
Journal of Signal Processing Systems 50, 69–80, 2008

* 2007 Springer Science + Business Media, LLC. Manufactured in The United States.

DOI: 10.1007/s11265-007-0115-0

Design of an H.264/AVC Decoder with Memory Hierarchy

and Line-Pixel-Lookahead

TSU-MING LIU AND CHEN-YI LEE

Department of Electronics Engineering and SoC Research Center, National Chiao-Tung University, 1001, Ta
Hsueh Road, Hsinchu, 300 Taiwan, Republic of China

Received: 27 March 2007; Revised: 13 May 2007; Accepted: 13 June 2007

Abstract. This paper describes a novel memory hierarchy and line-pixel-lookahead (LPL) for an H.264/AVC

video decoder. The memory system is the bottleneck of most video processors, particularly in the newly

announced H.264/AVC. This is because it utilizes the neighboring pixels to create a reliable predictor, leading to

a dependency on a long past history of data. This problem can be resolved by allocating memory space but

inducing large silicon area and power consumption as well. We first review the existing solutions and propose a

three-level memory hierarchy with line-pixel-lookahead to improve access efficiency. Three-level memory

hierarchy includes registers, content/slice SRAM and external frame DRAM. We emphasize the need to

consider the secondary hierarchy, content/slice SRAM, during the design of an H.264/AVC decoder.

Specifically, we introduce a slice SRAM and line-pixel-lookahead to lower the memory capacity and external

bandwidth. This SRAM stores neighboring pixels and prevents the data re-access from DRAM. Line-

pixel-lookahead exploits multi-dimensional pixel locality so as to averagely improve prediction performance

by 6.54% compared to conventional vertical prediction. Simulation results also reveal that the proposal makes

a better trade-off between memory allocation and external bandwidth as well as power, leading to 50% of

memory power reduction compared to the design without exploiting the secondary slice SRAM hierarchy.

Keywords: H.264/AVC, memory hierarchy, lookahead, prediction

1. Introduction

While there has been much work studying memory

performance for scientific and general-purpose appli-

cations, this paper focuses on the need of H.264/

AVC [1] video applications. H.264/AVC achieves

high compression ratio since it adequately utilizes

the neighboring pixels to obtain a reliable predictor

and reduces the prediction errors. Compared to

prevalent MPEG-x and H.26x video standards,

H.264/AVC [1] decodes present pixel from a long

history of pixel data and therefore requires much

intermediate storage for VLSI implementation.

Therefore, this high data correlation or dependency

leads to a great challenge of memory subsystem in

designing multimedia systems [2–4].

Many memory-hierarchy-based designs of H.264/

AVC have been reported of the time [5–10]. However,

they usually developed a bandwidth and/or memory

capacity-starved design approaches without taking

into account memory allocation and data locality

issues. In this paper, we first review existing memory

hierarchies in video processing and microprocessor

systems. We found that three-level memory hierarchy

This work was supported by the National Science Council of

Taiwan, R.O.C. under Grant NSC94-2215-E-009-046, and by the

NCTU-MTK Research Program.

is generally accepted in existing H.264/AVC systems

and composed of registers, content SRAM and frame

DRAM. Since the disparity between registers and

DRAM hierarchy, SRAM hierarchy design plays an

increasing role and will dominate the system area or

power requirements. Hence, this paper pays more

attention on this level of the hierarchy. The emphasis

on SRAM is also apparent from Fig. 1 which shows

the die photo of the MPEG-2/H.264 video decoding

system in [4]. Most of the usable area is dedicated to

the on-chip SRAM and data buffers which occupy

40% and 70% of system area and power dissipation,

respectively. As a result, this observation leads us to

extend the topic of memory hierarchy in the H.264/

AVC video decoding system.

To improve the memory hierarchy in a video

decoding system, we exploit three-level memory

hierarchy with line-pixel-lookahead (LPL) schemes.

In addition to the content SRAM in the secondary

hierarchy, we additionally introduce a slice SRAM to

pre-store the neighboring pixel to improve the access

efficiency. On the other hand, H.264/AVC video

standard [1] is characterized by a peculiar access

locality since a high probability exists to access

logically adjacent pixel in vertical direction. Because

of this predictable data access pattern, a hypothesis-

based lookahead scheme has been proposed to

predict what data will be necessary well in advance,

and thereby improve predictive miss rates [4]. In this

paper, we further improve the prediction scheme by

utilizing multi-dimensional features and incorporat-

ing a 4�3 TAG template. Therefore, the proposal

can averagely reduce miss rates by 6.54% compared

to the vertical prediction in [4].

We proceed to integrate the proposed memory

hierarchy with LPL scheme into H.264/AVC video

systems. In general, the performance of prediction

unit mainly relies on the prediction miss/hit. More-

over, the performance also impacts the memory size

and external bandwidth. To make a better trade-off

in different performance indices, we analyze and

optimize the memory capacity and bandwidth in

SRAM as well as DRAM hierarchies. Therefore,

the optimized memory hierarchy with line-pixel-

lookahead achieves 50% of memory power reduc-

tion compared to the design without exploiting the

slice SRAM hierarchy. The remainder of this paper

is structured as follows. Section 2 outlines a review

of related works in the memory hierarchy of H.264/

AVC. Sections 3 and 4 describe how data reuse can

be exploited in the three-level memory hierarchy and

line-pixel-lookahead (LPL) scheme, respectively.

Simulation results are summarized in Section 5 and

conclusions are made in Section 6.

2. Reviews of Memory Hierarchy in H.264/AVC

2.1. H.264/AVC Video Standards

We start with a brief overview of H.264/AVC video

standard and illustrate why memory storage is

required in practical VLSI implementation. In gen-

eral, the intent of the H.264/AVC project was to

create a standard that would be capable of providing

good video quality at bit rates that are substantially

lower than what previous standards would need (e.g.,

relative to MPEG-2, H.263, or MPEG-4 Part 2), and

to do so without so much of an increase in

complexity. The reduced bit rates come from some

new techniques such as spatial prediction in intra-

coding, variable block-size motion compensation,

4�4 integer transformation, context-adaptive entro-

py coding, and adaptive deblocking filter. Although

those coding tools improve compressed performance,

they suffer from dependencies on a long past history

of pixel data. That is, present data will reference the

previously decoded neighboring pixels or syntax

elements. Consequently, previously decoded results

should be stored into a certain amount of storage for
Figure 1. Memory area utilization of an MPEG-2/H.264 video

decoder chip [4].

70 Liu and Lee

easily fetching in a short while. The storage will

become voluminous especially in H.264/AVC video

standard [1] and dominate the system area as well as

power consumption.

To clarify aforementioned dependencies, Fig. 2

depicts an example of deblocking filter and spatial

intra prediction in H.264/AVC. The input sequence

is coded and thereby decoded in column, row and

frame dimensions. A raster-scan order is performed

by a 16�16 macroblock-wise manner in each image

frame. In H.264/AVC, deblocking filter is exploited

to efficiently compensate annoying blocking artifacts

which is introduced by block-based prediction,

transformation, and quantization. In the 16�16

macroblock boundaries, deblocking filter requires

upper four pixels of each column to decide filtering

modes and perform pixel-wise interpolations. Those

upper pixels have been previously decoded and

thereby required when decoding the current row of

macroblocks. On the other hand, spatial intra

prediction is a well-known method to predict the

pixel value based on values previously coded in one

frame. It needs upper neighboring pixel in each

column to reconstruct the pixel results when vertical-

like predictive modes (e.g. vertical, diagonal down–

left, vertical–right, etc.) are applied. In addition to

the deblocking filter and intra prediction, entropy

coding, motion compensation and other coding tools

feature long dependencies of historical data in either

current or previous frames. In summary, a great deal

of storage is required to solve the dependency

problem in H.264/AVC and usually implemented

via on-chip or off-chip memory.

2.2. Memory Hierarchy

An architectural choice advocated for dealing with

long past history of data is a memory hierarchy. The

idea is that due to often huge volume of pixel data they

cannot be permanently kept even on the disks but

more inexpensive volatile storage capacity is satis-

fied. The current memory technology offers DRAM

and SRAMmemories to be used at lower levels of the

hierarchy. In a video processing space, DRAM is

widely adopted for storing whole frame data while

SRAM stores a small amount of neighboring or

decoded pixel data. DRAM acts as a higher level of

the hierarchy since it is of lower speed and cost, and is

of smaller size, than lower levels. Another reason for

adopting memory hierarchy is data reuse exploration.

Data reuse means that a data item, previously written

to memory, is later read until it is finally consumed. It

takes a local copy of pixel data to a smaller memory or

register at the first time it is obtained. After that, the

pixel data is read from the smaller memory instead of

larger memory, and speed or power performance can

then be improved [13].

A wide variety of memory hierarchies have been

designed and implemented to deal with the high

performance memory requirements. This design

concept originates in general-purpose microproces-

sor but can be applied to application-specific H.264/

AVC video processors. Figure 3a shows a five-level

memory hierarchy in microprocessor systems. They

mainly include registers, SRAM, DRAM and disk

hardware blocks for instruction and data storage.

Meanwhile, many H.264/AVC video processors

[5–10], have been reported of the time and adopt

three-level memory hierarchy to keep the pixel data

in registers, SRAM and frame DRAM. As the

disparity between registers and DRAM, SRAM

hierarchy design plays an increasing role in memory

performance [3]. Note that content and slice SRAMs

in Fig. 3b are defined by Liu et al. [11] and will be

thoroughly discussed in Section 3. Basically, SRAM

hierarchies of existing solutions can be partitioned

into two groups: w/t and w/o slice SRAM. Most

designs [7–10] develops a bandwidth-hungry ap-

proach and only use content SRAM to construct the

second-level of memory hierarchy. On the other

hand, Liu [5] and Hu [6] additionally include slice

SRAM (or row-store buffer in [6]) to facilitate the

memory accesses. Those SRAMs cache the decoded

or neighboring pixels that are frequently used in next
Figure 2. Correlation within one row of pixels over the input

frame.

H.264/AVC Decoder Design—Memory Hierarchy, Line-Pixel-Lookahead 71

time for increasing the data reuse probability and

improving memory performance.

3. Three-Level Memory Hierarchy

Improving the memory hierarchy or reducing the

embedded SRAM size is very effective for lowering

the external bandwidth and achieving low power

dissipation. To improve the memory performance,

we aim at a memory hierarchy where copies of

data from larger memories that exhibit high data-

correlation are stored to additional layers of smaller

memories. In this way, the great part of data accesses

is moved to smaller memories and the significant

bandwidth reduction and power savings can be

achieved since accesses to smaller level of memory

hierarchy are less power consumed [13]. Therefore,

we propose a three-level memory hierarchy by

leveraging registers, content/slice memory and frame

DRAM as depicted in Fig. 3b. To clarify how it

connects and completes data transaction, Fig. 4

shows detailed block diagrams and its bus structure.

System and memory buses are a collection of parallel

wires that carry address, data, and control signals.

Data accesses in frame DRAM are accomplished via

memory/system bus and I/O bridges. In an H.264/

AVC decoder chip, the transactions between regis-

ters and ALUs (e.g. deblocking filter, motion com-

pensation, etc.) frequently take place. As for the

middle level of transactions, however, implementing

content/slice SRAM is a more challenging task since

they may impact the performance in not only registers

but also frame DRAM. To limit the scope on memory

hierarchy and focus on this upmost factor, we

emphasize on allocations and arrangements of the

SRAM hierarchy in the following sub-sections.

Figure 3. Memory hierarchy in a general-purpose microprocessors and b application-specific H.264/AVC.

Figure 4. Memory hierarchy and bus structure.

72 Liu and Lee

3.1. Content SRAM

The goal of content SRAM is to allow data reading

and writing simultaneously and accomplish data

transactions without introducing bubbles or waiting

cycles. However, the use of content SRAM may

incur extra overhead of external bandwidth when

storing neighboring pixels. While it has been

extensively used in motion compensation, deblock-

ing filter, intra prediction, etc., we illustrate this

observation by using deblocking filter of H.264/AVC

herein. It acts as either a single-port SRAM with

ping-pong structure [11] or a dual-port SRAM with

interleaving nature [12] to resolve structural hazard.

Figure 5 depicts the memory organization with

single-port ping-pong SRAM in deblocking filter.

Particularly, the ping-pong SRAM coordinates the

transaction between deblocking filter and other

ALUs. It stores two macro-blocks (MBs) to resolve

the structural hazard when reading and writing

processes occur simultaneously. On the other hand,

upper neighboring data labeled with gray region are

previously decoded. If we exploit content SRAM to

store neighboring pixels, additional transactions

between external DRAM and content SRAM are

required. Content SRAM have to be updated period-

ically from DRAM, and external bandwidth will

increase definitely. To alleviate the aforementioned

problem, slice SRAM replaces content SRAM to

facilitate the access efficiency and will be addressed

in the next sub-section.

3.2. Slice SRAM

Slice SRAM [5] or row store buffer [6] is designed to

take advantage of neighboring pixel locality and acts

as an add-on and/or secondary memory hierarchy.

Considering a frame size of W�H in Fig. 6, each

square represents the 16�16 macroblock (MB). Each

MB contains 16 points and 4�4 pixels within each

point. When following decoding procedures are per-

formed from the MB index B to B+1, the pixel data in
upper neighbors will be updated as the arrow indi-

cates. The shaded region should be kept in a certain

amount of memory storage when the decoding index

is B+1. The reason has been addressed in Fig. 2 and

we name those kept data as slice SRAM thereafter.

The overall data organizations of slice SRAM are

tabulated in Table 1. It consists of pixel data or

syntax elements per unit of one pixel, 4�4 sub-block

and 16�16 MB. In the pixel data, the size of slice

SRAM depends on the frame width W as the shaded

region of Fig. 6 indicates. Moreover, the size of

pixels relates to the chrominance format (C.F.1) and

pixel depth. Here, a 4:2:0 format and 8bits/pixel is

assumed for simplicity. Note that MB-level adapta-

tion of frame/field (MBAFF) coding tools for H.264/

AVC main/high profile additionally requires the

Figure 5. Memory organization of deblocking filter in H.264/AVC.

H.264/AVC Decoder Design—Memory Hierarchy, Line-Pixel-Lookahead 73

storage space for the same field parity issue [17]. As

for syntax elements, it is required keeping the flags

since the decoding procedures of H.264/AVC will

reference the previously decoded neighboring flags.

For instance, motion vector will be generated from

the previously decoded one. Besides, H.264/AVC

develops adaptive entropy coding methods to

achieve high compression ratio. In particular,

CAVLC adaptively selects coding table by nC
calculated from the Coeff_Tokens of neighboring

blocks. CABAC adaptively estimates a large number

of conditional probabilities through the neighboring

syntax flags such as MB_Type, CBP, etc. These

adaptive schemes lead to the high dependency and

extra data storage for hardware implementation. In

summary, the total memory size achieves 338.2 Kb

under the H.264/AVC video decoding with 1080 HD

resolution and 4:2:0 chrominance formats.

As slice SRAM stores one row of upper neighbor-

ing pixels, data transaction between DRAM and

SRAM can be eliminated and therefore bandwidth

requirements can be lowered. Compared to content

SRAM, however, the introduced slice memory space

is proportional to decoded frame width W and is of

great challenge in memory testing, power and area

issues. It may degrade the overall system perfor-

mance, especially in high resolution video coding/

decoding. To deal with large slice SRAM, we find

that storing all pixels in rows of upper pixels is

unnecessary when the following decoding process is

unrelated to the upper neighboring pixels. Therefore,

we further investigate line-pixel-lookahead to reduce

the memory capacity in the next section.

4. Line-Pixel-Lookahead

Line-Pixel-Lookahead (LPL) scheme exploits spatial

pixel locality in vertical direction and looks ahead

before decoding the next line of pixels in order to

reduce the slice memory capacity and improve the

access efficiency. Figure 7 depicts the LPL scheme

and the related pseudo codes [14]. In particular, a

reduced slice SRAM caches the pixels of upper

neighbors, and an LPL scheme predicts whether the

follow-up pixel data should be kept or not. In the

scope of this LPL scheme, we only focus on the pixel-

level of storage content since it occupies a great

portion of overall slice memory space in Table 1.

Table 1. Data organizations in slice SRAM.

Level Content Size Equation (bits) 1080HD@4:2:0 (Kb)

Pixel Upper neighboring pixels

for deblocking filter

4�W�C.F.�8 122.8

Upper neighboring pixels of the same

parity for deblocking filter in MBAFF

4�W�C.F.�8 122.8

Upper neighboring pixels

for intra prediction

W�C.F.�8 30.7

Upper neighboring pixels of the

same parity for intra prediction in MBAFF

W�C.F.�8 30.7 Kb

4�4 sub-block Upper neighboring flags for motion vectors 2�(W/4)�10 9.6

Upper neighboring nCs for CAVLC (W/4)�5 2.4

16�16 macroblock Upper neighboring CBP, MB_Type for CABAC (W/16)�10�16 19.2

Total 338.2

Figure 6. Data correlation of upper neighboring pixels in H.264/

AVC.

74 Liu and Lee

Therefore, only deblocking filter and intra prediction

will be considered herein. In the LPL scheme, the

TAG generation unit issues a decoding TAG (D.
TAG) that contains a pair of signals for the purpose

of deblocking filter and intra prediction units, and the

D. TAG equals the neighboring TAG (N. TAG) after
buffering one row of TAGs. Two 2W-bit TAG

buffers record each D. TAG, where W means frame

width. A TAG CMP (compare) unit perceives the

contrast between N. TAG and D. TAG. A prediction

miss will be noticed via a request signal from the

output of TAG CMP when current D. TAG differs

from N. TAG.
Figure 8a describes the 4�4 intra prediction

behavior of the LPL scheme through an example

with a frame size of 48�32. Each square represents a

4�4 sub-block labeled by a 1-bit TAG signal. In the

N. TAG field, we tag the 4�4 pixel data decided by

TAG generation unit and the tagged data will be pre-

stored in slice memory for follow-up decoding

procedures. Furthermore, the un-tagged pixel will

be discarded via wen [see the reduced slice SRAM in

Fig. 7a], resulting in reducing memory size. Hence,

according to results in D. TAGs and N. TAGs, Fig. 8b
lists the prediction miss/hit analysis. An additional

cycle penalty is introduced when prediction miss

occurs and N. TAG equals zero. We have to fetch

upper neighboring pixels from frame DRAM via

system and memory buses. Other case in prediction

miss is of cycle-penalty free thanks to the un-used

upper pixels in D. TAG.

4.1. TAG Generation

A crucial factor to making a success in the LPL

scheme is TAG generation since it adversely impacts

Figure 7. The a data flow and b related pseudo-code in the LPL scheme.

Figure 8. a TAG prediction and b miss/hit analysis.

H.264/AVC Decoder Design—Memory Hierarchy, Line-Pixel-Lookahead 75

the prediction miss/hit, leading to the extra cycle

penalty or external bandwidth. Although [14]

presents a 1-tap vertical prediction to realize the

LPL scheme as Fig. 7 illustrates, the introduced miss

rates are still considerable. To further investigate the

prediction method, we propose several TAG predic-

tion modes to improve the pixel data locality.

To illustrate how the TAG generation method

works, it can be partitioned into TAG prediction and

decision steps. The prediction step produces the

TAG signal which forecasts data accesses needed in

advance, so a specific piece of data is pre-stored in

the SRAM before it is actually desired by the follow-

up decoding processes. A key observation is that not

all upper neighboring pixels need to be pre-stored for

the decoded blocks when they are determined as a

Bnear-horizontal prediction mode^ in intra prediction

or a BSKIP mode^ in deblocking filter [14]. To

clarify aforementioned blocks occurring in a typical

video sequence, Fig. 9 shows the average probability

of block occurrence in different sequences and bit

rates. The probability means the number of block

events without exploiting upper neighbors over one

row of blocks. Hence, there are higher probabilities

to eliminate the upper pixels of slice SRAM in both

high resolution and low bit rate. On the other hand,

after generating the TAG signal, a decision step

decides the prediction mode by incorporating a 4�3

TAG template in Fig. 10a. Each square represents

the TAG signal as Fig. 8a indicates. The decoding

orders are based on raster scan labeled from a to g.
At the decoding index g, we have to predict the TAG

value of index x based on previously decided TAGs

(i.e., aõg). Therefore, we develop a decision table in

Fig. 10b. In addition to a vertical TAG prediction,

several diagonal predictors are involved as well.

Maj. indicates the majority of TAG indices e, f,
and g. Compared to original 1-tap vertical prediction

[14], the proposal realizes 2-tap multi-dimensional

prediction to improve pixel locality but is two times

larger than TAG storage capacity of the 1-tap one.

The goal of improving TAG generation is to lower

miss rate, resulting in the reduction of external

bandwidth. The miss rate stands for a probability of

missing events and is equal to the number of miss

over one row of TAGs. Existing designs [7–10] only

exploited content SRAM to store neighboring pixel

in one MB and therefore update pixel data frequently

via system/memory bus. Hence, those designs con-

tribute 100% of miss rates. On the other hand,

traditional slice memory [5] and row store buffer [6]

without exploiting LPL scheme keep whole pixels in

one row of MB, and the miss rate can be eliminated

(i.e. 0%). Thanks to the LPL scheme, the proposal

provides different design space with variable miss

rates and can be further optimized through multi-

dimensional prediction. To clarify the performance

between vertical-based [4] and the proposed predic-

tion, Table 2 exhibits the miss rate reduction over

different kinds of video bit-rates, resolutions and test

sequences. Note that slice SRAM size is proportional

Figure 9. The block probability of occurrence without exploit-

ing upper neighbors.

Figure 10. a TAG prediction template and b decision table.

76 Liu and Lee

to width W when the scaling factor f is fixed at one in

[4]. Moreover, this proposal achieves better perfor-

mance in lower resolution case. As a result, 6.54 and

1.08% of miss rate reduction can be achieved aver-

agely under QCIF and CIF resolutions, respectively.

4.2. Slice SRAM with LPL vs. Cache Memory

After introducing the slice SRAM with line-pixel-

lookahead, we review and summarize the differences

between slice and cache memory in Table 3. Specif-

ically, memory hierarchies between Fig. 3a and Fig.

3b are a little bit different in the secondary level. A

major difference is the transaction with neighboring

levels of hierarchies. For instance, cache memory

accomplishes data transaction with not only lower-

level but higher-level of hierarchies. The proposed

slice SRAM with LPL is an add-on to content SRAM

and dedicated to lower-level of the register hierar-

chy. Consequently, the cache memory supports

different write policies (e.g., write back/through)

while slice SRAM has been written via wen.
Moreover, the content of cache memory comes from

higher-level of the external main memory. The data

in slice SRAM are produced from raw bitstream in

the lower-level of the register hierarchy. As for the

data locality, the proposed SRAM with LPL stores

pixel data and therefore features high correlation for

natural scenes. In summary, we present a novel

hierarchy which is somewhat different from prelim-

inary hierarchy in microprocessor and discuss the

features of slice SRAM with LPL from a memory-

hierarchy_s perspective.

5. Performance Evaluation on H.264/AVC

Decoding Systems

To clarify and analyze the memory power perfor-

mance, we describe the power modeling where the

Table 2. Miss-rate reduction of proposed multi-dimensional prediction

Sequence Bit Rate (kbps)

Miss Rate Analysis

QCIF CIF

Vertical Multi-dimensional Reduction (%) Vertical Multi-dimensional Reduction (%)

Mobile calendar 500 0.4102 0.4047 1.32 0.3321 0.2952 11.12

1,000 0.2075 0.188 9.37 0.3858 0.3452 10.54

1500 0.1089 0.0938 13.87 0.4834 0.4917 j1.72

Suzie 500 0.1837 0.1747 4.86 0.1544 0.1584 j2.63

1,000 0.1138 0.1069 6.09 0.1537 0.1537 0.00

1,500 0.0948 0.0926 2.39 0.1567 0.154 1.66

Foreman 500 0.358 0.353 1.30 0.4597 0.4638 j1.28

1,000 0.215 0.192 10.88 0.416 0.4223 j1.52

1,500 0.1172 0.0963 17.8 0.3624 0.3643 j0.53

Table tennis 500 0.2087 0.2102 j0.73 0.3498 0.3554 j1.60

1,000 0.1197 0.1132 5.40 0.3182 0.322 j1.17

1500 0.0935 0.088 5.92 0.271 0.27 0.17

Average 6.54 1.08

Table 3. Differences in middle-level of memory hierarchies

Items Cache Memory Slice SRAM with LPL

Applications General-purpose

microprocessor

Application-specific

H.264/AVC

Position Acts as a buffer

between main

memory and

registers

Dedicated to registers

Write policy Write back/through Written by wen from

TAG generation

Data type Stores a copy of

some part of the

main memory

Stores a copy of pixel

data generated from

bit-streams of the

register hierarchy.

Data

locality

Spatial/temporal

locality

High locality for natural

scenes

H.264/AVC Decoder Design—Memory Hierarchy, Line-Pixel-Lookahead 77

power consumption of memory hierarchy can be

viewed as a summation of on-chip and off-chip

memories in Eq. (1). Further, memory accesses are

the most power consuming operation [15]. The

access power dominates the overall power budget

in the on-chip memory. The power consumed on

memory accesses is a function of on-chip memory

size, the access frequency and technology etc. In this

paper, we assume that the on-chip power is closely

related to the SRAM capacity (i.e. word-length � #
of words) [16]. Therefore, the simplified power

described by Eq. (2) suffices for the purpose of

evaluating the power effect on memory hierarchy. As

for off-chip memory, the DRAM power modeling

becomes more complicated. Not only data access but

also I/O and background power (e.g. pre-charge,

active etc) should be concerned in the power

calculation of off-chip memory. We just choose a

system-power calculator [19] as the off-chip power

model in a preliminary design phase.

Ptotal ¼ Pon�chip þ Poff�chip

¼ Paccess þ Paccess þ PI=O þ PBG

� � ð1Þ

Pon�chip ¼ Paccess ¼ faccess

� F Lengthword; # of word;Vddð Þ
ð2Þ

Slice SRAM size can be reduced since we

eliminate un-used neighboring data if LPL prediction

hits. However, because an error of prediction may

occur, an additional penalty is introduced to re-fetch

the missed data from external memory, leading to the

increment of external memory bandwidth as well as

power consumption. Therefore, it is more imperative

to decide a suitable memory size to be survived since

inappropriate memory size will be harmful to

memory performance. From the experiments, we

choose CAS latency=2, BL=4 and tCK=7ns as our

DRAM model configuration [18]. We use BMother &

Daughter^ (QCIF) as our test sequence and encode it

at 150 kbps and 15 fps for mobile applications. An

observation is that the curve between internal SRAM

size and external memory bandwidth/power is shown

in Fig. 11. The external bandwidth can be derived

from miss rates [14] while power consumption on

DRAM is calculated by system-power calculator

[19]. Compared to a design point without exploiting

LPL scheme, we optimize the memory hierarchy

which has smaller SRAM capacity and lower

external DRAM bandwidth/power. Moreover, we

also optimize the on-chip power consumption

where SRAM power is related to the memory size

in Eq. (2).

As compared to the existing designs, we improve

the access efficiency by taking into accounts both

internal SRAM and external DRAM. Figure 12

describes the power comparison from a memory

hierarchy_s perspective. For overall system power

indices, they can be found on [4] in more details. The

overall memory power consumption consumes only

55.5% of original power when the proposed three-

level memory hierarchy is applied. Moreover, we

consider the access efficiency by exploiting the

spatial locality of neighboring pixel via the LPL

scheme. The power consumption can be further

reduced to 49.3% of original design. This success

a

b

Figure 11. Analysis of a external bandwidth and b power

consumption.

Figure 12. Power reduction via three-level memory hierarchy

and line-pixel-lookahead scheme.

78 Liu and Lee

to power reduction is that we choose a better design

point from the observation in Fig. 11. Hence, the

SRAM power can be greatly reduced with a penalty

of slight power increment on DRAM. However,

access power occupies a great portion of total

DRAM power. The reason is that motion compensa-

tion required a great deal of accesses from external

memory. In the future, it can be optimized by the

same way in intra prediction and deblocking filter.

Note that the metric of DRAM_s power consumption

can be further optimized through well-known low-

power techniques. In our implementation, we just

choose a preliminary DRAM module to verify the

power performance in a system point of view.

On the other hand, we also verify the proposed

memory hierarchy with LPL on a test chip which has

been published in [4] and re-shown in Fig. 1. This

test chip is fabricated using Artisan 0.18 mm standard

CMOS cell library with UMC 0.18 mm 1P6M

technology. The maximum working frequency is

100 MHz and the die size is 3.9�3.9 mm2. The slice

SRAM is positioned on the left-top corner of this

chip. The LPL scheme is interfaced to the embedded

SRAM for improving access efficiency. Its gate

count approximately reaches 22.3 K and only

occupies 4% of overall system area.

6. Conclusion

In this paper, a review and design of memory

hierarchy on H.264/AVC video decoding systems is

presented. Three-level memory hierarchy, registers/

content SRAM/DRAM, without keeping neighboring

pixel is widely used but incurs large external DRAM

bandwidth as well as power dissipation. To alleviate

this problem, a new slice SRAM is introduced to

store upper neighboring pixel for reducing the access

frequency on external DRAM. To efficiently manip-

ulate the slice SRAM, a line-pixel-lookahead (LPL)

unit is proposed to improve the stored pixel locality

in SRAM. Compared to conventional vertical pre-

diction [14], we develop a multi-dimensional predic-

tion by incorporating a 4�3 TAG prediction

template, leading to 6.54% of miss rate improvement

in QCIF resolution. Overall, the proposed three-level

memory hierarchy with LPL greatly enhances and

optimizes the size and data in slice SRAM hierar-

chies. Therefore, 50% of internal/external memory

power can be saved compared to existing designs

[7–10] without exploiting the slice SRAM hierarchy.

And it is believed that this improved memory

hierarchy is a key to making memory-rich video

system feasible for low memory area/power mobile

requirements.

Acknowledgment

The authors would like to thank the anonymous

reviewers for many valuable comments to improve

this paper_s quality. They also acknowledge several

fruitful discussions with Wen-Ping Lee in National

Chiao-Tung University.

Note

1. C.F. means chrominance format: {4:4:4, 4:2:2, 4:2:0}Y C.F. =

{3, 2, 2}

References

1. Draft ITU-T Recommendation and Final Draft International

Standard of Joint Video Specification (ITU-T Rec. H.264 |

ISO/IEC 14496-10 AVC), May. 2003.

2. S. Dutta, W. Wolf and A. Wolfe, BA Methodology to Evaluate

Memory Architecture Design Tradeoffs for Video Signal

Processors,^ IEEE Trans. Circuits Syst. Video Technol, vol.

8, no. 1, 1998, pp. 36–53, Feb.

3. S.T. Fu, D.F. Zucker and M.J. Flynn, BMemory Hierarchy

Synthesis of a Multimedia Embedded Processor,^ IEEE

International Conference on Computer Design: VLSI in

Computers and Processors, ICCD _96, pp. 176–184, Oct.

1996.

4. T.-M. Liu et al., BA 125 mW, Fully Scalable MPEG-2 and

H.264/AVC Video Decoder for Mobile Applications,^ IEEE

J. Solid-State Circuits, vol. 42, no. 1, 2007, pp. 161–169, Jan.
5. T.-M. Liu et al., BAn 865-mW H.264/AVC Video Decoder for

Mobile Applications,^ IEEE Asian Solid-State Circuits Con-

ference, 2005, pp. 301–304, Nov.
6. Y. Hu, A. Simpson, K. McAdoo and J. Cush, BA high

definition H.264/AVC hardware video decoder core for

multimedia SoC_s,^ IEEE International Symposium on Con-

sumer Electronics, 2004, pp. 385–289, Sept.
7. Y.-W. Huang et al., BA 1.3TOPS H.264/AVC Single-Chip

Encoder for HDTV Applications,^ ISSCC Digest of Technical

Papers, 2005, pp. 128–129, Feb.

8. H.-Y. Kang et al., BMPEG4 AVC/H.264 Decoder with

Scalable Bus Architecture and Dual Memory Controller,^
IEEE International Symposium on Circuits and Systems, 2004,

pp. II-145–II-148, May.

9. C.-C. Lin et al., BA 160kGate 4.5 kB SRAM H.264 Video

Decoder for HDTV Applications,^ ISSCC Digest of Technical

Papers, 2006, pp. 406–407, Feb.

10. S.-H. Wang et al. BA platform-based MPEG-4 advanced video

coding (AVC) decoder with block level pipelining,^ IEEE

International Conference on Joint Conference, 2003, pp. 15–

18, Dec.

H.264/AVC Decoder Design—Memory Hierarchy, Line-Pixel-Lookahead 79

11. T.-M. Liu, W.-P. Lee, T.-A. Lin and C.-Y. Lee, BA Memory-

Efficient-Deblocking Filter for H.264/AVC Video Coding,^
IEEE International Symposium on Circuit and System

(ISCAS_05), 2005, pp. 2140–2143, May.

12. Y.-W. Huang, T.-W. Chen, B.-Y. Hsieh, T.-C. Wang, T.-H.

Chang and L.-G. Chen, BArchitecture Design for De-blocking

Filter in H.264/JVT/AVC,^ Proc. IEEE Intl. Conf. on

Multimedia and Expo., vol.1, 2003, pp. 693–696, July.

13. S. Wuytack, J.-P. Diguet, V.M. Francky Catthoor and H.J. De

Man, BFormalized Methodology for Data Reuse Exploration

for Low-Power Hierarchical Memory Mappings,^ IEEE

Trans. Very Large Scale Integr. (VLSI) Syst, vol. 6, no 4,

1998 pp. 529–537, Dec.

14. T.-M. Liu and C.-Y. Lee, BMemory-Hierarchy-Based Power

Reduction for H.264/AVC Video Decoder,^ IEEE Interna-

tional Symposium on VLSI International Symposium on

Design, Automation and Test (VLSI-DAT_06), 2006, pp. 247–
250, Apr.

15. J. M. Rabaey and M. Pedram, BLow Power Design Method-

ologies,^ Kluwer Academic Publishers, 1995.
16. N.D. Zervas, K. Masselo, O.G. Koufopavlou and C.E. Goutis,

BPower Exploration of Multimedia Applications Realization

on Embedded Cores,^ IEEE Int. Symp. Circuits Syst., vol. 4,

1999, pp. 378–381, June.

17. L. Wang, K. Panusopone, R. Gandhi, Y. Yu and A. Luthra,

BInterlace coding tools for H.26L video coding^, VCEG-O37,
Pattaya, 2001, Dec.

18. Micron\ Technology Inc. MT48LC2M32B2 64Mb SDRAM.

[Online Available]: http://www.micron.com/products/dram/

19. Micron\ Technology Inc. The Micron\ System-Power

Calculator: SDRAM. [Online Available]: http://www.micron.

com/products/dram/syscalc.html

Tsu-Ming Liu was born in I-Lan, Taiwan, R.O.C. in 1980. He

received the B.S. degree in Electronics Engineering from

National Chiao-Tung University, Taiwan, in 2002, and the

M.S. and Ph.D. degrees from National Chiao-Tung University,

Taiwan, in 2004 and 2007, respectively. From July to October

2004, he was an intern in Sunplus Technology Company, Ltd,

Hsinchu, Taiwan. From 2004 to 2006, he served as a Lecturer

in the Tze-Chiang Foundation of Science and Technology

(TCFST). In October 2007, he will join the MediaTek Inc.,

Hsinchu, Taiwan, R.O.C. In the past three years, he has

authored and coauthored over 30 papers in academic journals

and national/international conference proceedings. His major

research interests include binary shape coding, joint source

and channel design, H.264/AVC video decoding, and associ-

ated VLSI architectures. Dr. Liu received the Best Impact

Award from IEEE Taipei Section. He received a Best Paper

Candidate and Top 10% papers of the 2004 Asia-Pacific

conference on Circuits and Systems and the 2005 International

conference on Image Processing, respectively. He was a

recipient of the internal Ph.D. candidate scholarship from

MediaTek Inc., HsinChu, Taiwan, and he is an honorary

member of Phi-Tau-Phi.

Chen-Yi Lee received the B.S. degree from National Chiao

Tung University, Hsinchu Taiwan in 1982, and the M.S. and

Ph.D. degrees from Katholieke University Leuven (KUL),

Belgium in 1986 and 1990 respectively, all in Electrical

Engineering. From 1986 to 1990, he was with IMEC/VSDM,

working in the area of architecture synthesis for DSP. In

February 1991, he joined the faculty of the Electronics

Engineering Department, National Chiao Tung University,

Hsinchu Taiwan, where he is currently a Professor. His

research interests mainly include VLSI algorithms and

architectures for high-throughput DSP applications. He is also

active in various aspects of system-on-chip design technology,

very low power designs, multimedia signal processing, and

wireless communications. He served as the Director of Chip

Implementation Center (CIC) from July 2000 to December

2003, an organization for IC design promotion in Taiwan. He

was the former IEEE CAS Taipei Chapter Chair January 2000

to August 2002, the SIP task leader of National SoC Research

Program January 2003 to December 2005, and the microelec-

tronics program coordinator of Engineering Division under

National Science Council of Taiwan December 2002 to

December 2005. He also served as the Department Chair of

Electronics Engineering, National Chiao Tung University

August 2003 to July 2006. He is a Member of IEEE.

80 Liu and Lee

http://www.micron.com/products/dram/
http://www.micron.com/products/dram/syscalc.html
http://www.micron.com/products/dram/syscalc.html

	Design of an H.264/AVC Decoder with Memory Hierarchy and Line-Pixel-Lookahead
	Abstract
	Introduction
	Reviews of Memory Hierarchy in H.264/AVC
	H.264/AVC Video Standards
	Memory Hierarchy

	Three-Level Memory Hierarchy
	Content SRAM
	Slice SRAM

	Line-Pixel-Lookahead
	TAG Generation
	Slice SRAM with LPL vs. Cache Memory

	Performance Evaluation on H.264/AVC Decoding Systems
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

