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Abstract

This paper studies the effective magnetoelectric behaviors of three-phase,
core-shell-matrix fibrous composites of piezoelectric and piezomagnetic phases.
A micromechancial model, the two-level recursive scheme together with the
Mori-Tanaka’s method, is proposed to investigate the magnetoelectricity of
the coated fibrous multiferroic composites. The magnitudes and trends of the
solutions are in good agreement with the calculations by the finite element
analysis. Based on this micromechanical approach, we find that, for the case

of PE/PM/PM (core/shell /matrix) multiferroic compoiste, with a coating ap-
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propriate for the inhomogeneity, the effective magnetoelecitrc coupling can be

enhanced many-fold as compared to the noncoated counterpart.

1 Introduction

This work is concerned with the magnetoelectric (ME) effect of a coated fibrous com-
posite made of piezoelectric and piezomagnetic phases. ME materials are particular
exciting since they posess the coupling between the electric and magnetic fields. This
make them appealing and promising for a wide range of applications, such as ME data
storage and switching, magnetic field detectors, and electric control of magnetism, etc.
(Fiebig, 2005; Spaldin and Fiebig, 2005; Eerenstein et al., 2006; ) However, the ME
effect in natural materials is rather weak and is often observed at low temperature
(Astrov, 1960; Rado and Folen, 1961). Therefore, various researchers have turned to
composites made of piezoelectric and piezomagnetic media to enhance the magneto-
electricity, as explained in recent reviews by Nan et al. (2008) and Srinivasan (2010).
This much stronger ME effect could be realized using product properties: an applied
magnetic field creates a strain in the piezomagnetic material which in turn creates a
strain in the piezoelectric material, resulting in an electric polarization.

The promise of applications, and the indirect coupling through strain have also
made ME composites the topic of a number of theoretical and experimental studies
(Nan et al., 2008; Zheng et al., 2004). Among them, the classical Eshelby’s equivalent
inclusion approach and the Mori-Tanaka mean-field model have been generalized to
multiferroic composites by Li and Dunn (1998a, b), Huang (1998), Wu and Huang
(2000), Huang and Zhou (2004) and Srinivas et al. (2006). The analysis for local fields
is available for simple microstructures such as a single inclusion (Huang and Kuo,

1997), laminates ( Srinivasan et al., 2001; Bichurin et al., 2003; Kuo et al., 2010), and



periodic array of circular/ellptic fibrous ME composites (Kuo, 2010; Kuo and Pan,
2011; Dinzart and Sabar, 2011). Homogenization methods were also proposed for
periodic ME fibrous composites (Aboudi, 2001; Camacho-Montes et al., 2009), while
numerical methods based on the finite element analysis have also been developed to
address ME composites with more general microstructures (Liu et al., 2004; Lee et
al., 2005).

Recently, some three-phase multiferroic composites were made experimentally to
enhance the ME coupling. Nan et al. (2002, 2003) made a Terfenol-D/PZT/PVDF
mixture, and the measured ME coefficient was enhanced to 45mV/cm. Dong et al.
(2006) prepared a MnZnFe;O,/Terfenol-D/PZT laminate, and found the enhanced
ME field coefficients of up to 8-28 times of those of Terfenol-D/PZT counterpart.
Gupta and Chatterjee (2009) prepared a three-phase BaTiO3/CoFeyO4/PVDF par-
ticulate composite, and showed a maximum ME voltage around 26mV /cmOe. Jadhav
et al. (2009) prepared a Nig5Cug2Zng3Fe;0,/BaTiOs/PZT combination and mea-
sured a maximum ME coeffcient of 975 1V /ecmOe. For theoretical investigations, Kuo
(2010) and Kuo and Pan (2011) estimate the overall behavior of multiferroic com-
posites with coated ciruclar/elliptic fibrous under generalized anti-plane deformation.
Dinzart and Sabar (2011) employed Green’s functions techniques, interfacial opera-
tors, and Mori-Tanaka’s model for solving the magnet-electro-elastic coated inclusion
problem.

In the work of Friebel et al. (2006), to estimate the overall property of viscoelastic
composites with coated inclusions, they proposed a two-level recursive scheme and
two-step method together with Mori-Tanaka or double-inclusion mean-field models
as the homogenization method. Later, Kuo and Wu (2012) applied the two-level re-
cursive scheme in conjunction with the Mori-Tanaka’s model to a core-shell-matrix

particulate multiferroic composite. They showed that the solutions are in good agree-



ment with the prediction by the finite element anaylsis. In this paper, we adopt the
similar method to investigate the effective property of the coated fibrous composites
made of piezoelectric and piezomagnetic phases.

This article is organized as follows: In Section 2, we formulate the basic equations
for a piezoelectric-piezomagnetic composite and define the effective properties of the
composite. In Section 3 we propose a micromechanical method to estimate the overall
behavior of core-shell-matrix, three-phase multiferroic composites. We introduce the
finite element analysis in Section 4. Both methodologies are illustrated in Section
5. We study how the magnetoelectric voltage coefficent depends on the radious ratio
of the core and shell, volume fractions of the fiber phase, and material properties of
constituent phases. Furthermore, we improve the ME coupling effect by tuning the

material parameters, and summarize a few useful design principles.

2 Problem statement

2.1 Basic equations

Let us consider a three-phase, coated fibrous composite made of piezoelectric and
piezomagnetic materials as shown in Figure 1. The cylinders are infinitely long with
fibers aligned in z3—direction. The composite is consisting of a continuous matrix
phase, m, in which there are embedded inhomogeneities of a circular shell phase,
¢, and a shell phase, s, which represents a layer of cpating that encapsulates each
particle of the core phase. The radii of the core and coating are a and b, respectively,

and the ratio between them is definsed as 7 = a/b. The general constitutive laws for



the rth phase are given by (see Alshits et al., 1992, for example)

o) = Ol — e B
DY = el B B

BY = (el 2B 4y B, 2.)

where 0,5, D;, B;, €;;, I/; and H; are the stress, electric displacement, magnetic flux,
strain, electric field and the magnetic field, respectively. Cjjx; is the elastic moduli;
eir and g are the piezoelectric and piezomagnetic constants; x;;, p; and \; are the
dielectric permittivity, magnetic permeability and magnetoelectric coefficient. The
symmetry conditions satisfied by the moduli are given by Nye (1985).

The strain €;5, electric field Fj;, and magnetic field H; are respectively defined by
the displacement wu;, electric potential ¢, and magnetic potential ¢ via

1
€j = 3 (wij+uji), By =—p,;, Hi=—1,. (2.2)

On the other hand, the balance of linear momentum, Gauss’s law, and the condition of
no magnetic poles give that the stress, electric displacement, and magnetic intensity

satisfy the following equilibrium equations

0ij; =0, Di;y =0, Bi; =0. (2.3)

These differential equations can be solved, subject to suitable interface and boundary

conditions. We assume that the interfaces are perfectly bonded, and therefore the



field quantities satisfy

[o5n;]] =0, [[Dini]] = 0, [[Bini]] = 0,
[w]]l =0, [l¢]] =0, [[#]] =0, (2.4)
where [[-]] denotes the jump in some quantity across the interface, and n; is the unit

outward normal to the interface.
For simplicity, we write the above constitutive laws (2.1), strain-displacement (2.2)

and equilibrium equations (2.3) can be rewritten in more compact form as (Alshits

et al., 1992)
2ig = LigvinZvin, Zvm = Unin, 24 = 0, (2.5)
where
01’j7 J: 172737 Emn, M = 172737 Umm, M = 172737
Yig=94 D;, J=4, Zmn = E,, M =4, Uu =194 o, M =4,
B;, J =15, —H,, M =5, P, M =35.
(2.6)



The magnetoelectroelastic moduli are expressed as

(

Cijmns JM=123,

ijn, M =4, J=123,

Qijn, M =5,J=1,23,

€imn, J =4, M =123,

Lijyn = —FKin, J=4, M =4, (2.7)
—Ain, J=4, M =5,

Qimn, J =05, M =1,2,3,

—Ain,s J=5 M =4,

Hins J =5 M=5,

where the upper case subscript ranges from 1 to 5 and the lower case subscript ranges

from 1 to 3. Repeated upper case subscripts are summed from 1 to 5.

2.2 Effective moduli

In this study, we are interested in determining the overall properties of the multiferroic
composites in terms of their microstructure. The macroscopic properties are defined

in terms of average fields,

(i) = Ligan (Zarn) (2.8)

where L* denotes the macroscopic magnetoelectroelastic coefficients of the heterge-
neous material, and the angular brackets denote the average over the representative

volume element (RVE; unit cell in the case of periodic composites),

1 1
Yig) = — Yigdxy, (Zym) = — ZvnQx;.
<J> V/V Jazx <M> V/‘/Mx
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Here, V is the area of RVE. Note that, although in each component, the magneto-
electric coefficient is zero, i.e., A = 0,the coupling effect A* may be non-zero.
Due to the linearity, the generalized strain in the r-th phase for a matrix-based

multiphase multiferroic composite is given by (Srinivas et al., 2006)
Z0 = AV (7 ) (2.9)
Mn MnAb Ab/ .

where Ag\?n 4 18 the generalized strain concentration tensor of the r-th phase, satisfying

N
ZAE\Z)M;, = 1 j; a0, (2.10)

r=1

where [j;4, is the fourth-order identity tensor. As a result, from the average gen-
eralized stress and strain theorems, the effective moduli can be determined for a

(N + 1)-phase composite as

N
Ay = Lz(‘?f)lb + Z fr (LES)MTL - LETJ\)M) Ag\?nAb- (2.11)
r=1

Here f is the volume fraction of the inclusion, and the superscripts m and r denote the
matrix and the r-th phase, respectively. The concentration tensor can be determined

by various micromechanical models.

3 Micromechanical approach

To estimate the effectifve moduli of multiferroic composites, we first turn to the
direct Mori-Tanaka method, which approximates the coated particle problem using
a composite with distinct particles representing the core and shell phases. The key

assumption of the Mori-Tanaka method, which is essentially a mean-field method, is



that the average field in the rth inclusion of the heterogeneous material is equivalent
to the field in a single partivle embedded in an infinite mideium, with the unknown
average field in the matrix applied at the boundary. This gives the effective properties
of the core-shell-matrix mutliferroic as Eq. (2.11). Here, the concentration tensor for
the core (j = 1) or shell (j =2) is

-1

Ag\]}nAb = Affi\f[ln(jz <f(m IJ Ab + f I)Adll + f(2)Ale ) ) j = 17 27 (31)

where
dil (4 j m _ j m -1
AMn(}z)' = [IMnAb + Sj(\j}nLk(L(Lng) ! (Lgl)Ab - Lz('Jf)}b>] . (3-2)

Here Symap is the magnetoelectroelastic Eshelby tensor, which is a function of the
magnetoelectroelastic moduli of matrix, the shape and orientation of the inclusion,

and is described by (Li and Dunn, 1998b)

[ T (Conin(21) + Grgim (20)] dBdEs, M =1,2,3,
1
Srinap = S_WLiJAb 2f f Gayin(2;)dOdEs, M = 4, (3.3)

2 [ [T Gy gin(2:)d0dEs, M =5.

In the above equation, z; = £,/a; (no summation on i), a; is the semi-axis of size
and £; and &, can be expressed in terms of &; and 6 by & = \/?&%COSQ and
& = \/1—7§§sin 0. In addition Gy = zianA}{](z), where K]\_;J is the inverse of
Kjr = 2ziznLijgy. 1i and Dunn (1998a) have obtained the closed-form expressions of
magnetoelectroelastic Eshelby’s tensors for the aligned elliptic cylinder inclusion in a
transversely isotropic medium. For the coated fibrous composites with arbitrary crys-
tal symmetry, we resort to Gauss quadrature numerical method to calculate Sy, 4p-

The integral (3.3) then is approximated by the weighted sum of function values at



certain integration points (Li, 2000a).

However, we will show later that this prediction deviates largely from those de-
termined by the finite element analysis. Therefore, the direct Mori-Tanaka method
is not good in estimating the coupling constants. We now turn to another appraoch,
the two-level recursive scheme in conjunction with the Mori-Tanaka technique. The
two-level recursive scheme is based on the idea that the matrix sees coated particles
that are tmeselves composite. This procedure was first used to predict the behavior
of viscoelastic composites containing multiple phases of coated inclusions. As illus-
trated in Fig. 2, each coated particle inclusion is seen (deepest level) as a two-phase
composite, which, once, homogenized, plays the role of a homogeneous inclusion for
the matrix material (highest level).

Further, at each levle, we employ the Mori-Tanaka appraoch in predictin the
effective moduli of te the corresponding two-phase composites. Using this model,
at the deepest level, the coated inlcusions are seen as a two-phase composite with
effective moduli

fle

*(sc) (s c) (s ¢
Lijay = LiJ)Ab + W (LZ(JMn - LiJ)]\/[n> Agw)nAb' (3.4)

Here, the superscripts ¢, s, and i represent core, shell and inclusion (core plus shell),

respectively. The concentration tensor Ag\'})n 4 can be determined as
: . -1
c ¢) Adil (c s ¢) a1dil (c
Ag\/[)nAb = f9A55) (f( Lyiay + f! )AJiA(b)> ’ (3.5)
with the dilute concentration tensor Ajf[ln(jg given by

dil (c c s _ c s -1
AMn(Jz)‘ = [IMnAb + S](W)nLk(L(leiJ) ! <Lz('J)Ab - LEJ)Abﬂ . (3-6)

10



At the highest level, the effective coated fibers plya the role of reinfocements and,

similarly, we have the effective behavior
iJAb = Lz(?f)lb + 9 (Lz(j'cj\)m - LE?J?M) A(AZ?AI,- (3.7)
Again the concentration tensor can be dtermined as
AP 5 = Ay (f " Lyian + fOAG C)> o (3-8)
with the dilute concentration tensor
A5 = [ + S (L5 (1055 - 250)] (39)

Here, SJ(\ZCTZLk, is the generalized Eshelby tensor for effecitve coated particles, which is
a function of the moduli of the matrix and the shape and orientation of the coated

fibers (coreplus shell).

4 Finite element method

In this section, we introduce the finite element method which is used for comparison
with the above micromechanical solutions. We first choose an appropriate represen-
tative volume element (RVE), a periodic unit cell, which captures the major features
of the underlying microstructure. There are five possible ways of packing cylinders in
regular arrays in two dimensions (See Kittel, 2005, for instance). Here we concentrate
on the two lattices, square and hexagonal arrangements (Fig. 2). A square packing is
more frequently employed than a hexagonal packing in the literature, and in the case

of conduction, square symmetry and transverse isotropy become identical (Perrins

11



et al., 1979.). However, in our case of magnetoelectroelasticity, it lacks the trans-
verse isotropy in that most unidirectional composites possess owing to the random
distribution of fibers in the matrix over the cross-section perpendicular to fibers (Li,
2000).777(material symmetry 3mm)

Further, due to the periodicity in the composite structure, the displacement wu;,
the electric potential ¢ and the magnetic potential ¢/ in any point of the unit cell can
be expressed in terms of those at an equivalent point in another RVE such that the

periodic boundary conditions

Um (d,x9,23) = Up(—d,z2,23) + (Unp) 2d,
UM (a:l,d, LE3> = UM (5(31,—d, 333) -+ <UM’2> 2d, (41)

Un (21, 9,d) = Uy (21,29, —d) + (Upr3) 2d,

are satisfied for the square lattice. Here Uy, is defined in (2.6) and 2d is the length of
the unit cell. The comma in the subscript denotes the partial derivative. Similarly,

the periodic boundary conditions for a hexagonal lattice are

Unm (d,z2,23) = Un(—d,z2,23) 4+ (Unmp) 2d,
UM (I’l, \/gd, ZL‘3> == UM (fL‘l, —\/gd, 1‘3) + <UM72> 2\/§d, (42)

UM(I‘l,I’Q,d) = UM(Il,I‘Q,—d)+<UM73>2d.

In order to evaluate the effective coefficients of the above periodic multiferroic
composite, the strain ¢;;, electric field £;, and magnetic field states H; are applied
individually to the unit cell. The periodic boundary conditions have to be applied to
the unit cell in such a way that, apart from one component of the strain, electric field,

or magnetic field (Ups;) in Eq. (4.1), all other components are made equal to zero.

12



Then each effective constant be determined by (2.8). We perform the finite element

analysis using the software COMSOL Multiphysics.

5 Results and discussion

As a numerical example, we take a composite made of PE cores coated PM shell in
a PM matrix. For the piezoelectric material, we first choose the widely used BaTiO3
(BTO) ceramic as the core phase. For the piezomagnetic material we choose CoFe,O4
(CFO) as the shell phase while Terfenol-D (TD) as the matrix phase. They are all
transversily isotropic, i.e., with 6mm symmetry. For convenience, we denote the com-
posite as BTO/CFO/TD. The independent material constants of these constituents
are given in Table 1 in Voigt notation, where the x5 plane is isotropic and the poling
direction/magnetic axis is along the x3-direction. Note that in all materials, the ME
coefficients are zero, i.e. \;; = 0.

In our study, we are particularly interested in the effective magnetoelectric (ME)
response. The induced voltage is proportional to the applied magnetic field and the
constant of proportionality is the effective ME voltage coefficient. It combines the
coupling and dielectric coefficients, and is defined by

* _ * * .
Qi = Aj;/Kij, no summation. (5.1)

Figure 3 shows how the ME voltage coefficients depend on both the inclusion
volume fraciotn, f;, and the ratio of radii, -, for the BTO/CFO/TD three-phase
multiferroic composite. for this composite. In the micromechanical approach, there
is no upper limit on the volume fractions, since Mori-Tanaka’s model is a mean-field

theory. On the other hand, the finite element analysis is estimated for discrete volume

13



fractions and stops around f = 7/4 and f = 7/2/3 for the square and hexagonal
arrays, respectively, when the inclusions touch. The ratio of the radius between the
circular fibr and the coating shell is defined as v = a/b. It is obvious that if v = 0,
then a = 0. In other words, there is no fiber phase. On the other hand, if v = 1, it
means that there is no coating shell. The prediction of the Mori-Tanaka’s approach
is in good agreement with the result of the finite element analysis. The maximum
ME voltage coefficient aj, ;; is xzzzV/cmOe at volume fraction f = 0.xx, while the
maximum o’ 33 = zzrrV/cmOe at volume fraction f = 0.zz. Note that the results
of the hexagonal array are closer to the Mori-Tanaka’s estimation than those of the
square array. This is because a hexagonal array is a closed packing structure, and the
Mori-Tanaka’s model allows the inclusion to fulfill the matrix. In addition a square
array lacks the transversely isotropy that this composite possesses (Li, 2000b).

Further, Fig. 3 compares the overall moduli with those predicted by the direct
Mori-Tanaka method for the case v = 0.8. It is observed that the prediction devi-
ates largely from those determined by the finite element analysis. Therefore, the
direct Mori-Tanak method is not good in estimating the coupling constants, although
calculations show that they evaluate elastic stiffness well.

Finally, Fig. 3(a) also compares the effective moduli with the prediction by Kuo
and Pan (2011). Kuo and Pan considered multiferroic composites with coated circular
fibers under anti-plane shera with in-plane electric-magnetic fields.

We now turn to study how the effective ME voltage coefficient depends on the
elastic moduli, C'pg and Cpy,, dielectric permittivities, kpg and kpys, and magnetic
permeabilites, ppp and pp,,, of the PE and PM materials, piezoelectric constant,
epp, of the PE material, and piezomagnetic coefficent, gpy;, of the PM material.

For ease of comparison, we choose the material properties of BTO and CFO as the

14



reference and define hte normalized materials properties of the PE and PM phases as

Cr.corel = Cpr(Cpro)™", Crsnenl = Cpar(Ccro) ™", Craratriel = Cpar(Coro) ™,

and, likewise, are €, core, Gr.Sheil, Gr,Matriz, Kr.Core, Kr,Shell, Kr Matriz, r.Core, For. Shell, For Matriz-
Note that all the compnents of the material constant are magnifuied simultanesouly
for simplicity. Belowm we numerically compute the ME voltage coefficients o ;, and

' 33 and their dependence on the normalized material properties of core (PE), shell
(PM), and materix (PM) phases.

Figure 4 shows the ME voltage coefficient a7, ;; with respect to the crystallographic
orientation of CFO and BTO. It happens be optimal when the poling direction of
piezoelectric phase coincides with the magnetic axis of the piezomagnetic phase. We
observe that the maximum of —2.4823V/cmOe occurs at Euler angles (o, 8,7) =
(cr,90°,90°), where « is arbitrary. This degeneracy of optimal orientation reflects the
6mm symmetry. Further, If o = 0, it is equivalent to the poling direction/magnetic
axis along [010]. Significantly, the optimized value of —2.4823V /cmOe is almost one
hundred and one times higher than —0.0244V /cmOe, which is the value of the normal
cut where the ¢ axis of the CFO and BTO is along the fiber axis.

Figure 5

Motivated by the above study, we do a similar calculation for LiNbO3 (LNO),
CoFe; 04, and Terfenol-D as the core, shell, and matrix phases, since LNO has lower
dielectric permittivity and the matrix TD has lower elastic stiffness and magnetic per-
meability. The material constants of LNO are listed in Table I. Figure 6 shows the ME
voltage coeffcients, volume fraction, and ratio of radii dependence of LNO/CFO/TD.
Significantly, the maximum values are enhanced to xxx V/cmOe and xx V/cmOe for

* * .
Qg1 and A 33, respectively.
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6 Concluding remarks

We have proposed a micromechanical model, the two-level recursive scheme in con-
junction with the Mori-Tanaka’ model, to compute the effective magnetoelectric re-
sponse of a core-shell-matrix, three-phase, fibrous composites made of piezoelectric
and pizomagnetic phases. The results are compared wiht finite element analysis and
the semi-analytical method proposed by Kuo (2010) and Kuo and Pan (2011). The
magnitudes and trends among them are in good agreement. We have used it to show

that, for the
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Table 1: Material parameters of BaTiO3 and CoFe;O4 (Li and Dunn, 1998a)

Figure 1: The fibrous composite configurations.

Figure 2: A schematic representation of a unit cell. (a) A square array. (b) A
hexagonal array.

Figure 3: The ME voltage coefficients of the CFO fibers in a BTO matrix at the
normal direction versus the fiber volume fraction. (a) In-plane ME voltage coefficient
@11+ (b) Out-of-plane ME voltage coefficient a7, 45.

Figure 4: The in-plane ME voltage coefficient of the CFO fibers in a BTO matrix
for various orientations of CFO and BTO. The subscripts ¢ and m denote the inclusion
and matrix, respectively. Note that this coefficient depends only on the Euler angles
[ and v and is independent of o. The optimized constant occurs at both phases poled
along the same direction.

Figure 5: The out-of-plane ME voltage coefficient of the CFO fibers in a BTO
matrix for various orientations of CFO and BTO. The subscripts ¢ and m denote
the inclusion and matrix, respectively. Note that this coefficient depends only on the
Euler angles 5 and v and is independent of . The optimized constant occurs at both
phases poled along the same direction.

Figure 6: The optimal ME voltage coefficients of the CFO fibers in a BTO matrix
for various fiber volume fraction. (a) In-plane ME voltage coefficient a7, ;. (b) Out-
of-plane ME voltage coefficient a; ;3.

Figure 7: The ME voltage coefficients of the BTO fibers in a CFO matrix at the
normal direction versus the fiber volume fraction. (a) In-plane ME voltage coefficient
11+ (b) Out-of-plane ME voltage coefficient o, 53.

Figure 8: The in-plane ME voltage coefficient of the BTO fibers in a CFO matrix
for various orientations of BTO and CFO. The optimized constant occurs at both

phases poled along the same direction.
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Figure 9: The out-of-plane ME voltage coefficient of the BTO fibers in a CFO
matrix for various orientations of BTO and CFO. The optimized constant occurs at
both phases poled along the same direction.

Figure 10: The optimal ME voltage coefficients of the BTO fibers in a CFO
matrix for various fiber volume fraction. (a) In-plane ME voltage coefficient a7 ;.

(b) Out-of-plane ME voltage coefficient a7, ;5.
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