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中 文 摘 要 ： 在近期的一篇論文中，Kim 和 Nakada 證明了一個在有限體之

下，正規勞倫級數之非齊次丟番圖逼近的 Kurzweil 定理。在

這個計畫中，我們證明了一個 simultaneous 丟番圖逼近的

推廣。此外，我們證明了其他歸納 Kurzweil 定理的結果。 

中文關鍵詞： 非齊次丟番圖逼近、正規勞倫級數、Kurzweil 定理、強大數

法則。 

英 文 摘 要 ： This project was concerned with generalizations of 

Kim and Nakada｀s recent analogue of Kurzweil｀s 

theorem in the field of formal Laurent series. Kim 

and Nakada｀s proof used continued fraction expansion 

which made a generalization to simultaneous 

Diophantine approximation complicated. We proposed a 

new approach which works for all dimensions. 

Moreover, we also considered other extensions of 

Kurzweil｀s theorem in dimension one. 

英文關鍵詞： Inhomogeneous Diophantine approximation, formal 

Laurent series, Kurzweil｀s theorem, strong laws of 

large numbers. 

 



Project: Metric Inhomogeneous Diophantine Approximation for
Formal Laurent Series

by

Michael Fuchs

Abstract

This project was concerned with generalizations of Kim and Nakada’s recent analogue of
Kurzweil’s theorem in the field of formal Laurent series. Kim and Nakada’s proof used con-
tinued fraction expansion which made a generalization to simultaneous Diophantine approxi-
mation complicated. We proposed a new approach which works for all dimensions. Moreover,
we also considered other extensions of Kurzweil’s theorem in dimension one.

1 General
This is the final report on the National Science Council project “Metric inhomogeneous Diophan-
tine approximation for formal Laurent series” with grant number NSC-101-2115-M-009-010- and
running time from August 1st, 2012 to July 31st, 2013.

Before going into details, we shortly summarize the main achievements.

• The paper [1] contains the main findings of this project (a preprint is attached).

• Generalizations of Kurzweil’s theorem in dimension one are work in progress.

• Two graduate students have worked on this project (one of them graduate in June 2012; the
other is expected to graduate in June 2014).

2 Results
We start by fixing some notations. First, let Fq denote the finite field of q elements (q = pt, t ∈
N, p ∈ P). Moreover, set

F((T−1)) =

{
f =

n0∑
−∞

anT
n : an0 6= 0, an ∈ Fq

}
∪ {0}

which with addition and multiplication defined similar as for polynomials is a field, the so-called
field of formal Laurent series. We will also use the notation

{f} = a−1T
−1 + a−2T

−2 + · · · , f = an0T
n0 + · · · ∈ Fq((T−1)), an0 6= 0.

Now, equip the field of formal Laurent series with a norm as follows: |f | = qn0 for f =
an0T

n0 + · · · , an0 6= 0 and |0| = 0. Moreover, set

L = {f ∈ Fq((T−1)) : |f | < 1}.

Note that the norm restricted to L gives a compact topological group. Thus, there exists a unique,
translation-invariant probability measure denoted by m.
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We consider on the above probability space the Diophantine approximation problem

|{Qf} − g| < 1

qn+ln
, deg(Q) = n, (1)

where f, g ∈ L, Q ∈ Fq[T ] and ln is a fixed sequence of positive integers. We are interested in
the number of solutions in Q for a randomly chosen g (note that the corresponding cases where
g if fixed and f random and both f, g random have been discussed in [2]; see also [6] for higher-
dimensional generalizations).

It follows immediately from the lemma of Borel-Cantelli that (1) has finitely many solutions
for almost all g whenever

∑
n q
−ln converges. Moreover, it is well-known, that the number of

solutions of (1) obeys a 0-1 law, i.e., the number is either finite or infinite for almost all g. However,
the divergence of

∑
n q
−ln does not necessarily imply that there are infinite many solutions for

almost all g. Thus, it is interesting to consider the following set

W =

{
f ∈ L : ∀ln with

∑
n

q−ln =∞, (1) has infinitely many solutions for almost all g

}
.

Kim and Nakada gave in [3] the following surprisingly easy characterization ofW (their result
is an analogue of Kurzweil’s theorem [7] from the real number case).

Theorem 1 (Kim and Nakada). We have,

W = {f ∈ L : f is badly approximable}.

Kim and Nakada’s proof of the above result made use of continued fraction expansion and thus
is not easily extended to simultaneous Diophantine approximation.

In [1], we gave a new proof of Kim and Nakada’s result which allowed us in addition to
generalize their result to higher dimension. In order to describe our result, we have to fix some
more notation. Let r, s ∈ N. Consider vectors f = (f1, . . . , fr) ∈ Fq((T−1))r and let

{f} = ({f1}, . . . , {fr}).

Moreover, define a norm as ‖f‖ = max1≤i≤r |fi|.
Consider now the following extension of (1)

‖{qA} − g‖ < 1

qbnr/sc+ln
, deg q = n, (2)

where A ∈ Lr×s,g ∈ Ls,q ∈ Fq[T ]r and ln is a again a fixed sequence of positive integers (here
deg q = max1≤i≤r deg qi with q = (q1, . . . , qr)). As before, we are interested in the number of
solutions of (2) in q for almost all g (note that r = s = 1 is the situation from above).

In [1], we proved that (2) has either finitely many or infinitely many solutions in q for almost
all g. A simple application of the lemma of Borel-Cantelli shows that the number of solutions is
finite whenever

∑
n q
−sln is convergent. Therefore, it is again interesting to consider the following

set

Wr,s =

{
A ∈ Lr×s : ∀ln with

∑
n

q−sln =∞, (2) has infinitely many solutions for almost all g

}
.

Our main result from [1] is the following theorem.
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Theorem 2. We have,

W = {A ∈ Lr×s : A is badly approximable}.

Apart from the above generalization, other generalizations of Kim and Nakada’s result have
been considered as well. For example, in [5], the author considered the following extension of (1)

|{Qf} − g| < 1

qln
, deg(Q) = n. (3)

Set

Ω(τn) =

{
f ∈ L : ∃c ∈ N such that for all Q ∈ Fq[T ], we have |{Qf}| ≥ 1

qc+τn

}
,

where τn is a sequence of positive integers. Then, in [5], they proved the following result.

Theorem 3 (Kim, Tan, Wang, Xu). Let ρ ≥ 1. Then,{
f ∈ L : ∀ln with

∑
n

qn−ρln =∞, (3) has infinitely many solutions for almost all g

}
= Ω(bρnc).

Note that for ρ = 1 the latter result is Kurzweil’s theorem. The main question is now, whether
the above theorem can be generalized to arbitrary sequence τn (with possible mild restrictions).
This is work in progress with one of my graduate students.

3 Conclusion
In this project, we gave a new proof of a recent result of Kim and Nakada. Moreover, our proof
could be used to extend Kim and and Nakada’s result to simultaneous Diophantine approximation.
Other extensions of Kim and Nakada’s result were considered as well.

Another promising direction of future research comes from a recent paper of Kim, Nakada and
Natsui [4]. In this paper, they gave a sufficient and necessary condition of (1) having an infinite
number of solutions for almost all g for all ln which are non-decreasing. A similar result for
Diophantine approximation in the real number field has not been proved yet. Does such a result
hold? Moreover, is it possible to give a similar result when the monotonicity restriction on ln is
removed? Can the result be generalized to higher dimension? All this might be further directions
of future research.
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A Higher-dimensional Kurzweil Theorem for Formal
Laurent Series over Finite Fields

Shu-Yi CHEN and Michael FUCHS∗

Department of Applied Mathematics
National Chiao Tung University

Hsinchu, 300
Taiwan

Abstract

In a recent paper, Kim and Nakada proved an analogue of Kurzweil’s theorem for inhomogeneous
Diophantine approximation of formal Laurent series over finite fields. Their proof used continued
fraction theory and thus cannot be easily extended to simultaneous Diophantine approximation. In this
note, we give another proof which works for simultaneous Diophantine approximation as well.

1 Introduction and Result
We start by fixing some notation which we are going to use throughout this work. First, let Fq denote
the finite field with q elements. Moreover, denote by Fq[T ] the polynomial ring and by

Fq((T
−1)) = {f = anT

n + an−1T
n−1 + · · · : ai ∈ Fq, n ∈ Z}

the field of formal Laurent series.
For a formal Laurent series f = anT

n + an−1T
n−1 + · · · , we define its fractional part {f} by

{f} = a−1T
−1 + a−2T

−2 + · · · .

and its valuation by |f | = qdeg f , where deg f is the generalized degree function. It is straightforward
to prove that | · | satisfies the ultra-metric property, i.e., |f−g| ≤ max{|f |, |g} for all f, g ∈ Fq((T

−1))
with equality whenever |f | 6= |g|. This property implies that balls, which we denote by

B(f ; q−d) = {g ∈ Fq((T
−1)) : |g − f | < q−d},

are either disjoint or contained in each other.
Next, let

L = {f ∈ Fq((T
−1)) : |f | < 1}.

Restricting the valuation to this set gives a compact topological group. Hence, there exists a unique,
translation-invariant probability measure (the Haar measure) which we are going to denote by m.

∗Partially supported by NSC under the grant NSC 101-2115-M-009-010
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In several recent papers, the following inhomogeneous Diophantine approximation problem was
investigated: for f, g ∈ L consider

|{Qf} − g| < 1

qn+ln
, Q ∈ Fq[T ],degQ = n, (1)

where ln is a sequence of non-negative integers. One is interested in the number of solutions in Q of
(1). Three situations have been studied: (D) f and g are both random; (S1) g is fixed; f is random;
(S2) f is fixed; g is random. The first case is called the double-metric case and the other two cases are
called single-metric cases.

We are going to recall some previous results concerning the number of solutions of (1). First, in
all three cases, it follows immediately from the Borel-Cantelli lemma that the number of solutions
is finite almost surely whenever

∑
n≥0 q

−ln converges. Moreover, in the double-metric case and the
single-metric case (S1) it was proved by Ma and Su [8] and Fuchs [3] that divergence of the latter series
entails that the number of solutions is infinite almost surely. Interestingly, the same result does not hold
for the single-metric case (S2). More precisely, for some functions f , the number of solutions remains
finite almost surely even for sequences ln for which

∑
n≥0 q

−ln = ∞. This then raises to question
of characterizing those f where the convergence or divergence of

∑
n≥0 q

−ln determines whether the
number of solutions is finite or infinite almost surely.

To this end, we define the following set

W = {f ∈ L : ∀ ln with
∞∑
n=0

q−ln =∞, (1) has infinitely many solutions for almost all g}.

A characterization of this set was given in a recent paper by Kim and Nakada [5], their result being
an analogue of Kurzweil’s theorem from the real case. In order to state the result, we need a notation:
f ∈ L is called badly approximable if there exists a c ∈ N such that for all Q ∈ Fq[T ] with degQ = n,
we have

|{Qf}| ≥ 1

qn+c
.

Then, Kim and Nakada proved the following result.

Theorem 1 (Kim and Nakada). We have,

W = {f ∈ L : f is badly approximable}.

As for the proof of the above result, Kim and Nakada used continued fraction theory. Hence, their
proof is not easily extended to simultaneous Diophantine approximation. It is the purpose of this note
to give another proof which works for simultaneous Diophantine approximation as well. Our new
approach combines ideas of Kurzweil’s original proof [7] and Kim and Nakada’s approach from [5]
(for a more recent proof of Kurzweil’s theorem see Fayad [2]).

In order to state our result, we need further notation. Therefore, fix non-negative integers r and
s. Then, we denote by Fq[T ]

r the r-th fold Cartesian product of Fq[T ] and by Fq((T
−1))r the r-th

dimensional vector space over Fq((T
−1)). Throughout this work, vectors will always be row vectors

and will be denoted by bold, lower-case letters.
Let f = (f1, . . . , fr) ∈ Fq((T

−1))r be a vector. Then, we define its fractional part by

{f} = ({f1}, . . . , {fr})

and its valuation ‖f‖ = qdeg f = max1≤i≤r |fi|, where deg f = max1≤i≤r deg fi. Note that ‖ · ‖ again
satisfies the ultra-metric property and balls

B(f ; q−d) = {g ∈ Fq((T
−1))r : ‖g − f‖ < q−d}
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are again either disjoint or contained in each other.
Finally, we let Lr denote the r-th fold Cartesian product of L which we equip with the product

measure of L (also denoted by m). Note that due to Tychonov’s theorem, Lr is again a compact
topological group and hence the product measure is the unique Haar measure.

Now, we consider the following extension of (1): for A ∈ Lr×s and g ∈ Ls consider

‖{qA} − g‖ < 1

qb
nr
s
c+ln

, q ∈ Fq[T ]
r, degq = n, (2)

where ln is a sequences of non-negative integers. Again, one has three cases: (D) A and g are both
random; (S1) g is fixed and A is random; (S2) A is fixed and g is random.

In this note, we are interested in case (S2). We mention in passing that similar results as in the
one-dimensional case have been proved for the double-metric case and the single-metric case (S1) by
Kristensen in [6]. So, the only case which has not been studied yet is (S2). In this case, we again have
from the Borel-Cantelli lemma that if

∑
n≥0 q

−lns is convergent, then the number of solutions of (2) is
finite almost surely. As for the other direction, we again define the set

Wr,s = {A ∈ Lr×s : ∀ ln with
∞∑
n=0

q−lns =∞, (2) has infinitely many solutions for almost all g}.

We need the following notation: A ∈ Lr×s is called badly approximable if there exists a c ∈ N such
that for all q ∈ Fq[T ]

r with degq = n, we have

‖{qA}‖ ≥ 1

qb
nr
s
c+c

. (3)

Then, our main result is the following extension of Theorem 1.

Theorem 2. We have,

Wr,s = {A ∈ Lr×s : A is badly approximable}.

The structure of the paper is as follows: in the next section, we will collect a couple of results which
are needed in the proof of Theorem 2. The proof of Theorem 2 is then presented in Section 3.

2 Some Preliminaries
Throughout this section, let A ∈ Lr×s with

A =


f1,1 f1,2 · · · f1,s
f2,1 f2,2 · · · f2,s

...
...

. . .
...

fr,1 fr,2 · · · fr,s

 .

We first recall the higher-dimensional version of Dirichlet’s theorem.

Theorem 3. The following diophantine inequality

‖{qA}‖ < 1

qb
nr
s
c ,q ∈ Fq[T ]

r, degq = n

has infinitely many solutions.
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Proof. This is proved as in the real case.
Next, we need the the following result.

Lemma 1. If Auᵀ ∈ Fq[T ]
r for some u ∈ Fq[T ]

s with u 6= 0, then A is not badly approximable.

Proof. Let u = (U1, . . . , Us) with Uj ∈ Fq[T ] and assume w.l.o.g. that Us 6= 0. From the assumption,
we obtain that

Auᵀ = (V1, . . . , Vr)
ᵀ

with Vi =
∑s

j=1 fi,jUj ∈ Fq[T ].
Next, denote by A′ the matrix A with the last column removed. Then, by Dirichlet’s theorem,

‖{qA′}‖ < q−b
nr
s−1
c,q ∈ Fq[T ]

r,degq = n

has infinitely many solutions. The latter is equivalent to

|Q1f1,1 +Q2f2,1 + · · ·+Qrfr,1 − P1| < q−b
nr
s−1
c,

|Q1f1,2 +Q2f2,2 + · · ·+Qrfr,2 − P2| < q−b
nr
s−1
c,

...

|Q1f1,s−1 +Q2f2,s−1 + · · ·+Qrfr,s−1 − Ps−1| < q−b
nr
s−1
c

has infinitely many solutions in Q1, . . . , Qr, P1, . . . , Ps−1 with max1≤i≤r degQi = n. Multiplying by
Us and setting Q′i = UsQi, 1 ≤ i ≤ r and P ′j = UsPj , 1 ≤ j ≤ s− 1 implies that

|Q′1f1,1 +Q′2f2,1 + · · ·+Q′rfr,1 − P ′1| < q−b
n′r
s−1
c−c1 ,

|Q′1f1,2 +Q′2f2,2 + · · ·+Q′rfr,2 − P ′2| < q−b
n′r
s−1
c−c1 ,

... (4)

|Q′1f1,s−1 +Q′2f2,s−1 + · · ·+Q′rfr,s−1 − P ′s−1| < q−b
n′r
s−1
c−c1

has infinitely many solutions, where max1≤i≤r degQ
′
i = n′ and c1 is a suitable constant.

Now, fix a solution of the latter system and observe that

UsQ
′
1f1,s + UsQ

′
2f2,s + · · ·+ UsQ

′
rfr,s

=
r∑

i=1

(Vi − U1fi,1 − · · · − Us−1fi,s−1)Q
′
i

=

r∑
i=1

ViQ
′
i −

s−1∑
j=1

Uj(Q
′
1f1,j + · · ·+Q′rfr,j − P ′j)−

s−1∑
j=1

UjP
′
j .

Rearranging yields

Us

r∑
i=1

Q′ifi,s +

s−1∑
j=1

UjP
′
j −

r∑
i=1

ViQ
′
i = −

s−1∑
j=1

Uj(Q
′
1f1,j + · · ·+Q′rfr,j − P ′j).

Hence,∣∣∣∣∣Us

r∑
i=1

Q′ifi,s +
s−1∑
j=1

UjP
′
j −

r∑
i=1

ViQ
′
i

∣∣∣∣∣ ≤ max
1≤j≤s−1

|Uj ||Q′1f1,j + · · ·+Q′rfr,j − P ′j | < q−b
n′r
s−1
c−c2 ,
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where the last line follows from (4) and c2 is a suitable constant. Dividing both sides by |Us| gives∣∣∣∣∣
r∑

i=1

Q′ifi,s +

∑s−1
j=1 UjP

′
j −

∑r
i=1 ViQ

′
i

Us

∣∣∣∣∣ < q−b
n′r
s−1
c−c3 ,

where c3 is a suitable constant. Note that Us|Q′i, 1 ≤ i ≤ r and Us|P ′j , 1 ≤ j ≤ s− 1 and hence

R =

∑s−1
j=1 UjP

′
j −

∑r
i=1 ViQ

′
i

Us

is a polynomial. Overall, we have proved that

|Q′1f1,s + · · ·+Q′rfr,s +R| < q−b
n′r
s−1
c−c3 .

So, we can add this equation to (4) and the resulting system still has infinitely many solutions. This in
turn yields that if we set q′ = (Q′1, . . . , Q

′
r) and c4 = min{c1, c3}, then

‖{q′A}‖ < q−b
n′r
s−1
c−c4 ,q′ ∈ Fq[T ]

r, degq′ = n′ (5)

has infinitely many solutions.
The latter, however, implies that A is not badly approximable because otherwise (3) would hold

which clearly contradicts (5). Hence, the proof is finished.

Remark 1. In the real case, a matrix A is badly approximable if and only if Aᵀ is badly approximable
(see Theorem VIII in [1]). If the same is true for formal Laurent series as well (which we expect), then
Lemma 1 would follow from this as a simple consequence.

For the final two results of this section, assume that A is badly approximable, i.e., (3) holds.

Lemma 2. The set {{qA} : q ∈ Fq[T ]
r} is dense in Ls.

Proof. Fix n ∈ N and g = (g1, . . . , gs) ∈ Ls with

gj = g
(j)
1 T−1 + g

(j)
2 T−2 + · · · .

We have to show that there exists a q ∈ Fq[T ]
r with

‖{qA} − g‖ < q−n. (6)

In order to do so, we reformulate (6) as a solvability problem for a system of linear equations. There-
fore, let q = (Q1, . . . , Qr) with

Qi = a
(i)
0 + a

(i)
1 T + · · ·+ a

(i)
N TN

and for 1 ≤ i ≤ r and 1 ≤ j ≤ s

fi,j = f
(i,j)
1 T−1 + f

(i,j)
2 T−2 + · · · .

Moreover,

ui =


a
(i)
0

a
(i)
1
...
a
(i)
N


ᵀ

, Ai,j =


f
(i,j)
1 f

(i,j)
2 · · · f

(i,j)
n

f
(i,j)
2 f

(i,j)
3 · · · f

(i,j)
n+1

...
...

. . .
...

f
(i,j)
N+1 f

(i,j)
N+2 · · · f

(i,j)
N+n

 , vj =


g
(j)
1

g
(j)
2
...

g
(i,j)
n


ᵀ
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for 1 ≤ i ≤ r and 1 ≤ j ≤ s. Finally, set

u =


u1

u2
...
ur


ᵀ

, A′ =


A1,1 A1,2 · · · A1,s

A2,1 A2,2 · · · A2,s
...

...
. . .

...
Ar,1 Ar,2 · · · Ar,s

 , v =


v1

v2
...
vs


ᵀ

.

Then, (6) has a solution if and only if the system of linear equations uA′ = v has a solution u.
In order to show that the latter system is solvable, it suffices to show that rank(A′) = ns for N

large enough. Assume that this is wrong. Then, there exist α1, . . . , αns not all 0 with

α1

(
f
(1,1)
1 , . . . , f

(1,1)
N+1, f

(2,1)
1 , . . . , f

(2,1)
N+1, . . . , f

(r,1)
1 , . . . , f

(r,1)
N+1

)
+ · · ·+ αns

(
f (1,s)n , . . . , f

(1,s)
N+n, f

(2,s)
n , . . . , f

(2,s)
N+n, . . . , f

(r,s)
n , . . . , f

(r,s)
N+n

)
= 0. (7)

If we now set u = (U1, . . . , Us) with

U1 = α1 + α2T + · · ·+ αnT
n−1,

U2 = αn+1 + αn+2T + · · ·+ α2nT
n−1,

...

Us = αn(s−1)+1 + αn(s−1)+2T + · · ·+ αnsT
n−1,

then (7) can be reformulated as

|{fi,1U1 + · · ·+ fi,sUs}| < q−N−1

for 1 ≤ i ≤ r. This in turn gives that
‖Auᵀ‖ < q−N−1. (8)

Now, since A is badly approximable, Lemma 1 implies that ‖Auᵀ‖ > 0. Consequently, since there are
only finitely many possible choices of u (since n is fixed), (8) becomes wrong if N is large enough.
This gives a contradiction and hence our result is proved.

Lemma 3. Let E ⊆ Ls and assume that E is invariant under the action ·+ {qA} for all q ∈ Fq[T ]
r.

Then, m(E) = 0 or m(E) = 1.

Proof. First, recall from the introduction that Ls is a compact topological group and m is its Haar
measure.

Now, assume that m(E) > 0. We have to show that m(E) = 1. In order to do so, we use
Lebesgues’s density theorem for compact topological groups (see Remark 5 on page 268 in [4]): for all
ε > 0, there exists a d ∈ Z with∫ ∣∣∣∣∣χE(g)−

m
(
E ∩B

(
g; q−d

))
m (B (g; q−d))

∣∣∣∣∣dm < εm(E),

where χE denotes the indicator function of E. The latter implies that∫
E

(
1−

m
(
E ∩B

(
g; q−d

))
m (B (g; q−d))

)
dm < εm(E).

Hence, there exists a g ∈ Ls with

1−
m
(
E ∩B

(
g; q−d

))
m (B (g; q−d))

< ε

6



and consequently,
m
(
E ∩B

(
g; q−d

))
> (1− ε)m

(
B
(
g; q−d

))
.

Since E is invariant under the action ·+ {qA} and m is translation-invariant, we obtain

m
(
E ∩

(
B
(
g; q−d

)
+ {qA}

))
> (1− ε)m

(
B
(
g; q−d

)
+ {qA}

)
for all q ∈ Fq[T ]

r. This together with Lemma 2 clearly implies that m(E) > 1− ε and since this holds
for all ε > 0, we have m(E) = 1 as desired.

3 Proof of the Main Result
In this section, we will prove Theorem 2. We will start with the case where A is badly approximable.
For the next two results again assume that A satisfies (3).

Lemma 4. Let g ∈ Ls and d > 0. Then, the number of q ∈ Fq[T ]
r with degq ≤ N such that

{qA} ∈ B(g; q−d) is at most max{qNr+cs−ds, 1}.

Proof. First, fix q,q′ ∈ Fq[T ]
r with degq,degq′ ≤ N . Then, since A is badly approximable, we have

‖{qA} − {q′A}‖ = ‖{(q− q′)A}‖ ≥ q−b
deg(q−q′)r

s
c−c ≥ q−b

Nr
s
c−c.

This means that the distance between any two points {qA} and {q′A} is at least q−b
Nr
s
c−c.

Now, we consider two cases.

Case 1. If q−b
Nr
s
c−c ≥ q−d, then there is at most one point in B(g; q−d).

Case 2. If q−b
Nr
s
c−c < q−d, then the number of points in B(g; q−d) is at most(

q−d
)s(

q−b
Nr
s
c−c
)s ≤ qNr+cs−ds.

Hence, our claimed result is proved.

Lemma 5. Let ln be a sequence with
∑

n≥0 q
−lns =∞. Then, for all k ≥ 0

m

 ∞⋃
n=k

⋃
degq=n

B
(
{qA}; q−b

nr
s
c−ln

) >
1

qcs+1
.

Proof. We first exclude the case q = 2 and r = 1.
Let l′n = max{ln, c+1}. Then,

∑
n≥0 q

−l′ns =∞. We will use proof by contradiction. Therefore,
assume that the claim is wrong. Hence, there exists a k0 ≥ 0 such that for all N ≥ k0, we have

m

 N⋃
n=k0

⋃
degq=n

B
(
{qA}; q−b

nr
s
c−l′n

) ≤ q−cs−1. (9)

Next, define the following set

LN =

{
degq = N : {qA} ∈

N⋃
n=k0

⋃
degq′=n

B
(
{q′A}; q−b

nr
s
c−l′n

)

\
N−1⋃
n=k0

⋃
degq′=n

B
(
{q′A}; q−b

nr
s
c−l′n

)}
.

7



Our first goal is to estimate the cardinality of LN . Therefore, set

N−1⋃
n=k0

⋃
degq′=n

B
(
{q′A}; q−b

nr
s
c−l′n

)
=
⋃
i

B
(
{q′iA}; q−di

)
,

where the B({q′iA}; q−di) are disjoint for all i. Then, from (9),

q−cs−1 ≥ m

N−1⋃
n=k0

⋃
degq′=n

B
(
{q′A}; q−b

nr
s
c−l′n

) = m

(⋃
i

B
(
{q′iA}; q−di

))
=
∑
i

q−dis.

Using Lemma 4 gives that the number of q with degq ≤ N such that {qA} ∈
⋃

iB({q′iA}; q−di) is
at most ∑

i

max
{
qNr+cs−dis, 1

}
= max

{
qNr+cs

∑
i

q−dis, qNr

}
= qNr.

Hence, the number of elements in LN is at least

q(N+1)r − qNr − qNr = qNr(qr − 2) = dqNr,

where d > 0 is a constant.
Next, we claim that⋃

q∈LN

B
(
{qA}; q−b

Nr
s
c−l′N

)

⊆
N⋃

n=k0

⋃
degq′=n

B
(
{q′A}; q−b

nr
s
c−l′n

)
\

N−1⋃
n=k0

⋃
degq′=n

B
(
{q′A}; q−b

nr
s
c−l′n

)
. (10)

In order to show this, fix a q ∈ LN and assume that there exists a q′ with degq′ = n < N such that

B
(
{qA}; q−b

Nr
s
c−l′N

)
∩B

(
{q′A}; q−b

nr
s
c−l′n

)
6= ∅.

Since we know that {qA} 6∈ B({q′A}; q−b
nr
s
c−l′n), we obtain that

B
(
{q′A}; q−b

nr
s
c−l′n

)
⊆ B

(
{qA}; q−b

Nr
s
c−l′N

)
and hence {q′A} ∈ B({qA}; q−b

Nr
s
c−l′N ). The number of q with degq ≤ N and {qA} belonging to

the latter set is, however, at most

max
{
qNr+cs−(bNr

s
c+l′N)s, 1

}
≤ max

{
q(c+1)s−l′Ns, 1

}
= 1.

This gives a contradiction and hence (10) is established.
Finally, we claim that the balls appearing on the left-hand side of (10) are pairwise disjoint. There-

fore, consider q1,q2 ∈ LN with

B
(
{q1A}; q−b

Nr
s
c−l′N

)
∩B

(
{q2A}; q−b

Nr
s
c−l′N

)
6= ∅.

Thus, these two balls are equal and hence

‖{q1A} − {q2A}‖ = ‖{(q1 − q2)A}‖ < q−b
Nr
s
c−l′N .
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Now, as above, the ball B(0; q−b
Nr
s
c−l′N ) contains at most one point {qA} with degq ≤ N . Conse-

quently, q1 = q2 and our claim is proved.
Now, from (10) and the latter claim, we obtain

m

(
N⋃

n=k0

⋃
degq′=n

B
(
{q′A}; q−b

nr
s
c−l′n

))

≥ m

N−1⋃
n=k0

⋃
degq′=n

B
(
{q′A}; q−b

nr
s
c−l′n

)+m

 ⋃
q∈LN

B
(
{qA}; q−b

Nr
s
c−l′N

)
≥ m

N−1⋃
n=k0

⋃
degq′=n

B
(
{q′A}; q−b

nr
s
c−l′n

)+ dqNr
(
q−b

Nr
s
c−l′N

)s

≥ m

N−1⋃
n=k0

⋃
degq′=n

B
(
{q′A}; q−b

nr
s
c−l′n

)+ dq−l
′
Ns.

Iterating yields

m

(
N⋃

n=k0

⋃
degq′=n

B
(
{q′A}; q−b

nr
s
c−l′n

))
≥ d

N∑
n=k0

q−l
′
ns.

Since
∑

n≥0 q
−l′ns =∞ this gives a contradiction when N is large enough.

Now, what is left is to consider the case q = 2 and r = 1. Here, we note that since
∑

n≥0 q
−l′ns =

∞, we have either
∑

n≥0 q
−l′2ns = ∞ or

∑
n≥0 q

−l′2n+1s = ∞. W.l.o.g. assume that the first case
holds. Then, the same proof as above can be used with the only difference that instead of LN , we
consider

L̃N =

{
degq = 2N : {qA} ∈

2N⋃
n=k0

⋃
degq′=n

B
(
{q′A}; q−b

nr
s
c−l′n

)

\
2N−2⋃
n=k0

⋃
degq′=n

B
(
{q′A}; q−b

nr
s
c−l′n

)}
.

Details are straightforward and we leave them to the reader.
Now, we can prove one half of Theorem 2.

Proposition 1. Let A ∈ Lr×s be badly approximable. Then, for all sequences ln with
∑

n≥0 q
−lns =

∞, we have that (2) has infinitely many solutions for almost all g ∈ Ls.

Proof. Consider

E =
∞⋂
k=0

∞⋃
n=k

⋃
degq=n

B
(
{qA}; q−b

nr
s
c−ln

)
.

Then, we have for all g ∈ Ls that g ∈ E if and only if (2) has infinitely many solutions. Moreover,
Lemma 5 implies that m(E) > 0. Since E is invariant under the action · + {qA} for all q ∈ Fq[T ]

r,
the latter and Lemma 3 yields m(E) = 1 which is the desired result.

In order to conclude the proof of Theorem 2 what is left is to consider the case whereA is not badly
approximable.

Proposition 2. Let A ∈ Lr×s be not badly approximable. Then, there exists a sequence ln with∑
n≥0 q

−lns =∞ but (2) has only finitely many solutions for almost all g ∈ Ls.
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Proof. First, sinceA is not badly approximable, there exists a sequence qi = (Q
(i)
1 , . . . , Q

(i)
r ) ∈ Fq[T ]

r

with degqi = ni and ni increasing such that

‖{qiA}‖ < q−b
(ni+i)r

s
c−i.

Now, define t0 = 0 and ti = ni + i for all i. Moreover, for n with ti−1 ≤ n < ti set

ln =

⌊
(ti − n)r

s

⌋
.

Note that ln is a sequence with∑
n≥0

q−lns ≥
∞∑
i=1

q−lti−1s ≥
∞∑
i=1

q−b
r
s
cs ≥

∞∑
i=1

q−r =∞.

Next, assume w.l.o.g. that qni = ‖qi‖ = |Q(i)
1 |. We claim that⋃

ti−1≤n<ti

⋃
degq=n

B
(
{qA}; q−b

nr
s
c−ln

)
⊆
⋃
B
(
{q′A}; q−b

tir

s
c+2
)
,

where the second union runs over all q′ = (Q′1, . . . , Q
′
r) with

|Q′1| ≤ qni−1, |Q′2| ≤ qti−1, . . . , |Q′r| ≤ qti−1.

In order to show this, fix q = (Q1, . . . , Qr) with ti−1 ≤ degq = n < ti. Using division with
remainder gives a P ∈ Fq[T ] with |Q1 + PQ

(i)
1 | ≤ qni−1. Note that |P | ≤ qti−1−ni . Now set

q′ = (Q1 + PQ
(i)
1 , . . . , Qr + PQ(i)

r ).

Then,
‖{qA} − {q′A}‖ ≤ |P |‖{qiA}‖ < qti−1−ni−b

tir

s
c−i = q−b

tir

s
c−1.

Also, note that

q−b
nr
s
c−ln = q−b

nr
s
c−b (ti−n)r

s
c < q−

nr
s
− (ti−n)r

s
+2 ≤ q−b

tir

s
c+2.

Consequently,
B
(
{qA}; q−b

nr
s
c−ln

)
⊆ B

(
{q′A}; q−b

tir

s
c+2
)

which proves the claim.
In order to conclude the proof, observe that the claim implies

m

 ⋃
ti−1≤n<ti

⋃
degq=n

B
(
{qA}; q−b

nr
s
c−ln

) ≤ q(−b tirs c+2)sqni+ti(r−1) < q3s−i.

Hence,
∞∑
i=1

m

 ⋃
ti−1≤n<ti

⋃
degq=n

B
(
{qA}; q−b

nr
s
c−ln

) ≤ ∞∑
i=1

q3s−i <∞.

The Borel-Cantelli lemma now implies that for almost all g ∈ Ls

g ∈
⋃

ti−1≤n<ti

⋃
degq=n

B
(
{qA}; q−b

nr
s
c−ln

)
for only finitely many n which proves the desired result.
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Participation in conferences within
NSC-99-2115-M-009-007-MY2

by

Michael Fuchs

This is a short report concerning participation in international conferences
within my national science council project NSC 101-2115-M-009-010 in 2013.

I participated in the Seventh Cross-strait Conference on Graph Theory and
Combinatorics which took place in Changsha, Hunan, China from June 27 to June
30. I was one of roughly 30 invited speakers out of roughly 350 participants. My
Ph.D. student (who was employed in this project) was also giving a contributed
talk at the conference. This conference is a biyearly conference and serves as an
important platform to foster academic exchange between people working in graph
theory and combinatorics in China and Taiwan. The conference is conducted on a
rotational basis with every second meeting taking place in China.

This conference was different from the conference I applied for in the project
proposal because of two reasons: (i) I was an invited speaker; (ii) I wanted to give
my Ph.D. student a chance to give a talk at an international meeting (this was the
first international meeting he gave a talk) and this was a conference which was
both relevant to our field and fitted in our budget.

As mentioned above, I delivered an invited talk on June 28 entitled “On Set
Partitions, Words, Approximate Counting and Digital Search Trees” (slides are
attached); the talk of my Ph.D. student was scheduled just after my talk and was
entitled “Limit Laws for Wiener Index of Random Digital Trees” (slides are at-
tached as well).
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Set Partitions

Example.

{{2, 7}, {1, 3, 4}, {5, 6}}.

Set partition of {1, 2, 3, 4, 5, 6, 7} with three blocks.

# of set partitions of {1, . . . , n}: Bell number Bn.

We have,

Bn ∼ n!
ee

r−1

rn
√

2πr(r + 1)er
,

where rer = n+ 1, i.e., asymptotically

r = log n− log logn+ o(1)
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Number of Blocks

# of set partitions with k blocks: Stirling partition number S(n, k).

Assume that all partitions are equally likely.

Xn = # of blocks of a random partition. Then,

P (Xn = k) =
S(n, k)

Bn
.

Theorem (Harper; 1967)

We have,
E(Xn) ∼ n

log n
, Var(Xn) ∼ n

log2 n
.

Moreover,
Xn − E(Xn)√

Var(Xn)

d−→ N(0, 1).
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Set Partitions as Words

Consider
{{2, 7}, {1, 3, 4}, {5, 6}}.

Choose smallest element of every block as block leader.

Arrange blocks such that block leaders are increasing.

{
#1︷ ︸︸ ︷

{1, 3, 4},
#2︷ ︸︸ ︷
{2, 7},

#3︷ ︸︸ ︷
{5, 6}}

ω1 · · ·ω7 with wi = # of the block, i.e.,

ω1 · · ·ω7 = 1211332.

This gives a 1-1 correspondence between set partitions and certain words.
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Geometric Words

ω = ω1 · · ·ωn: word corresponding to a set partition.

ω satisfies restricted growth property (RGP):

ωi ≤ 1 + max{ω0, . . . , ωi−1} with ω0 = 0.

Largest letter of ω=# of blocks.

Random Model on Words:

ωi independent, geometric random variables with success probability p.

Words generated by this random model are called geometric words.

pn: probability that a geometric word satisfies RGP.
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Results for pn (i)

q = 1− p.

(x; q)n = (1− x)(1− xq) · · · (1− xqn−1).

(x; q)∞ = limn→∞(x; q)n.

Theorem (Oliver, Prodinger; 2011; Mansour, Shattuck; 2012)

We have,

pn = p

n−1∑
j=0

(−1)j
(
n− 1

j

)
qj(p; q)j

=

n∑
j=0

(−1)j
(
n

j

)
(p; q)j .
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Results for pn (ii)

Q = 1/q.

L = logQ.

χk = 2πik/L.

Theorem (Oliver, Prodinger; 2011)

We have,

pn ∼
(p; q)∞
L(q; q)∞

Γ(− logQ p)n
logQ p + nlogQ pΨ(logQ n),

where Ψ(z) is the 1-periodic function with average value 0 and

Ψ(z) =
(p; q)∞
L(q; q)∞

∑
k 6=0

Γ(− logQ p+ χk)e
−2πikz.
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Largest Letter

pn,k: probability that a geometric word has largest letter k and satisfies
RGP.

nq = 1 + q + q2 + · · ·+ qn−1 =
1− qn

1− q
.

nq! = 1q2q · · ·nq.(
n

k

)
q

=
nq

kq(n− k)q
.

Theorem (Mansour, Shattuck; 2012)

We have,

pn,k =
pn

kq!

k∑
j=0

(−1)jq(
j
2)((k − j)q)n

(
k

j

)
q

.
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Average Value of Largest Letter

Xn: largest letter of geometric word subject to RGP. Then,

P (Xn = k) =
pn,k
pn

.

Theorem (Prodinger; 2012)

We have,

E(Xn) ∼ logQ n− αp −
ψ(− logQ p)

L
+ Φ(logQ n),

where Φ(z) is a 1-periodic function with average value 0, ψ = Γ′/Γ and

αp =
∑
l≥0

pql

1− pql
.
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Approximate Counting with Black Holes

State diagram:

0 1 2 3 4
p

1− q

pq

1− q2

pq2

1− q3

pq3

1− q4

· · ·

In every state there is a positive probability of violating RGP.

Above diagram implies

pn,k = pqk−1pn−1,k−1 + (1− qk)pn−1,k.

Prodinger used this as starting point for his analysis.
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Approximate Counting

State diagram:

0 1 2 3 4
1

1− q

q

1− q2

q2

1− q3

q3

1− q4

· · ·

Approximate Counting (Morris 1978):

Counter Cn with C0 = 0 and

Cn+1 =

{
Cn + 1, with probability qCn ;

Cn, with probability 1− qCn .

Only Θ(log logn) space is needed for counting n objects.
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Applications

Approximate counting has found many applications:

Analysis of the Webgraph.

Monitoring network traffic.

Finding patterns in protein and DNA sequencing.

Computing frequency moments of data streams.

Data storage in flash memory.

Etc.

Many refinements have been proposed.
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Analysis of Approximate Counting

Flajolet (1985):

E(Cn) ∼ logQ n+ Cmean + F (logQ n),

where F (z) is a 1-periodic function

and

Var(Cn) ∼ Cvar +G(logQ n),

where G(z) is a 1-periodic function and

Cvar =
π2

6L2
− α− β +

1

12
− 1

L

∑
l≥1

1

l sinh(2lπ2/L)

with α =
∑

l≥1 q
l/(1− ql) and β =

∑
l≥1 q

2l/(1− ql)2.
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Methods

Many different methods have been used:

Mellin Transform: Flajolet (1985); Prodinger (1992)

Rice Method: Kirschenhofer & Prodinger (1991)

Euler Transform: Prodinger (1994)

Analysis of Extreme Value Distributions: Louchard & Prodinger
(2006)

Martingale Theory: Rosenkrantz (1987)

Probability Theory: Robert (2005)

Poisson-Laplace-Mellin Method: F. & Lee & Prodinger (2012).
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Digital Search Tree (DST)

Introduced by Coffman and Eve (1970).

Example: a digital search tree build from 9 keys:

010111

011011 101011

000100 010011 100001 111110

011110 1101111

0 1

0 1 0 1

1 0

010111
101011
100001
011011
111110
110111
010011
011110
000100
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Random Model and Leftmost Path

Random Model:

Bits are generated by independent Bernoulli random variables with mean p.

Two types of trees:

p = 1/2: symmetric digital search tree;

p 6= 1/2: asymmetric digital search tree.

Length of the Leftmost Path:

Xn: number of vertices on leftmost path.

Note that:
Xn

d
= Cn.
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Distributional Recurrence of Xn

Xn+1
d
= XIn + 1

In
d
= Binomial(n, q);

Xn, In independent.

Root

Size:

In

Size:

n−In

0 1

Recurrence of moments:

fn+1 =

n∑
j=0

(
n

j

)
qjpn−jfj + gn.
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Analytic Methods for DSTs

Rice Method:

Introduced by Flajolet and Sedgewick.

Approach of Flajolet and Richmond:

Based on Euler transform, Mellin transform, and singularity analysis.

Approach via Analytic Depoissonization:

Introduced by Jacquet & Regnier and Jacquet & Szpankowski. Based
on saddle point method and Mellin transform.

Poisson-Laplace-Mellin Approach:

Introduced by F. & Hwang & Zacharovas. Based on analytic
depoissonization and a combination of Laplace and Mellin transform.
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Variance of Approximate Counting

Qn = (q; q)∞/(q
n+1; q)∞; Q∞ = limn→∞Qn.

Theorem (F., Lee, Prodinger; 2012)

We have,
Var(Cn) ∼

∑
k

gke
2kπi logQ n,

where

gk =
Q∞

LΓ(1 + χk)

∑
h,l,j≥0

(−1)jqh+l+(j+1
2 )

QhQlQj
ϕ(χk; q

h+j + ql+j).

Here,

ϕ(χ;x) =

{
π(xχ − 1)/(sin(πχ)(x− 1)), if x 6= 1;

πχ/ sin(πχ), if x = 1.
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An Identity

Corollary (F., Lee, Prodinger; 2012)

We have,

Q∞
L

∑
h,l,j≥0

(−1)jqh+l+(j+1
2 )

QhQlQj
ψ(qh+j + ql+j)

=
π2

6L2
− α− β +

1

12
− 1

L

∑
l≥1

1

l sinh(2lπ2/L)
,

where

ψ(x) =

{
log x/(x− 1), if x 6= 1;

1, if x = 1.
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Geometric Words satisfying GRGP

ω = ω1 · · ·ωn: geometric word.

ω satisfies generalized restricted growth property (GRGP):

ωi ≤ d+ max{ω0, . . . , ωi−1} with ω0 = 0,

where d ≥ 1 fixed.

pn: probability that a geometric word satisfies GRGP.

pn,k: probability that a geometric word with largest letter k satisfies GRGP.

Xn: largest letter of geometric word subject to GRGP. Again,

P (Xn = k) =
pn,k
pn

.
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Analysis of pn (i)

Conditioning on first letter and # of letters ≤ first letter:

pn+1 =

d∑
l=1

pql−1
n∑
j=0

(
n

j

)
(1− ql)n−jqljpj .

Set

f̃(z) = e−z
∑
n≥0

pn
zn

n!
.

Then,

f̃(z) + f̃ ′(z) =

d∑
l=1

pql−1f̃(qlz).

This is the probability in the Poisson model.

Michael Fuchs (NCTU) Words, Approximate Counting, DSTs Changsha, China 22 / 32



Analysis of pn (i)

Conditioning on first letter and # of letters ≤ first letter:

pn+1 =

d∑
l=1

pql−1
n∑
j=0

(
n

j

)
(1− ql)n−jqljpj .

Set

f̃(z) = e−z
∑
n≥0

pn
zn

n!
.

Then,

f̃(z) + f̃ ′(z) =

d∑
l=1

pql−1f̃(qlz).

This is the probability in the Poisson model.

Michael Fuchs (NCTU) Words, Approximate Counting, DSTs Changsha, China 22 / 32



Analysis of pn (i)

Conditioning on first letter and # of letters ≤ first letter:

pn+1 =

d∑
l=1

pql−1
n∑
j=0

(
n

j

)
(1− ql)n−jqljpj .

Set

f̃(z) = e−z
∑
n≥0

pn
zn

n!
.

Then,

f̃(z) + f̃ ′(z) =

d∑
l=1

pql−1f̃(qlz).

This is the probability in the Poisson model.

Michael Fuchs (NCTU) Words, Approximate Counting, DSTs Changsha, China 22 / 32



Poisson Heuristic

Poisson Heuristic:

pn sufficiently smooth =⇒ pn ≈ f̃(n) = e−n
∑
j≥0

pj
nj

j!
.

More precisely: if pn is smooth enough,

pn ∼
∑
j≥0

f̃ (j)(n)

n!
τj(n) = f̃(n)− n

2
f̃
′′
(n) + . . . ,

where τj(n) := n![zn](z − n)jez.

This is called Poisson-Charlier expansion (can be already found in
Ramanujan’s notebooks).
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Jacquet-Szpankowski-admissibility (JS-admissibility)

f̃(z) is called JS-admissible if

(I) Uniformly for | arg(z)| ≤ ε,

f̃(z) = O
(
|z|α logβ |z|

)
,

(O) Uniformly for ε < | arg(z)| ≤ π,

f(z) := ez f̃(z) = O
(
e(1−ε)|z|

)
.

Theorem (Jacquet, Szpankowski; 1998)

If f̃(z) is JS-admissible, then

fn ∼ f̃(n)− n

2
f̃
′′
(n) + · · · .
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Depoissonization

JS-admissibility satisfies closure properties:

(i) f̃ , g̃ JS-admissible, then f̃ + g̃ JS-admissible.

(ii) f̃ JS-admissible, then f̃ ′ JS-admissible. Etc.

Proposition

Consider

f̃(z) + f̃ ′(z) =

d∑
l=1

pql−1f̃(qlz) + g̃(z).

We have,

g̃(z) JS-admissible ⇐⇒ f̃(z) JS-admissible.
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Analysis of pn (ii)

Recall

f̃(z) + f̃ ′(z) =

d∑
l=1

pql−1f̃(qlz).

Obviously, f̃(z) is JS-admissible. Thus,

pn ∼ f̃(n).

We only have to find an asymptotic of f̃(z).

This can be done via Mellin transform.

M [f̃(z); s] =

∫ ∞
0

f̃(z)zs−1dz.

Michael Fuchs (NCTU) Words, Approximate Counting, DSTs Changsha, China 26 / 32



Analysis of pn (ii)

Recall

f̃(z) + f̃ ′(z) =

d∑
l=1

pql−1f̃(qlz).

Obviously, f̃(z) is JS-admissible. Thus,

pn ∼ f̃(n).

We only have to find an asymptotic of f̃(z).

This can be done via Mellin transform.

M [f̃(z); s] =

∫ ∞
0

f̃(z)zs−1dz.

Michael Fuchs (NCTU) Words, Approximate Counting, DSTs Changsha, China 26 / 32



Analysis of pn (ii)

Recall

f̃(z) + f̃ ′(z) =

d∑
l=1

pql−1f̃(qlz).

Obviously, f̃(z) is JS-admissible. Thus,

pn ∼ f̃(n).

We only have to find an asymptotic of f̃(z).

This can be done via Mellin transform.

M [f̃(z); s] =

∫ ∞
0

f̃(z)zs−1dz.

Michael Fuchs (NCTU) Words, Approximate Counting, DSTs Changsha, China 26 / 32



Analysis of pn (iii)

We have,

M [f̃(z); s] =
qdΩ(1)Γ(s)

P (q−s)Ω(q−s)
,

where

P (z) = 1− p
d∑
l=1

ql−1zl

and
Ω(s) =

∏
j≥1

P (sqj).

Lemma

Let ρ be the smallest positive root of P (z). Then, ρ is simple and the only
root with |z| ≤ ρ.
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Converse Mapping Theorem

Theorem (Flajolet, Gourdon, Dumas; 1995)

Let the Mellin transform of f̃(z) exist in the strip 〈α, β〉.

Assume that M [f̃(z); s] can be continued to a meromorphic function on
〈α, γ〉 with β < γ with simple poles at s1, · · · , sk.

Then, under some technical conditions,

f̃(z) = −
k∑
j=1

Res(M [f̃(z); s], s = sj)z
−sj +O

(
z−γ

)
as z →∞.
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Analysis of pn (iv)

M [f̃(z); s] has simple poles at logQ ρ+ χk with

Res(M [f̃(z); s]) =
qdΩ(1)

LρP ′(ρ)Ω(ρ)
Γ(logQ ρ+ χk).

Thus,

f̃(z) ∼ − qdΩ(1)

LρP ′(ρ)Ω(ρ)
z− logQ ρ

∑
k

Γ(logQ ρ+ χk)z
−χk

and

pn ∼ −
qdΩ(1)

LρP ′(ρ)Ω(ρ)
n− logQ ρ

∑
k

Γ(logQ ρ+ χk)n
−χk .
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Result for pn

Theorem (F., Prodinger; 2013)

We have,

pn ∼ −
qdΩ(1)

LρP ′(ρ)Ω(ρ)
Γ(logQ ρ)n− logQ ρ + n− logQ ρΨ(logQ n),

where Ψ(z) is the 1-periodic function with average value 0 and

Ψ(z) = − qdΩ(1)

LρP ′(ρ)Ω(ρ)

∑
k 6=0

Γ(logQ ρ+ χk)e
−2πikz.

For d = 1: ρ = 1/p and result coincides with Oliver and Prodinger’s result.
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Average Value of Xn

Xn: largest letter of geometric word subject to GRGP.

Similar (but more involved) analysis gives:

Theorem (F., Prodinger; 2013)

We have,

E(Xn) ∼ logQ n− αp −
ψ(logQ ρ)

L
+ Φ(logQ n),

where Φ(z) is a 1-periodic function with average value 0, ψ = Γ′/Γ and

αp = −
∑
l≥0

qlP ′(ql)

P (ql)
.
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Further Extensions

Further Restrictions on Geometric Words:

Geometric words satisfying RGP with largest letter k and fixed levels,
rises, descends, etc.

More properties of Xn:

Find variance, higher moments and limit laws.

Generality of our method:

The method seems to be applicable to asymmetric DSTs with
log p/ log q ∈ Q. This might yield simplifications of expressions in
asymptotics of total path length, peripheral path length, profile,
number of leaves, patterns, etc.
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Limit Laws for Wiener Index of
Random Digital Trees

(joint work with M. Fuchs)

Chung-Kuei Lee

Department of Applied Mathematics
National Chiao Tung University

2013 Conference on Graph Theory and Combinatorics and
Seventh Cross-strait Conference on Graph Theory and Combinatorics

Changsha, June 28, 2013



What is Wiener Index

Proposed by H. Wiener in 1947 to study the boiling points
of paraffins.

The first topological index in chemistry.

Help people to explain chemical and physical properties of
molecules.

It is defined as the sum of the distance between all
unordered pair of vertices of given graph G:

W(G) =
∑

u∈V(G)

∑
v∈V(G)

d(u, v)

Studied for all kinds of trees since tree arises as molecular
graphs of acyclic organic molecules.
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Wiener Index of Trees

Due to its importance, Wiener index of trees has been studied
from many different aspects intensively. For instance:

Relation between Laplacian eigenvalue and Wiener index

Forbidden value for Wiener index of trees
Wiener index with extremal graph
Trees preserve Wiener index
Spanning tree with Wiener index reaches maximum
Formulas, bounds or algorithms for certain kinds of trees:
Line graph of trees, Growing trees, distance palindromic
trees, dendrimer trees, k-proportional trees, polytrees
...etc.
Many others.

Chung-Kuei Lee (NCTU) Wiener Index of Random Digital Trees Changsha, Jun. 28, 2013 3 / 17



Wiener Index of Trees

Due to its importance, Wiener index of trees has been studied
from many different aspects intensively. For instance:

Relation between Laplacian eigenvalue and Wiener index
Forbidden value for Wiener index of trees

Wiener index with extremal graph
Trees preserve Wiener index
Spanning tree with Wiener index reaches maximum
Formulas, bounds or algorithms for certain kinds of trees:
Line graph of trees, Growing trees, distance palindromic
trees, dendrimer trees, k-proportional trees, polytrees
...etc.
Many others.

Chung-Kuei Lee (NCTU) Wiener Index of Random Digital Trees Changsha, Jun. 28, 2013 3 / 17



Wiener Index of Trees

Due to its importance, Wiener index of trees has been studied
from many different aspects intensively. For instance:

Relation between Laplacian eigenvalue and Wiener index
Forbidden value for Wiener index of trees
Wiener index with extremal graph

Trees preserve Wiener index
Spanning tree with Wiener index reaches maximum
Formulas, bounds or algorithms for certain kinds of trees:
Line graph of trees, Growing trees, distance palindromic
trees, dendrimer trees, k-proportional trees, polytrees
...etc.
Many others.

Chung-Kuei Lee (NCTU) Wiener Index of Random Digital Trees Changsha, Jun. 28, 2013 3 / 17



Wiener Index of Trees

Due to its importance, Wiener index of trees has been studied
from many different aspects intensively. For instance:

Relation between Laplacian eigenvalue and Wiener index
Forbidden value for Wiener index of trees
Wiener index with extremal graph
Trees preserve Wiener index

Spanning tree with Wiener index reaches maximum
Formulas, bounds or algorithms for certain kinds of trees:
Line graph of trees, Growing trees, distance palindromic
trees, dendrimer trees, k-proportional trees, polytrees
...etc.
Many others.

Chung-Kuei Lee (NCTU) Wiener Index of Random Digital Trees Changsha, Jun. 28, 2013 3 / 17



Wiener Index of Trees

Due to its importance, Wiener index of trees has been studied
from many different aspects intensively. For instance:

Relation between Laplacian eigenvalue and Wiener index
Forbidden value for Wiener index of trees
Wiener index with extremal graph
Trees preserve Wiener index
Spanning tree with Wiener index reaches maximum

Formulas, bounds or algorithms for certain kinds of trees:
Line graph of trees, Growing trees, distance palindromic
trees, dendrimer trees, k-proportional trees, polytrees
...etc.
Many others.

Chung-Kuei Lee (NCTU) Wiener Index of Random Digital Trees Changsha, Jun. 28, 2013 3 / 17



Wiener Index of Trees

Due to its importance, Wiener index of trees has been studied
from many different aspects intensively. For instance:

Relation between Laplacian eigenvalue and Wiener index
Forbidden value for Wiener index of trees
Wiener index with extremal graph
Trees preserve Wiener index
Spanning tree with Wiener index reaches maximum
Formulas, bounds or algorithms for certain kinds of trees:
Line graph of trees, Growing trees, distance palindromic
trees, dendrimer trees, k-proportional trees, polytrees
...etc.

Many others.

Chung-Kuei Lee (NCTU) Wiener Index of Random Digital Trees Changsha, Jun. 28, 2013 3 / 17



Wiener Index of Trees

Due to its importance, Wiener index of trees has been studied
from many different aspects intensively. For instance:

Relation between Laplacian eigenvalue and Wiener index
Forbidden value for Wiener index of trees
Wiener index with extremal graph
Trees preserve Wiener index
Spanning tree with Wiener index reaches maximum
Formulas, bounds or algorithms for certain kinds of trees:
Line graph of trees, Growing trees, distance palindromic
trees, dendrimer trees, k-proportional trees, polytrees
...etc.
Many others.

Chung-Kuei Lee (NCTU) Wiener Index of Random Digital Trees Changsha, Jun. 28, 2013 3 / 17



Wiener Index of Random Trees

Entringer, Meir, Moon and Székely (1994) Simple generated
tree. The order is n5/2.

Neininger (2002) Random binary search tree and random
recursive tree. Mean is of order n2 log n and
variance of order n4. Bivariate limit law with the
total path length. First one considered variance
and limit laws.

Janson (2003) Simple generated tree. Variance of order n5.
Bivariate limit law with the total path length.

Munsonius (2011) Random split tree. Variance of order n4.
Bivariate limit law with the total path length.

Wagner (2012) Same resides of simple generated tree hold for
non-plane unlabeled tree.
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Motivation of Our Research

Random split tree is a huge class of random trees which
includes many important subclasses such as binary search
trees, m-ary search trees, median-of-(2k+1) search trees,
quadtrees, simplex trees, digital trees, etc.

Munsonius’ study missed one of the most important subclasses
- digital trees.

Neininger’s questions:
1 Does the periodic oscillator present in the mean of Wiener

index of digital trees?
2 Is Wiener index of digital trees asymptotically normal?
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Digital Search Tree (DST)

First proposed by Coffman and Eve in 1970.

Example: A DST built by 9 keys

010111

011011 101011

000100 010011 100001 111110

011110 1101111

0 1

0 1 0 1

1 0

010111 · · ·
101011 · · ·
100001 · · ·
011011 · · ·
111110 · · ·
110111 · · ·
010011 · · ·
011110 · · ·
000100 · · ·
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Random model and Recurrence

Random Model: Bernoulli model.
Bits of keys: i.i.d. Bernoulli random variables
Probability: P(In = 0) = qn

Recurrence Relation:
1 Tn: Random variable of total path length of DST on n

nodes.
2 Wn: Random variable of the Wiener index of DST on n

nodes.
3 Bn=Binomial(n, 1

2).
Tn+1 = TBn + T∗n−Bn

+ n
Wn+1 = WBn + W∗n−Bn

+ n + TBn + T∗n−Bn
+ (n− Bn)TBn

+BnT∗n−Bn
+ 2Bn(n− Bn).
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Tn+1 = TBn + T∗n−Bn

+ n
Wn+1 = WBn + W∗n−Bn

+ n + TBn + T∗n−Bn
+ (n− Bn)TBn

+BnT∗n−Bn
+ 2Bn(n− Bn).
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Differential Functional Equations

Relation for the Mean:{
f̃1,0(z) + f̃ ′1,0(z) = 2f̃1,0( z

2) + z
f̃0,1(z) + f̃ ′0,1(z) = 2f̃0,1( z

2) + (z + 2)f̃1,0( z
2) + z2

2 + z

Relation for the Variance and Covariance:
Ṽ(z) + Ṽ ′(z) = 2Ṽ( z

2) + zf̃ ′′1,0(z)2

C̃(z) + C̃′(z) = 2C̃( z
2) + (z + 2)Ṽ( z

2) + zf̃ ′′1,0(z)f̃ ′′0,1(z),

W̃(z) + W̃ ′(z) = 2W̃( z
2) +

(
z2

2 + 3z + 2
)

Ṽ( z
2) + (2z + 4) Ũ( z

2)

+z2 f̃ ′1,0( z
2)2 + 2z2 f̃ ′1,0( z

2) + zf̃ ′′0,1(z)2 + z2.

We use the Poisson-Laplace-Mellin method to handle above
equations and generate asymptotic expressions.
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Results of DST

Apply inverse Mellin transform and inverse Laplace transform,
we would get the desired result. For the others, we apply the
same method and it yields

E(Tn) =n log2 n + nP1(log2 n) +O(log n)

E(Wn) =n2 log2 n + n2P1(log2 n)− n2 +O(|n log n|)
Var(Tn) =nP2(log2 n) +O(1)

Cov(Tn,Wn) =n2P2(log2 n) +O(n log n)

Var(Wn) =n3P2(log2 n) +O(n2 log n)

P1(z) =
γ − 1
log 2

+
1
2
−
∑
k≥1

1
2k − 1

+
1

log 2

∑
k 6=0

Γ(−1 + χk)e2kπi

P2(z) =
1

log 2

∑
k∈Z

∑
j,h,l≥0

Q∞(−1)j2−(j+1
2 )

QjQhQl

e2kπi

Γ(2 + χk)
ϕ(2+χk, 2−j−h+2−j−l)
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Limiting Distribution

Theorem (Fuchs, Lee)(
Tn − E(Tn)√

Var(Tn)
,

Wn − E(Wn)√
Var(Wn)

)
d−→ (X,X)

where X is a standard normal distributed random variable and
d−→ denote weak convergence.

Proof (Sketch):
It is well-known that Tn is Gaussian. We let

Yn =
Wn − E(Wn)√

Var(Wn)
− Tn − E(Tn)√

Var(Tn)
.

Compute E(Y2
n ), use Markov’s inequality to show that Yn

P−→ 0
and the rest follows by Slutsky’s Theorem.
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Bucket Digital Search Trees

R1,R2

R4 R3,R5

R6

0 1

1

R1 = 000001 · · ·
R2 = 000110 · · ·
R3 = 110111 · · ·
R4 = 011011 · · ·
R5 = 100001 · · ·
R6 = 111110 · · ·

Figure : A bucket digital search tree with b = 2 built from 6 keys with
key-wise path length = 5, key-wise Wiener index = 19, node-wise
path length = 4 and node-wise Wiener index = 10.
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Key-wise Wiener Index of Bucket DST

Key-wise Wiener index is the sum of distance between
unordered pairs of data (keys). The same method as DST
yields

E(Tn) =n log2 nP1(log2 n) +O(n)

E(Wn) =n2 log2 nP1(log2 n)2 − n2 +O(n log n)

Var(Tn) =nP2(log2 n) +O(1)

Cov(Tn,Wn) =n2P2(log2 n) +O(n log n)

Var(Wn) =n3P2(log2 n) +O(n2 log n)

P1(z) =
γ − 1 + limω→2

G1(ω)−1
(ω−2)

log 2
+

1
2

+
1

log 2

∑
k 6=0

G1(2 + χk)

Γ(2 + χk)
e2kπi

P2(z) is another periodic function with complicated expression.
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Node-wise Wiener Index of Bucket DST

Let Nn be the random variable of number of nodes in a Bucket
DST, the same method gave us

E(Nn) =nP1(log2 n) +O(1)

E(Tn) =n log2 nP1(log2 n) +O(n)

E(Wn) =n2 log2 nP1(log2 n)2 +O(n2)

Var(Nn) =nP2(log2 n) +O(1)

Cov(Nn,Tn) =n log2 nP2(log2 n) +O(n)

Cov(Nn,Wn) =2n2 log2 nP1(log2 n)P2(log2 n) +O(n)

Var(Tn) =n(log2 n)2P2(log2 n) +O(n log n)

Cov(Tn,Wn) =2n2(log2 n)2P1(log2 n)P2(log2 n) +O(n2 log n)

Var(Wn) =4n3(log2 n)2P1(log2 n)2P2(log2 n) +O(n3 log n)
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Tries

R1 R2

R4 R5

R3 R6

0 1

0 1 0 1

0 1

0 1

0

R1 = 000001 · · ·
R2 = 000110 · · ·
R3 = 110111 · · ·
R4 = 011011 · · ·
R5 = 100001 · · ·
R6 = 111110 · · ·
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PATRICIA Tries

A space-optimized trie data structure where each node with
only one child is merged with its child. Some researchers call it
radix tree, radix trie or compact prefix tree.

R1 R2

R4 R5

R3 R6

0 1

0 1 0 1

0 10 1

R1 = 000001 · · ·
R2 = 000110 · · ·
R3 = 110111 · · ·
R4 = 011011 · · ·
R5 = 100001 · · ·
R6 = 111110 · · ·
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Internal and External Wiener Index of Tries and
PATRICIA Tries

External Wiener index of tries and PATRICIA Tries followed the
same pattern of key-wise Wiener index of Bucket-DST while
internal Wiener index being similar to the node-wise Wiener
index of Bucket DST. The only difference is that the periodic
functions are different.

For internal Wiener index, we have

Theorem (Fuchs, Lee)(
Nn − E(Nn)√

Var(Nn)
,

Tn − E(Tn)√
Var(Tn)

,
Wn − E(Wn)√

Var(Wn)

)
d−→ (X,X,X)

where X is a standard normal distributed random variable and
d−→ denote weak convergence.
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Summary and Perspective

Wiener index of DST, Bucket DST, Tries, PATRICIA Tries
are studied.

All of the moments exhibit periodic fluctuation.

Wiener index is asymptotically normal for our cases.

Asymmetric case can also be solved by the same method.

Wiener index is in fact a special case of Steiner
k-distance, which is also called Steiner index, with k = 2.
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