upon the methods to derive the probability of an
error event in an arbitrary s-state Markov chain proposed in
[5], we derive the general forms of various conditional CEPs
and the specific expressions of each CEP for the the channel
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of Section II. Finally, some numerical examples and related
discussion are provided in Section IV.

II. HIDDEN MARKOV CHANNELS AND MODELS

Consider the system whose (source) data stream is first
encoded by an M−ary (n, k) block code, e.g., a singly-
extended Reed-Solomon code, where n = pm for a prime p
and an integer m, the coded symbols are then interleaved by
a block symbol interleaver before being mapped into M -ary
orthogonal signals (M = n). The carrier of the sequence of the
resulting orthogonal signals is hopped periodically according
to some predetermined pattern. We assume that the received
signal suffers from (i) additive white Gaussian noise (AWGN)
whose one-sided power spectral density (PSD) is N0 W/Hz,
(ii) frequency nonselective fading, i.e., the received amplitude
remains constant during a symbol period, and (iii) partial band
noise jamming whose probability of presence is µ, 0 < µ ≤ 1.

We assume that a hop duration is a multiple of the depth
of the block interleaver used, where the interleaver size KI is
equal to the product of its depth (m) and span (n). There will
be several hops in one interleaving block and, at the interleaver
output, symbols in several adjacent rows will be in the same
hop. Let H be the number of hops per KITs seconds and
assume n = HS and J out of H hops are jammed. Therefore,
the number of jammed symbols in one codeword is JS and
the remaining n − JS symbols are free of jamming.

Obviously, the classic two-state GE model does not suffice
to characterize this channel; one needs at least four states to
indicate the jammer states (jammed versus unjammed) and the
fading states (good versus bad), i.e., there are four channel
states, namely, the unjammed and good (Gu), unjammed and
bad (Bu), jammed and good (GJ ) and jammed and bad (BJ )
states; see Fig. 1. They represent respectively whether the
jammer is present and/or the received average SNR is greater
than a certain threshold.

The hopping rate and the interleaver structure impose con-
straints on the allowable state transitions in the above channel
model. Depending on whether the first codeword symbol is
jammed, the channel will degenerates to a two-state GE model
in the next S − 1 consecutive symbol intervals (Gu vs. Bu or
GJ vs. BJ ). The channel will not return to a four-state model
again until the (S + 1)th symbol interval. For convenience,
each of the two groups of states is referred to as a superstate
(Fig. 1).

A partial band noise jammer (PBNJ) distributes its total
power PJ evenly over a continuous spectrum of WJ Hz. Let
Wss be the total hopping bandwidth then µ = WJ/Wss ≤ 1
is the probability that the PBNJ is present in the signal band.
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Fig. 1. A four-state model for jammed Rayleigh channels.

Within the jammed band, the transmitted signal is corrupted
by an equivalent AWGN whose PSD level NT is equal to
NJ/µ + N0, where NJ = PJ/Wss; otherwise the PSD level
is NT = N0. When a hop is not jammed, the channel behaves
just like the GE model [1]. Hence the transition probabilities
gu (Bu to Gu) and bu (Gu to Bu) are given by

gu =
ρfDTs

√
2π

eρ2 − 1
(1a)

bu = ρfDTs

√
2π (1b)

where fD is the Doppler frequency, Ts is the symbol
duration and ρ = γt/γ is the ratio between the channel state
threshold and the average SNR of the received signal. Note
that the product fDTs determines the average fade duration
in the sense that a smaller fDTs implies smaller transition
probabilities and larger probabilities of staying at a given
state. The choice of the threshold, as found by [1], has, in
many cases, little impact on the accuracy of the model if it is
within a reasonable range. On the other hand, when a hop is
jammed, the average SNR of the received signal γJ is equal
to cγ, where c = NT /N0. The transition probabilities gJ (BJ

to GJ ) and bJ (GJ to BJ ) then can be easily modified by
substituting ρJ for ρ where ρ2

J = γt/γJ .

III. CODEWORD ERROR PROBABILITY ANALYSIS

The CEP Pw(e) performance of a block code in an
Hidden Markov (HM) channel can be decomposed into a
sum of some conditional CEPs. For an s-state HM channel
(HMC), if we denote by Es = (n1, · · · , ns) and Pn(Es), the
event that during an n-symbol period, the channel is in state
j for nj (symbol) times, j = 1, · · · , s, and the corresponding
probability then

Pw(e) =
∑
Es

Pw(e|n1, · · · , ns)Pn(n1, · · · , ns)

=
∑
Es

Pw(e|Es)Pn(Es), (2)

where Pw(e|Es) = Pw(e|n1, · · · , ns) is the conditional CEP
given Es and Pn(Es) is called the channel state-sequence
(CSS) probability.

A. Conditional error probabilities

Besides the CSS probabilities, we still have to compute
the conditional CEP Pw(e|Es) to obtain the unconditional

CEP Pw(e). The evaluation of Pw(e|Es), in turn, relies
on the knowledge of the following component conditional
probabilities.

PT (t) = Pr{t symbols of a codeword are incorrectly

detected but not erased} (3a)

PE(�) = Pr{� erasures in one codeword} (3b)

Pe|i = Pr{a symbol is erased|channel state = i } (3c)

Ps|i = Pr{a symbol is incorrectly detected|channel

state = i} (3d)

Pc,e|i = Pr{a symbol is correctly detected and not

erased|channel state = i} (3e)

Ps,e|i = Pr{a symbol is incorrectly detected but not

erased|channel state = i} (3f)

For a system that employs a block code of length n for
transmission over an HMC characterized by an s-state Markov
chain, the corresponding CEP expression is

Pw(e) =
n∑

n1=0

n−n1∑
n2=0

· · ·
n−

∑s−2

j=1
nj∑

ns−1=0

Pn(Es)Pw(e|Es), (4)

where n = n1+n2+· · ·+ns. Let the minimum distance of the
code be dmin = 2t + 1. Then for errors-only (EO) decoding,
we have the decomposition

Pw(e|Es) =
n∑

t=
⌈

dmin
2

⌉
∑
t1

Ps(t1|n1)
∑
t2

Ps(t2|n2) · · ·

·
∑
ts−1

Ps(ts−1|ns−1)Ps(ts|ns), (5)

where t =
∑s

i=1 ti and �x� represents the smallest integer
greater than or equal to x while

Ps(ti|ni) =
(

ni

ti

)
P ti

s|i(1 − Ps|i)ni−ti (6)

is the conditional probability that ti errors occur during the
ni times the channel stays at state i. (6) follows from the
facts that (i) a received codeword is associated with a specific
(hidden) CSS Es, and (ii) given Es, the conditional symbol
error probabilities associated with codeword symbols are
independent of each other. The upper and lower limits of
various summations in (5), (8b), and (8c) given below are
listed in Table I.

If an errors-and-erasures (EE) decoder is used, we have

Pw(e|Es) =
∑
�,t

2t+�≥dmin

P (�, t|Es)

=
dmin−1∑

�=0

n−�∑
t=

⌈
dmin−�

2

⌉ P (�, t|Es)

+
n∑

�=dmin

PE(�|Es), (7)

where P (�, t|Es) is the joint (conditional) probability that
there are � erasures and t errors in a codeword and
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TABLE I

UPPER LIMITS (UL) AND LOWER LIMITS (LL) OF VARIOUS PARAMETERS IN (5), (8B) AND (8C)

EO decoding EE decoding

tj UL max

(
0, t −

j−1∑
m=1

tm −
k∑

m=j+1

nm

)
max

(
0, t −

j−1∑
m=1

tm −
k∑

m=j+1

(nm − em)

)

tj LL min

(
nj , t −

j−1∑
m=2

tm

)
min

(
nj − ej , t −

j−1∑
m=2

tm

)

ej UL none max

(
0, e −

j−1∑
m=1

em −
k∑

m=j+1

nm

)

ej LL none min

(
nj , e −

j−1∑
m=2

em

)

PE(�|Es) = PE(�, 0|Es) is the (conditional) probability that
there are � erasures in a codeword. It is straightforward to
show that

P (�, t|Es) = PE(�|Es)PT (t|�, Es) (8a)

PE(�|Es) =
∑
�1

Pe(�1|n1)
∑
�2

Pe(�2|n2) · · ·

·
∑
�s−1

Pe(�s−1|ns−1)Pe(�s|ns) (8b)

PT (t|�, Es) =
∑
t1

Ps(t1|n1, �1)
∑
t2

Ps(t2|n2, �2) · · ·

·
∑
ts−1

Ps(ts−1|ns−1, �s−1)Ps(ts|ns, �s) (8c)

where
∑

i �i = �,
∑

j tj = t,
∑

k nk = n, and

Pe(�i|ni) =
(

ni

�i

)
P �i

e|i(1 − Pe|i)ni−�i , (9a)

Ps(ti|ni, �i) =
(

ni − �i

ti

)
P ti

s|i(1 − Ps|i)ni−ti−�i (9b)

with Pe|i = 1 − Pc,e|i − Ps,e|i and Ps|i =
Ps,e|i
1−Pe|i

.
The conditional CEP associated with an EO decoder is a

function of Ps|i. If the channel state is defined according

to where the received waveform’s instantaneous SNR
def
=

γ lies and f(γ) is the pdf of the γ while Ps(γ) is the
codeword error probability conditioned on γ, then Ps|i =

1
P∞

i

∫
Ri

f(γ)Ps(γ)dγ, where Ri is the defining region of

the channel state i and P∞
i

def
=

∫
Ri

f(γ)dγ. On the other
hand, the conditional CEP of an EE decoder depends on
Ps|i and Pe|i, which are derived from Pc,e|i and Ps,e|i. Let
Pc,e(γ) be the conditional probability that a received symbol
is correctly detected and not erased and Ps,e(γ) be the
conditional probability that a received symbol is incorrectly
detected but not erased. Then Pc,e|i = 1

P∞
i

∫
Ri

f(γ)Pc,e(γ)dγ,

and Ps,e|i = 1
P∞

i

∫
Ri

f(γ)Ps,e(γ)dγ.

B. Evaluating component probabilities

We have outlined a systematic approach and general
expressions for evaluating the CEP performance of an arbitrary
block code with minimum distance dmin = 2t + 1 in
an arbitrary s-state HMC. The exact component conditional

probabilities in those expressions can be derived only if the
channel statistic and decoding method, including the erasure-
insertion method (EIM) used, are given.

Assuming perfect carrier de-hopping and defining η =
k log2 n

n , we can express the associated symbol error probability
for an optimal noncoherent detector (matched-filter bank) as,

Ps(γ) =
n−2∑
i=0

(
n − 1
i + 1

)
(−1)i 1

i + 2
e−

i+1
i+2 ηγ . (10)

Using the ratio threshold test (RTT) [9] in which an erasure
is inserted when the ratio between the largest and the second
largest outputs of the noncoherent matched-filter bank is
greater than τ , we can easily derive Pc,ē(γ) and Ps,ē(γ) from
[4]. Based on the above analysis, we now proceed to analyze
the performance of the RS-coded system. We first note that
when there is no jamming the transmitted signal suffers from
both AWGN and Rayleigh fading, and the channel is in the
unjammed super-state that consists of Gu and Bu states. It can
be shown that within this super-state the SNR pdf is given by
f(γ) = 1

γ e−γ/γ , γ ≥ 0, and

Ps|Bu
=

1
1 − e−ρ2

n−2∑
i=0

(−1)i

(
n − 1
i + 1

)

·
1 − exp

[
−

(
1
γ +

(
i+1
i+2

)
η
)

γt

]
(i + 2)

[
1 +

(
i+1
i+2

)
ηγ

] , (11a)

Ps|Gu
=

1
e−ρ2

n−2∑
i=0

(−1)i

(
n − 1
i + 1

)

·
exp

[
−

(
1
γ +

(
i+1
i+2

)
η
)

γt

]
(i + 2)

[
1 +

(
i+1
i+2

)
ηγ

] . (11b)

Moreover,

Pc,ē|Bu
=

1
1 − e−ρ2

n−1∑
i=0

(−1)i

(
n − 1

i

)
1

(τi + 1)

·
1 − exp

[
−

(
1
γ + τiη

τi+1

)
γt

]
[
1 +

(
τiηγ
τi+1

)] , (12a)

Ps,ē|Bu
=

1
1 − e−ρ2

n−2∑
i=0

(−1)i

(
n − 1
i + 1

)
τ(i + 1)
(τi + 1)
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Fig. 2. Analytic CEP performance of a 1T-RTT (16,8) RS decoder as
a function of µ and hopping rate (H); average Eb/N0 = 20 dB, RTT
thresholds = .6 (unjammed) and .5 (jammed).

·
{

1 − exp
[
−

(
1
γ + τiη

τi+1

)
γt

]}
[τ(i + 1) + 1]

[
1 +

(
(τi+1)ηγ
τ(i+1)+1

)] , (12b)

Pc,ē|Gu
=

1
e−ρ2

n−1∑
i=0

(−1)i

(
n − 1

i

)
1

(τi + 1)

·
exp

[
−

(
1
γ + τiη

τi+1

)
γt

]
[
1 +

(
τiηγ
τi+1

)] , (12c)

Ps,ē|Gu
=

1
e−ρ2

n−2∑
i=0

(−1)i

(
n − 1
i + 1

)
τ(i + 1)
(τi + 1)

·
exp

[
−

(
1
γ + (τi+1)η

τ(i+1)+1

)
γt

]
[τ(i + 1) + 1]

[
1 +

(
(τi+1)ηγ
τ(i+1)+1

)] . (12d)

When a PBNJ is present, the channel is in state GJ or BJ ,
the conditional probabilities can be obtained by replacing γ
and ρ in (11a)–(12d) by γJ and ρJ , respectively.

IV. NUMERICAL EXAMPLES AND DISCUSSIONS

By substituting the component conditional probabilities
derived in the previous section into the related general CEP
and conditional CEP expressions, we will be able to evaluate
the performance of these systems analytically and assess the
influence of various system and channel parameters. The
correlated Rayleigh fading channel used in simulation is
generated by the modified Jakes model of [8].

In Fig. 2, we examine the effects of the transmitter’s strategy
(hops per interleaving block, H) and the jammer’s, i.e., the
fraction of band jammed µ. The increase of H gives higher
hopping rate and makes neighboring symbols less correlated
thus improves the decoder performance. When µ = .9, the
performance is insensitive to variation of H for the jammer
has appeared like a full-band jammer. For all three values of
H , µ = .9 yields worse performance at low Eb/NJ , which is
consistent with the observation from earlier studies–when the
jammer has enough power a better jamming effect is achieved
if it distributes its power over a wider bandwidth (larger µ);
otherwise it should concentrate its jamming power within a
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Fig. 3. CEP performance of a (16,8) RS-coded SFH MFSK system in
presence of PBNJ and fading; Eb/N0 = 20 dB, µ = .2, H = 8.

small bandwidth (smaller µ). An ideal anti-jam (AJ) scheme
is one that forces the jammer to adopt the full-band jamming
strategy at all Eb/NJ . The crossover point of the two curves
corresponding to two different µ’s with the same H indicates
the Eb/NJ threshold at which the jammer should change
its jamming strategy. As the crossover point shifts to higher
Eb/NJ as H increases, it is clear that a higher hopping rate
does enhance the receiver’s AJ capability.

Fig. 3 compares the CEP performance of the EO, 1T EE
and 2T EE decoders in the presence of PBNJ and fading when
the ratio of the average bit energy to noise power level, γb,
is 20 dB and the threshold γt used to separate the two fading
states is 2 dB. The CEP performance curves are depicted as a

function of γbJ
def
= Eb/NJ . Again, we find that our analytic

prediction is very close to that predicted by simulation and, as
expected, EE decoding is better than EO decoding. At CEP=
10−4, the EE decoding gain is greater than 7 dB while the
corresponding gain is greater than 4 dB at CEP= 10−3.
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