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Abstract. A model-independent expression for the Friedmann equation in Bianchi type spaces is derived.
In addition, a model-independent stability analysis of the higher curvature de Sitter solution is discussed.
Stability conditions of the de Sitter solution are derived explicitly for a cubic model with interesting effects.
It is known that quadratic terms do not contribute to this de Sitter background solution. Higher curvature
terms are all critical to the stability of the de Sitter space.
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1 Introduction

Our universe is known to be homogeneous and isotropic
[1, 2]. Such an universe is described by the well-known
Friedmann–Robertson–Walker (FRW) metric [3–6]. There
have been, however, some cosmological problems associ-
ated with the standard big bang model responsible for the
evolution of our present universe. Inflationary models pro-
vide resolutions to these problems [7–10]. It is therefore
important to find out whether the de Sitter background is
a stable final state for any candidate model.
Higher curvature terms should be relevant to the sta-

bility of the inflationary physics at the high energy re-
gion [11, 12]. Higher curvature terms are effective theories
as quantum corrections of matter fields [13–16]. Therefore,
the higher curvature effect on the stability of inflation de-
serves more attention [17–19]. In order to survey possible
constraints on the existing models, a model-independent
method has been very helpful for the stability analysis of
pure gravity theories [14–16, 20, 21].
The stability problem has been discussed for general

relativity with a scalar field [22]. Pure gravity models with
quadratic curvature terms have also been discussed previ-
ously [23–27]. Solutions that do not approach a de Sitter
space were found in [23–25]. Instead, we will focus on the
stability of de Sitter space against anisotropic perturb-
ations. For simplicity, we will also focus on the stability
problem of higher curvature theory with a scalar field.
A cubic curvature model will be presented as a simple
demonstration. Quadratic terms are known to be irrele-
vant to the de Sitter solution expansion scale (H =H0) in
de Sitter space for pure gravity theories. These quadratic
terms are, however, important to the stability of the de Sit-
ter space.
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Note that anisotropic perturbation equations of FRW
space are identical to the perturbation equation of aniso-
tropic Bianchi spaces. In addition, relative equations are
similar for all Bianchi spaces [14–16,20, 21]. The latest ob-
servation also indicates that the physical universe is a flat
space. Therefore, we will focus on the perturbation equa-
tion of Bianchi type I (BI) space in this paper.
Field equations will be derived in Sect. 2. The perturba-

tion equation and model-independent stability conditions
will be shown in Sect. 3. In Sect. 4, we will focus on the ef-
fect of a model with both cubic and quadratic curvature
terms. Finally, we will draw some conclusions.

2 Field equations in BI space

The latest observation indicates that our universe is close
to the flat FRW space. Therefore, we will focus on the sta-
bility analysis of flat FRW space. A canonical derivation of
the Einstein equations for a quadratic model is shown in
the appendix. In fact, there is an alternative approach to
derive the complete set of field equations by treating the
system as a constrained system. Indeed, we are interesting
in the field equation in the presence of BI space with the
following metric:

ds2 =−dt2+a21(t)dx
2+a22(t)dy

2+a23(t)dz
2. (1)

The isotropic limit of this space with a1 = a2 = a3 is the
flat FRW space. Note that this is a constrained system
with gab = gab(ai), as shown above. Therefore, the field
equations can be derived from the variational δai equa-
tion as a constrained system via δgab = (δgab/δai)δai. The
only nontrivial thing is that the δg00 equation, known as
the Friedmann equation, can only be derived from this
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approach if the lapse function b2 (in dt2 = b2(t′)dt′2) is re-
stored explicitly in the above metric. The lapse function
is a cyclic variable with hidden information. In fact, it is
known that the Friedmann equation has a smaller differen-
tiation order than the other δai equation. This is why the
Friedmann equation is known as a constraint and nonre-
dundant equation.
In order to study the anisotropic perturbations, the

Friedmann equation in BI space will be adopted. General-
izations to different anisotropic spaces are straightforward.
In fact, it turns out that perturbation equations are identi-
cal for all Bianchi spaces when we take the de Sitter space
as the background space. All nonvanishing components of
the curvature tensor can be shown to be [28]

Rtiti = Ḣi+H
2
i , (2)

Rijij =HiHj , (3)

for all i, j in cyclic order and its proper permutations. Here
Hi ≡ ȧi/ai.
The Friedmann equation and the δai equations of the

pure gravity model L can be shown to be [28]

DL≡L+Hi

(
d

dt
+3H

)
Li−HiLi− ḢiL

i = 0 , (4)

DiL≡L+

(
d

dt
+3H

)2
Li−

(
d

dt
+3H

)
Li = 0 . (5)

Here we have defined the reduced Lagrangian L=
√
gL=

L(ai(t)) of a pure gravity model in BI spaces by

L= V L
(
Rtitj , R

ij
kl

)
= V L

(
Hi, Ḣi

)
, (6)

where V ≡ a1a2a3 is the volume measure of the BI space.
In addition, Li ≡ δL/δHi, Li ≡ δL/δḢi, and 3H ≡

∑
iHi.

The Bianchi identity shows that the perturbation equation
associated with the ai equation becomes redundant in the
de Sitter background. Also, for convenience, L will be writ-
ten as L from now on.
The Friedmann equation shown above is in fact a uni-

versal formula, which holds for all Bianchi type spaces. In-
deed, the lapse function b2 in the metric ds2 =−b2(t)dt2+
gij dx

idxj can be chosen as b= 1 by a redefinition of t for
convenience. b is known, however, to be a cyclic variable
that hides the nonredundant Friedmann equation Gtt =
T tt as a nontrivial constraint of the system. The Fried-
mann equation is known to be nonredundant following
the Bianchi identity. Therefore, a compact formula for the
Friedmann equation may serve as a better tool for a model-
independent analysis of any gravitational system.
Fortunately, we can always derive the hidden Fried-

mann equation by the variational principle with respect
to δb, or equivalently δB, once the cyclic variable b2 is re-
stored in the effective Lagrangian L. In order to derive
a model-independent formula for the Friedmann equation
in terms of the variablesHi and Ḣi, we need to replace the
effect of δL/δB and δL/δḂ as an equivalent formula de-

pending only on δL/δHi and δL/δḢi. The proof follows
from the observation that Ḃ always shows up as a combi-
nation of ḂHi+2B(Ḣi+H

2
i ) or BHiHj in the Lagrangian

of all Bianchi type spaces when the lapse function b2(t) ≡
1/B2(t) is restored. Explicitly, δL/δḂ = HiδL/[2δḢi].
Here we have set B = 1 whenever it will not affect the final
result. Moreover, the summation over repeated indices is
not written explicitly. In addition δL/δB =HiδL/[2δHi]+
ḢiδL/δḢi if L=L(B(a

iḢi+a
ijHiHj)) for arbitrary “con-

stant” coefficients ai and aij . In fact,BḢi will always show
up together with B1HiHj , as can be seen from a dimen-
sional analysis. Therefore the Friedmann equation derived
above is a universal formula for all Bianchi spaces.

3 Higher derivative gravity model
with a scalar field

With a scalar field (with Lagrangian Lφ) coupled to the
pure gravity Lagrangian Lg, we have

L= Lg+Lφ ≡ Lg
(
Hi, Ḣi

)
−
1

2
∂µφ∂

µφ−V (φ) , (7)

with V (φ) the scalar potential of the scalar field. The Fried-
mann equation can be written as

DLg =
1

2
φ̇2+V (φ). (8)

In addition, the scalar field equation can be shown to be

φ̈+3Hφ̇+V ′ = 0. (9)

We will focus on the stability of an inflationary de Sitter
background solution characterized by a constant Hubble
parameter Hi =H0 in addition to a slow roll-over scalar
field φ. Equivalently, we will write Hi = H0+ δHi and
φ= φ0+ δφ as the anisotropic perturbation against the de
Sitter background space. Consequently, we have a set of
zeroth order equations:

DLg(Hi =H0) = V (φ0) , (10)

V ′(φ0) = 0. (11)

The constraint V ′(φ0) = 0 can be realized at two differ-
ent stages: (i) in the inflationary phase where φ = 0 as
a local maximum of some SSB potential V , (ii) in the fi-
nal state where φ= φm approaches the local minimum of
V . A model with a specific V will be shown shortly. This fi-
nal state is expected to be a stable vacuum. As a result, the
following stability equation can be derived from perturbing
DLg defined in (4):

δ(DLg) =
〈
HiL

ijδḦj

〉
+3H

〈
HiL

ijδḢj

〉
+3H

〈(
HiL

i
j+L

j
)
δHj
〉

+
〈
HiL

i
〉
δ(3H)−〈HiLijδHj〉 . (12)

Here H ≡
∑
iHi/3 = V̇ /(3V ). In addition, the notation

AiBi ≡ 〈AiBi〉 ≡
∑3
i=1 AiBi is for the summation over

i= 1 to 3 for repeated dummy indices. In addition, Lij ≡

δ2Lg/δḢiδHj and similarly for Lij and L
ij with upper
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index i and lower index j denoting variation with respect to
Ḣi andHj , respectively.
Defining

DgδH ≡H0
[
L02δḦ+3H0L02δḢ

+ (6L01+3H0L11−L20)δH
]
, (13)

the stability equation of (8), with Hi =H0+ δHi and φ=
φ0+ δφ, can be shown to be

DgδH = V
′(φ0)δφ= 0 . (14)

Here

Lab ≡ δ
a+bL/δHiiδHi2 · · ·HiaδḢj1δḢj2 · · · δḢjb |Hi→H0 .

Note that, as claimed earlier, this equation is exactly the
same as the isotropic perturbation equation of the flat
FRW solution [14–16,20, 21]. Therefore, (14) becomes

δḦ+3H0δḢ+KH
2
0δH = 0 , (15)

with

K ≡
6L01+3H0L11−L20

L02H
2
0

,

in BI space. An explicit expression for K can be derived
for any given model. As a result, the values of K are criti-
cal to the stability of the corresponding de Sitter universe.
General selection rules can hence be obtained in a straight-
forward way. We will focus on the cubic models in the
following section for a simple demonstration. We will dis-
cuss the model-independent stability conditions for the de
Sitter background in this section.
Similarly, the perturbation of the scalar field equation

(9) can be shown to be

δφ̈+3H0δφ̇+V
′′
0 δφ= 0 . (16)

In fact, the scalar field equation can be solved in the de Sit-
ter backgroundHi =H0 and V

′
0 ≡ V

′(φ0) = 0. Indeed, the
solution to the equation φ̈+3H0φ̇∼ 0 is

φ∼ φ0+
φ̇0

3H0
[1− exp(−3H0t)] . (17)

This result indicates that the scalar field does change very
slowly. Such a behavior is exactly identical to the behavior
of a slow roll-over scalar field.
Assuming that δH = exp[hH0t]δH0 and δφ =

exp[pH0t]δφ0 for some constants h and p, one can write the
above equations as

(h2+3h+K)δH = 0, (18)(
p2+3p+

V ′′0
H20

)
δφ= 0. (19)

Note that the δH equation is the same as the pure grav-
ity model, independent of the scalar field. The effect of the

scalar field is minor both in the inflationary phase and the
final stage. Therefore, the de Sitter space can hopefully be
a stable background in both stages with V ′(φ)∼ 0. This is
a positive sign: a stable de Sitter space as a final state is
what we need. The difference between these two stages is
that φ cannot stay constant forever when the initial φ is
close to the local maximum of V . φ will slide off the local
maximum according to the slow roll-over equation (17).
Therefore, the inflationary phase is not a stable state for φ.
On the other hand, φ will oscillate with a damping term
around the local minimum of V and eventually settle down
to the local minimum. Therefore, the final state is a stable
final state for φ.
As a result, we can have a stable mode for δH in both

states of φ (at V ′ = 0) with a similar structure given by
the stability condition (18). The only difference is that
H =H0 in the inflationary phase and H =Hm in the final
state. Here H0 and Hm are both constants characterized
the Hubble expansion scale of these different states. Hence
inflation will be ended once the scalar field rolls off the
initial phase V ′0 = 0. When it rolls down to the local min-
imum, V ′(φm) = 0, the evolution of the de Sitter solution
will be similar to the inflationary phase solution discussed
here.
Indeed, (18) and (19) indicate that there are two decay-

ing modes for δH and δφ with

2h=−3±
√
9−4K, (20)

2p=−3±
√
9−4V ′′(0)/H20 . (21)

We need at least a stable δH solution with negative h, so
that inflation is possible along this stable direction. It will
be even better if both h solutions are negative. In addition,
we need at least one unstable solution requiring either p
or h to be positive. This unstable mode will end the infla-
tionary phase automatically.
Explicitly, K > 0 will make both h solutions negative.

K > 9/4 will make
√
9−4K imaginary and hence turns

exp[hH0t] = exp[−3H0t] cos
[√
4K−9H0t+ θ1

]
into an os-

cillatory solution with a constant phase θ1. Note that this
will also make δH a stable mode. On the other hand, we
will have a stable mode and an unstable mode ifK < 0. The
case K = 0 gives us one negative and one zero h solution.
Both (K = 0)modes are stable again. In summary, the con-
dition K ≥ 0 implies two stable modes of δH. One stable
mode of δH is enough for inducing inflation. But the two
stable modes of δH will further ensure that the anisotropy
will not grow out of control in this model.
An appropriate effective spontaneously symmetry

breaking potential V of the following form:

V (φ) =
λ

4
(φ2− v2)2+Vm , (22)

with arbitrary coupling constant λ, can be shown to be
a good candidate of suchmodels. Here Vm is a small cosmo-
logical constant dressing the SSB potential. When the
scalar field eventually rolls down to the minimum of V at
φ= v, the system will oscillate around this local minimum
with a friction term related to the effective Hubble con-
stant Hm at this stage. A reheating process is expected to
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take away the kinetic energy of the scalar field. The scalar
field will eventually become a constant background field
and lose all its kinetic energy.
H0 can be chosen to induce enough inflation for a brief

moment as long as the slow roll-over scalar field remains
close to the initial state φ= φ0. This de Sitter phase will
hence remain stable and drive the inflationary process for
a brief moment. Explicit models with a cubic coupling term
will be discussed as an example in the next section.
Explicitly, the solutions for p are p = p± = −3/2±√
9−4V ′′0 /H

2
0/2. Hence p± = −3/2±

√
9+4λv2/H20/2

for the SSB φ4 potential model. Therefore, it is easy
to find that the solutions p+ > 0 (unstable mode) and
p− < 0 (stable mode) exist for this model. In addition,
with properly chosen parameters, the unstable mode p+ =√
9+4λv2/H20/2−3/2 can be made small enough to in-
duce 60 e-folds of inflation during the inflationary phase.
When φ→ v, the scalar field will remain a stable mode
perturbatively. The final de Sitter space will remain stable
against anisotropic perturbations as long as K(Hm) ≥ 0
accommodates two stable modes.

4 Cubic model

In this section, we will study the higher derivative gravity
model with a coupled scalar field:

L=−R−αR2−βRµνR
ν
µ+γR

µν
βγR

βγ
σρR

σρ
µν

−
1

2
∂µφ∂

µφ−V (φ)

≡ Lg+Lφ . (23)

Here Lg =−R−αR2−βRµνR
ν
µ+γR

µν
βγR

βγ
σρR

σρ
µν and Lφ =

− 12∂µφ∂
µφ−V (φ) denote the pure gravity Lagrangian and

scalar field Lagrangian, respectively. We will also write
L1 =−R,L2 =−αR2−βRµνR

ν
µ andL3 = γR

µν
βγR

βγ
σρR

σρ
µν for

convenience. The cubic term is shown to be the two-loop ef-
fect of super gravity [14–16]. Note also that this is the most
general covariant quadratic gravity model. The quadratic
term RabcdR

cd
ab is related to the α and β terms by the Euler

invariant.
In a moment, we will show that quadratic terms (1) do

not contribute to the expanding parameterH0, and (2) will
affect the stability of the de Sitter phase [28]. We can write
the Lagrangian (23) explicitly as

L= 6
(
Ḣ+2H2

)
−36α

[
Ḣ+2H2

]2
−12β

[
Ḣ2+3ḢH2+3H4

]

+24γ
[
(Ḣ+H2)3+H6

]
, (24)

when we set Hi→H. The leading order equation of Fried-
mann equation reads

DLg(Hi =H0) = V (φ0)≡ V0 , (25)

in the de Sitter background with Hi =H0 and φ= φ0. Ex-
plicitly, we have

V0 = 6
[
1−4γH40

]
H20 . (26)

Note that quadratic terms do not contribute to H0 as
promised earlier. This result is a general property associ-
ated with the conformal structure of de Sitter space. In
fact, this result also follows from the fact that a3(Ḣ +
H2)H2 = d[a3H3]/[3dt] is a total derivative. Therefore,
(Ḣ+H2)H2 will not affect the field equation. Hence the
only effects of the quadratic terms come from the remain-
ing Lagrangian L′2 =−12(3α+β)Ḣ

2. This term will con-
tribute to (25) in the de Sitter background. As a result,
quadratic terms will not affect the expansion scale H0.
Quadratic terms will, however, affect the linear order per-
turbation equation and consequently the stability of de
Sitter solution. Note that when γ = 0, (26) implies that
V0 = 6H

2
0 . None of the quadratic terms is affecting the ex-

pansion rateH0. This indicates that the γ term does affect
the expansion rate in a very complicated way. Fortunately,
(26) can be solved and served as an useful tool in the forth-
coming analysis.
In addition, the coefficient K for the δH perturbation

equation can be shown to be

K0 =
1−12γH40

2H20 [6γH
2
0 −3α−β]

(27)

for this model, which has two different decaying modes h=
[−3±

√
9−4K]/2.

Writing x=H20 , the polynomial equation (26) can be
solved to give x= x1 and x= x± with

x1 =−

(
1

3γ

)1/2
cos
θ0

3
, (28)

x± =

(
1

3γ

)1/2
cos
θ0∓π

3
. (29)

Here cos θ0 ≡
√
3γV0/2 ≤ 1. The notation x± is defined

such that x− ≤ x+. In addition, these two solutions become
degenerate when 3γV 20 = 4.
Similarly, when the system settles close to the final de

Sitter phase at φ→ v, similar solutions hold for this state.
Explicitly, we have

Km =
1−12γH4m

2H2m [6γH
2
m−3α−β]

, (30)

for this model, which has two different decaying modes
hm =

[
−3±

√
9−4Km

]
/2.

Writing y =H2m, the polynomial equation (26) can be
solved to give y = y1 and y = y± with

y1 =−

(
1

3γ

)1/2
cos
θm

3
, (31)

y± =

(
1

3γ

)1/2
cos
θm∓π

3
. (32)
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Here cos θm ≡
√
3γVm/2≤ 1. The notation y± is defined

such that y− ≤ y+. In addition, these two solutions become
degenerate when 3γV 2m = 4.
Different regions of physical solutions are shown in

Fig. 1. Indeed, a physical solution exists for −π/2≤ θ0 ≤
π/2. As a result, we have π/6 ≤ (θ0+π)/3 ≤ π/2 when
x= x+. There is another set of solutions for x= x− with
−π/2 ≤ (θ0−π)/3 ≤ −π/6. There are also two similar
sets of solutions for y. Note that Vm < V0 implies that
|θm|> |θ0|. In addition, H0
Hm is a physical assump-
tion of the inflationary model. Therefore, the only way to
get a physical solution for H20 
H

2
m is to take x = x+

and y = y−→ 0. This can be shown by a simple observa-
tion; see (29) and (32). The only way to make Hm small
as compared to H0 and to make θm obey |θm|> |θ0| is to
choose (θm−π)/3→ 0. This can be done by writing (θm−
π)/3 = εm−π/2 for some small constant εm. Consequently,
we have θm =−π/2+3εm and

H2m =

(
1

3γ

)1/2
cos
θm−π

3
=

(
1

3γ

)1/2
cos
(
−
π

2
+ εm

)

∼

(
1

3γ

)1/2
εm . (33)

This result shows that 12γH4m ∼ ε
2
m. In addition, we can

either write (θ0+π)/3 = π/6+ ε0 or (θ0−π)/3 = −π/6
− ε0 for some small constant ε0. This is equivalent to
chosing θ0 =−π/2+3ε0 or θ0 = π/2−3ε0. This will make
|θm|> |θ0| and will makeH0 as big as possible. As a result,
we have

H20 =

(
1

3γ

)1/2
cos
θ0±π

3
=

(
1

3γ

)1/2
cos
(
−
π

6
± ε0
)

∼

(
1

3γ

)1/2(
1

2
∓

√
3

2
ε0

)
. (34)

The result shows that 12γH40 ∼ 1∓2
√
3ε0. In summary, we

have

12γH40 ∼ 1∓2
√
3ε0, (35)

12γH4m ∼ ε
2
m , (36)

Fig. 1. cos θ is plotted with two ranges θ > π/6 and θ <−π/6
specified. (θm−π)/3 is expected to be close to −π/2

when the coupling constants are properly chosen. Here we
have assumed that ε0� 1 and εm� 1 in order to observe
the physical pattern of these solutions.
As shown earlier, writing δH = exp[hH0t]δH0 and δφ=

exp[pH0t]δφ0 for some constants h and p, the perturbation
equations (18)–(19) become

h2+3h+
1−12γH40

2H20 [6γH
2
0 −3α−β]

= 0 , (37)

(
p2+3p+

V ′′0
H20

)
= 0 . (38)

As a result, the solution to the equation for h (37) is
h= h± =−3(1± δ2)/2 with

δ22 = 1+2

(
12γH40 −1

)
{9H20 [6γH

2
0 −3α−β]}

.

In addition, the solution to the equation for p (38) is p =

p± =−3/2±
√
9−4V ′′0 /H

2
0/2 =−3/2±

√
9+4λv2/H20/2

for the SSB φ4 potential model. Here p+ > 0 and p− < 0 in-
dicate an unstable mode and a stable mode for this model.
Properly chosen coupling constants α, β and γ allow the
unstable p-mode to have a long enough ∆t in the infla-
tionary phase. As a result, inflation of 60 e-folds can be
induced. Indeed, this is the amount to require that p+ ≤
1/60, or equivalently, λv2 ∼ 0.0527̄H20 .
We can also write the perturbative solution forHi and φ

as

Hi =H0+Ai+ exp[h+H0t]+Ai− exp[h−H0t] , (39)

φ= φ0+Bi+ exp[p+H0t]+Bi− exp[p−H0t] , (40)

with Ai± and Bi± some constant coefficients determined
by the initial perturbations. These linear solutions become
oscillatory solutions if the discriminant δ2 becomes pure
imaginary. In such case, these equations take the following
form:

Hi =H0+Ai exp[−3H0t/2] cos[3|δ2|H0t/2+ θAi] , (41)

with Ai and θAi some constant coefficients.
We have shown that the h perturbation have two stable

modes only when K ≥ 0. Explicitly, these inequalities will
hold when either

(1) 2(3α+β)H20 < 12γH
4
0 < 1 , (42)

(2) 1< 12γH40 < 2(3α+β)H
2
0 , (43)

holds. Consequently, the de Sitter background can remain
stable with properly chosen coupling constants α, β and γ.
Note that the above inequalities imply that the L1, L2 and
L3 Lagrangians are competing for physical solutions. For
example, condition (1) in the above equation states that
“L1 >L3 > L2”. Therefore, coupling constants have to be
chosen carefully to accommodate a physical solution.
Note that similar solutions for p and h also exist when

the scalar field rolls down the local minimum of the SSB
potential:

(1) 2(3α+β)H2m < 12γH
4
m < 1 , (44)

(2) 1< 12γH4m < 2(3α+β)H
2
m . (45)
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The second set of solutions of Hm is clearly inconsis-
tent with (36). Therefore the only consistent Hm solution
is (44). In summary, a consistent solution exists only when

2(3α+β)H20 < 12γH
4
0 < 1 , (46)

2(3α+β)H2m < 12γH
4
m < 1 , (47)

or

2(3α+β)H2m < 12γH
4
m < 1< 12γH

4
0

< 2(3α+β)H20 , (48)

hold separately. Equation (26) implies that 1 > 4γH40 

4γH4m. Therefore the set of solutions (46)–(47) imply that

2(3α+β)H2m <
(
12γH4m

)
< 2(3α+β)H20

<
(
12γH4m

)
< 12γH40 < 1. (49)

Here the term
(
12γH4m

)
can be in either position for consis-

tency. Consequently, physical solutions that approach the
de Sitter space as a final stable state can be found in this
model.
Consider the special case where γ = 0; then the condi-

tion for a stable de Sitter final state is

2(3α+β)H2m < 2(3α+β)H
2
0 < 1, or (50)

2(3α+β)H2m < 1< 2(3α+β)H
2
0 . (51)

Similarly, for the case α= β = 0, the condition for a stable
de Sitter final state is

12γH4m < 12γH
4
0 < 1, (52)

or 12γH4m < 1< 12γH
4
0 . (53)

In addition, there is the special case whenL02 =2H
2
0 (6γH

2
0

− 3α−β) or L02 = 2H2m(6γH
2
m− 3α−β). In such cases,

the perturbative equation for h becomes δH = 0. This
means that the corresponding de Sitter solution is abso-
lutely stable against any anisotropic perturbation.
In summary, the presence of a scalar field makes the

system far more complicated than the system without
scalar field, especially in higher curvature gravity models.
A scalar field can take care of the ending of the inflationary
phase in a natural way. It also introduces a strong con-
straint on the system. Fortunately, a consistent and phys-
ical solution can always be found to support the de Sitter
space as a stable final state.

5 Conclusion

The existence of a stable de Sitter background is closely
related to the choices of the coupling constants. We have
shown that, for gravity models with an additional scalar
field, the flat FRW de Sitter background space can be
a background if the coupling constants are chosen prop-
erly. The ending of the inflationary process is due to the
unstable mode of a slow roll-over scalar field with a SSB
potential.

An explicit model with a spontaneously symmetry
breaking φ4 potential is presented as a simple demon-
stration. It is also shown explicitly that quadratic terms
will not affect the de Sitter solution characterized by the
Hubble parameters H0 and Hm. In particular, the sim-
ple observation that the effective quadratic Lagrangian
L′2 =−12(3α+β)Ḣ

2 has been shown explicitly. Quadratic
terms play, however, a critical role in the stability of the de
Sitter background. Indeed, with properly chosen coupling
constants, the anisotropy can only grow mildly. Implica-
tions of these stability conditions deservemore attention in
the search for physical models.

Appendix: Field equations

The field equation of the Lagrangian L = −R−αR2−
β (Rab )

2−∂aφ∂aφ/2−V can be derived by the variation of
gab. The result is

1

2
Rgab−Rab+

1

2
gab
[
αR2+β(Rcd)

2−Lφ
]

= 2 (αRRab+βRacR
c
b)−2α

(
gabD

2−DaDb
)
R

−
β

2
gabD

2R−βD2Rab+2βDaDcR
c
b+
1

2
∂aφ∂bφ .

(A.1)

In addition, the scalar equation can be shown to be

D2φ= V ′ . (A.2)

In order to derive the field equation in a covariant way,
we may write the variation of the Riemann curvature
tensor as δRdcba = −DaδΓ

d
bc+DbδΓ

d
ac as if δΓ

a
bc is a type

T (1, 2) tensor. The derivation has nothing to do with
whether δΓ abc is a tensor or not. Rather, by imagining δΓ

a
bc

is a tensor and using all related properties of a tensor, it
helps in reducing the effort in deriving these equations,
especially when integration-by-parts is required. In add-
ition, we have also used the Bianchi identityDcDDR

acdb =
D2Rab−DcDaRbc in converting the differentiation of the
Riemann tensor into a differentiation of the Ricci ten-
sor. The field equation of the cubic term can be derived
similarly.
In summary, the reduced formulae shown in this pa-

per can be helpful in extracting some useful information
without going into the details of the field equations. For
example, the existence of the inflationary solutionH =H0
has to do with the leading order equations. It can be done
by ignoring any term like f(H)Ḣ, with f(H) an arbitrary
function of H. On the other hand, the stability of the
inflationary solution has to do with those leading order
terms linear in the time differentiation of δH. We can freely
ignore terms like Ḣ2. In particular, (d/dt)(f(H)δH) =
f(H)δḢ can be used to skip unrelated terms, with f(H) an
arbitrary function of H, with the closed formula shown in
this paper.

Acknowledgements. This work is supported in part by the Na-

tional Science Council of Taiwan.



W.F. Kao: Anisotropic perturbation of de Sitter space 93

References

1. S. Gulkis, P.M. Lubin, S.S. Meyer, R.F. Silverberg, Sci.
Am. 262, 122 (1990)

2. D.J. Fixsen et al., Astrophys. J. 473, 576 (1996)
3. S. Weinberg, Gravitation And Cosmology (Wiley, New
York, 1972)

4. C.W. Misner, K. Thorne, T.A. Wheeler, Gravitation (Free-
man, San Fransisco, 1973)

5. R.M. Wald, General Relativity (University of Chicago
Press, Chicago, 1984)

6. E.W. Kolb, M.S. Turner, The Early Universe (Addison-
Wesley, Redwood City, 1990)

7. A.H. Guth, Phys. Rev. D 23, 347 (1981)
8. E.W. Kolb, M.S. Turner, Ann. Rev. Nucl. Part. Sci. 33, 645
(1983)

9. F.S. Accetta, D.J. Zoller, M.S. Turner, Phys. Rev. D 31,
3046 (1985)

10. W.F. Kao, Class. Quantum Grav. 24, 4295 (2007)
11. M.B. Green, J.H. Schwartz, E. Witten, Superstring Theory
(Cambridge University Press, Cambridge, 1986)

12. A.S. Goncharov, A.D. Linde, V.F. Mukhanov, Int. J. Mod.
Phys. A 2, 561 (1987)

13. N.D. Birrell, P.C.W. Davies, Quantum Fields in Curved
Space (Cambridge University Press, Cambridge, 1982)

14. A. Dobado, A. Lopez, Phys. Lett. B 316, 250 (1993)
15. A. Dobado, A.L. Maroto, Phys. Rev. D 52, 1895 (1995)
16. A. Dobado, A.L. Maroto, Phys. Rev. D 53, 2262 (1996)
[hep-ph/9406409]

17. G.F. Chapline, N.S. Manton, Phys. Lett. B 120, 105 (1983)
18. C.G. Callan, D. Friedan, E.J. Martinec, M.J. Perry, Nucl.
Phys. B 262, 593 (1985) [gr-qc/0102077]

19. P. Kanti, J. Rizos, K. Tamvakis, Phys. Rev. D 59, 083512
(1999)

20. W.F. Kao, U.-L. Pen, Phys. Rev. D 44, 3974 (1991)
21. W.F. Kao, U.-L. Pen, P. Zhang, Phys. Rev. D 63, 127301
(2001) [gr-qc/9911116]

22. K.I. Maeda, Phys. Rev. D 39, 3159 (1989)
23. R. Wald, Phys. Rev. D 28, 2118 (1983)
24. J.D. Barrow, S. Hervik, Phys. Rev. D 73, 023007 (2006)
25. J.D. Barrow, S. Hervik, Phys. Rev. D 74, 124017 (2006)
26. C.-M. Chen, W.F. Kao, Phys. Rev. D 64, 124019 (2001)
[hep-th/0104101]

27. S.A. Abel, G. Servant, Nucl. Phys. B 597, 3 (2001)
[hep-th/0009089]

28. W.F. Kao, Phys. Rev. D 74, 043522 (2006)



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


