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Effective equipment management is becoming one of the key factors in keeping
a competitive advantage in the dynamic business environment since equipment
is an important asset for manufacturing companies. Nowadays, maintenance
administration has become one of the most important tasks in equipment
management, particularly in manufacturing industries. Equipment management
system (EMS) aims at reducing maintenance cost and production loss caused by
machine breakdown. In addition, EMS can assist equipment engineers to make
the right maintenance decisions at the right time, and at the right shop floor.
Traditional computerized maintenance management systems (CMMS) have
helped equipment engineers to deal with maintenance operations, but they lack
decision support capability. In this paper, we design a data warehouse (DW) for
EMS to help equipment engineers make maintenance decisions with various
equipment related dimensions to improve effectiveness. A set of cubes can be built
from EMS DW for the purpose of decision-making. In order to achieve
a reasonable query response time under the memory space limit, a mechanism
of partial materialization based on genetic algorithms (GAs) is adopted to
design data cubes in the EMS DW. From the computational results the proposed
GA-based approach for cube design can be applied to effectively select the
appropriate multi-dimensional views for equipment management.

Keywords: Equipment management system; Maintenance management; Data
warehouse; Genetic algorithms

1. Introduction

In recent years advanced manufacturing systems and technologies have continued
to gain interest in the increasingly competitive business environment. Enterprises
have realized that engineering alone is insufficient for an effective manufacturing
system; an advanced management system is essential as well. In a highly automated
manufacturing environment, equipment is an important asset since its conditions
seriously affect the production capacity, product quality and process yield.
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As a result, effective equipment management becomes one of the essential tasks for
enterprises in order to keep their competitive advantage in the dynamic business
environment.

As information and Internet technologies have become more accessible
and powerful, enterprise data and information have dramatically increased and
have become more vital in decision-making. These rapid advancements accelerate
the massive information flow in intra-enterprise and supply chains. With
e-manufacturing the manufacturing information can be incorporated with enterprise
information systems (EIS) to support decision-making for business management.
Constructing data warehouses (DWs) for supporting decision-making is taken as
the underpinning of e-manufacturing. Equipment management system (EMS) with
e-maintenance and e-diagnostics effectively support the equipment monitoring and
control, efficiency analysis and failure prediction. In EMS, DW integrates data and
information from a large set of manufacturing facilities to support e-maintenance
and e-diagnostics. Extracting data directly from one or more operational and
transactional databases provides an opportunity for aggregating data and
information for decision-making purposes.

Equipment management involves decision-making on what work is to be done,
when the work should be done, how long it should take, what materials, labour skills
and tools are needed and are available. Proper decisions require timely, coherent and
accurate data in terms of many factors such as system configuration, equipment
operation and repair/maintenance history, cost, availability and requirement of
resources, the production schedule, spare parts inventory, etc. However, some
of these data may not be available in the maintenance department but may be
accessed through a distributed information system. As the scale and complexity of
both the manufacturing system and the equipment management system expands, it
is obvious that all the relevant information cannot be effectively managed without
a well-designed database.

EMS aims at reducing equipment maintenance cost and production loss caused
by machine breakdowns while assisting equipment engineers to make the right
maintenance decisions at the right time, and at the right shop floor. The decision
support system can be applied to assist diagnosis, maintenance planning, and
scheduling of manufacturing systems (Jeong et al. 2006). The real-time
equipment monitoring and control, data collection and failure analysis are achieved
through e-maintenance, which attempts to realize the objective of near-zero
downtime in manufacturing systems (Raman 2001, Intelligent Maintenance
Systems 2005, Hung et al. 2005). Equipment engineers can repeatedly acquire
massive amounts of equipment data from the automated manufacturing system.
However, the detailed and tedious operational data may not be directly used to
support decision-making for equipment management. The breakdown of this data
into succinct useable units is required. Provided that these data are adequately
collected and explored, EMS can improve the productivity by reducing equipment
breakdown, increasing spare part availability and optimizing resource allocation.

In this paper, we design a DW for EMS to help equipment engineers make
maintenance decisions with various equipment related dimensions in an effective
manner. Several cubes such as ‘mean time to repair’ (MTTR), ‘mean time between
failure’ (MTBF), ‘spare part response time’ (SPRT), can be built from the EMS DW
for the purpose of decision-making. In order to achieve a reasonable query response

6114 K.-Y. Chen et al.

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 1

9:
12

 2
5 

A
pr

il 
20

14
 



time under the memory space limit, a data warehousing strategy of partial

materialization is adopted to design data cubes. With the DW design it is extremely
difficult to obtain optimal solutions for large-scale problems. This paper applies

genetic algorithms (GAs) (Holland 1975, Goldberg 1989) to deal with DW design
problems. GAs were successfully used to resolve various complicated optimization

problems in manufacturing (e.g. Chen 2000, Chiang and Su 2003, Hsu et al. 2005,
Wu et al. 2006, Su and Chiang 2002, Su and Shiue 2003). Some recent review papers

reported the growing GA applications in many production and operations

management problems such as production scheduling, facility layout, production
planning, supply chain design, process condition optimization, etc. (Aytug et al.

2003, Chaudhry and Luo 2005, Oduguwa et al. 2005). In this paper, an approach
hybridising GA and greedy search is used to optimally materialize the EMS DW for

the semiconductor packaging manufacturing. Additionally, we compare the DW
designs proposed by our approach to that of other alternative methods in the

literature. The remainder of this paper is organized as follows. Section 2 presents a
review of the DW design literature. Section 3 introduces the architecture of EMS

DW. The mathematical model of cube selection for DW materialization is given in
section 4. The GA-based approach for optimal DW design is described in section 5.

Section 6 presents the implementation and experimentation. Finally, concluding

remarks for this paper are drawn in section 7.

2. Data warehouse design

2.1 Concepts of data warehouse

The data warehouse (DW) can effectively aggregate massive amounts of data for
analytic purposes, and provide valuable information for decision makers with a

multi-dimensional view (Han and Kamber 2001). DW is not a single software or
hardware product to provide enterprise information. It is, rather, a computing

environment where users can find aggregated information. DW is a decision support

oriented information technology. Inmon (1996) defined the DW as ‘a subject
oriented, integrated, nonvolatile, and time variant collection of data in support of

management’s decisions’. DW can also be viewed as a process for gathering, storing,
managing, and analysing data (Gardner 1998). Further details of DW technology

and business implementation can be found in Devlin (1997) and Paulraj (2001).
The three challenging issues for data warehousing are data acquisition, data

storage and information delivery (Paulraj 2001). Data acquisition covers the entire

process of extracting data from the data sources, moving all the extracted data to the
staging area, and preparing the data for loading into the repository. Data storage

covers the process of loading the data from the staging area into the repository.
The information delivery spans a broad spectrum of different methods of making

information available to users. Most of the information accessed in a DW is through
online queries and interactive analysis sessions. OLAP (on-line analytical processing)

is a query-based methodology that supports data analysis in a multi-dimensional

environment. An OLAP engine logically structures multi-dimensional data in the
form of a data cube in DW.

Designing data warehouses for equipment management system 6115
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DW has become an essential technique for business intelligence. DW can easily
integrate heterogeneous data derived from various systems, and manage data in
compliance with user requirements. OLAP provides an interactive mechanism, which
allows users to analyse the aggregated data in DW with a mixture of examinations
by multi-dimensional viewing. Incorporated with OLAP, visualization and data
mining, knowledge and patterns can be discovered from the massive data in DW.
The multi-dimensional data model is adopted as a modelling technique for DW
for decision support. Also, OLAP is designed for efficient data queries to assist
decision-making. When transactional data are no longer of value to the operational
environment they are removed from the database. If an enterprise does not possess
a decision support facility, the data are archived and eventually destroyed. However,
if a decision support system is built, the data can be transmitted to a type
of interactive medium commonly referred to as a DW.

2.2 DW design strategies

A useful DW provides a flexible mechanism for users to view and analyse the massive
amounts of data stored in the distributed heterogeneous systems. OLAP is
constructed on the basis of multi-dimensional analysis. The system maintainability
is another essential factor for a successful DW. The system maintainability
challenges the DW designers due to the massive data growth and memory explosion
once the DW comes into play. The memory space has a significant impact on
efficiency, reliability and maintainability of DW. In order to efficiently display
and visualise the aggregated information, data are generally categorized into
a variety of multi-dimensional data views (cubes) (Gray et al. 1996). Data cube
design and data materialization for data aggregation are also essential factors
for effectiveness in DW.

Materialization in DW can generate a huge amount of data cubes. For example,
a multi-dimensional view of 10 dimensions with three levels, as a maximum, consists
of (3þ1)10 cubes. However, it is not realistic to materialize all cubes since the memory
space is limited. There are therefore three cube selection strategies proposed
as follows (Han and Kamber 2001):

1. Full materialization: this strategy materializes all of the cubes to efficiently
respond to user queries. However, the DW maintenance cost is relatively high
due to the huge amount of memory space required and frequent update once
data refresh.

2. Non-materialization: this strategy performs data aggregation from the original
data storage to respond user queries. The time to respond is prolonged,
particularly in the case of data aggregation with multiple dimensions.

3. Partial materialization: this strategy can benefit from the trade-off between
query response time and cube maintenance cost. Instead of full materializa-
tion, this strategy carefully selects a proper set of sub-cubes to perform
materialization according to pre-selected criteria.

In DW, the appropriate partial materialization of views (sub-cubes) can balance
the query response time and DW maintenance cost (Harinarayan et al. 1996).
Harinarayan et al. developed a cost model to select a proper set of views
for materialization. Known as a greedy search (GS) algorithm, this is adopted to
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optimize the selection of views within the query cost model. Ezeife (1997) and Gupta
et al. (1997) additionally took the indexes of views into consideration for
materialization. However, the DW maintenance cost was not considered in the
cost models in Ezeife (1997) and Gupta et al. (1997).

Shukla et al. (1998) proposed a modified greedy algorithm to optimally select
a set of views to materialize. They also demonstrated the superiority of their
approach to that developed by Harinarayan et al. (1996). Furthermore, Shukla
et al. (1998) addressed the problem of view selection for multi-cube data models.
Smith et al. (1998) developed a dynamic method for view selection. The GS-based
approaches were usually adopted in the previous studies (Harinarayan et al. 1996,
Shukla et al. 1998). GS can generate cube selection designs with few computational
requirements. However, the solutions may be far from the optima. More recently,
Lin and Kuo (2000; 2004) developed a GA-based approach to data cube
configuration. In their approach, a backward GS (BGS) repair mechanism is
incorporated with GA to adjust for the infeasible solutions. Provided that the
memory space is relatively tight, BGSþGA require much more iterations to correct
the infeasible cube design. As a result, this paper proposes an approach, in which
a forward GS (FGS) mechanism is incorporated with GA to resolve the cube
selection problem in DW. The solutions obtained by FGS are taken as the initial
solutions for GA to further polish the cube design.

3. Design of EMS DW

3.1 User requirement analysis

Nowadays, several equipment maintenance strategies, namely preventive
maintenance, predictive maintenance and optimal maintenance, are applied to
reduce maintenance cost and production loss, while increasing the equipment
availability and utilization. An equipment management system (EMS) computerizes
and automates the related maintenance tasks of equipment review, maintenance
planning, work order, operator scheduling, spare part management, failure analysis
and prediction. The basic functions of an EMS include quality control and
management, vendor evaluation, maintenance reports, spare part
inventory management, preventive maintenance, work order management and
craftsmen management (Raouf et al. 1993). By implementing EMS, enterprises can
benefit from productivity improvement, operation cost reduction, utilization
increase, resource allocation optimization and maintenance quality enhancement.

The proposed EMS DW of this paper aims at providing an effective decision
support system for equipment management. Here, an EMS DW is developed to
support decision-making for equipment maintenance. First, the user requirements
are analysed to determine the DW structure. Second, through on-line transactional
processing (OLTP) database analysis, the data models are designed, and the required
data are extracted from the database. Then thirdly, the data schema, fact tables and
dimension tables are designed to build the EMS DW.

In EMS, equipment maintenance and spare part management are essential tasks
in equipment management (MRO Software, Raouf et al. 1993). In equipment
maintenance management, machine utilization, mean time to repair (MTTR), mean

Designing data warehouses for equipment management system 6117
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time between failures (MTBF), number of corrective maintenance in a time interval
and maintenance cost can be adopted as measures for a data cube. In spare part
management, response time of rush parts, number of parts (items) used, unused ratio
of parts (cost of parts unused/cost of inventory), and cost ratio of inventory to
equipment (cost of inventory/equipment investment) are all used as measures for
analysis (Chen and Chiu 2003). To achieve the objective of near-zero downtime,
EMS DW are incorporated with the DW of a shop floor operations management
(SFOM) system to obtain the shop floor data such as yield, amount of inputs,
cycle time, queue time, number of exceptions, exception time, and so on.

The necessary information of EMS is summarized in table 1. Maintenance
engineers may invoke queries about machine utilization, MTTR, MTBF, average
response time of equipment supplier, number of repairs to machines, and so forth.
Additionally, spare part managers may make queries about such factors as average
response time of vendors, number of parts used, unused ratio of parts, cost ratio
of inventory to equipment, etc.

3.2 Data warehouse schema

Multi-dimensional queries provide various views into the data in DW, in which
users can apply several data warehousing operations like consolidation, drill-down,
drill-up, slicing and dicing to summarize and analyse data in a highly accurate

Table 1. The necessary information of EMS.

Cubes Indices Information queried

Corrective maintenance Machine, machine category Machine utilization
Machine, machine category,

machine vendor,
failure cause

MTTR

Machine, machine category,
machine supplier

MTBF

Machine, machine category,
location, operator, machine
vendor, failure cause,
failure cause

Number of maintenance
in a time interval

Machine, machine category,
location, operator, machine
vendor, failure cause,
failure cause

Maintenance cost

Spare parts management Spare part vendor, spare part,
storage location

Average response time
of rush parts

Machine, machine category,
spare part vendor,
parts (items),
storage location

Number of parts used

Machine, machine category,
spare part vendor, parts,
storage location

Unused ratio of parts

Machine, machine category,
parts

Cost ratio of inventory to
equipment

6118 K.-Y. Chen et al.
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manner. The Star and Snowflake schemas are very concise and suitable for
multi-dimensional queries. The multi-dimensional data cube is taken as the data
repository.

Through the analysis of data schema, we then can select suitable dimensions and
measures for EMS DW. With respect to the user requirements, 10 dimensions are

included in the proposed EMS DW. They are equipment, equipment type, equipment
location, equipment vendor, spare item, employee, failure, spare part vendor, part
warehouse and time (preventive maintenance time and spare item order time).
The measures of EMM include time to repair (TTR), time between failures (TBF)
and corrective maintenance cost (CMCost). The measures of SPM are delivery lead
time (delivery time), spare item cost (item cost), purchase order quantity (POQty),
used quantity (UsedQty), overdue quantity (OverdueQty) and equipment investment
(EqCost). The data schema, dimension tables and fact tables of EMM and SPM

are respectively illustrated in figures 1 and 2.

4. The formulation of cube selection

For optimal selection of cubes (views), an optimization approach based on GA has
been developed, and it is compared to existing alternatives for performance analysis.
According to the analysis of user requirements for the EMS as mentioned above,
the data cubes in the snowflake schema are designed for EMM and SPM, in which
there exist six and five dimensions respectively. The full materialization is extremely
expensive and impractical due to the memory space limitation and DW maintenance

Equipment TypeNo
EquipmentTypeName

Equipment No
Equipment Name 
EquipmentTypeNo

Equipment No
VendorNo

EmployeeNo
LocationNo
FailureNo
PMDateEmployeeNo

EmployeeName

TTR
TBF

CMCOST

LocationNo 
LocationName

PMDate
Month

Quarter
Year

FailureNo
FailureName

VendorNo 
VendorName

Figure 1. Data schema of EMM.
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cost in EMS DW. Therefore, the partial materialization is suggested; however, it
raises a problem of how to select a proper set of views for materialization.

4.1 The cost model

Before formulating the cost model, the nomenclature is firstly defined as follows:

Nomenclature

L An OLAP cube lattice with n cubes.
C A set of cubes derived from a fact table, C ¼ fc1, c2, . . . , cng.
Q A set of user queries, Q ¼ fq1, q2, � � � , qkg.
F A set of frequency values for each query, F ¼ ffq1 , fq2 , . . . , fqkg.
G A set of update frequency values for each cube,

G ¼ fgc1 , gc2 , . . . , gcng.
M A subset of C in current materialization, i.e. the set of materialized

cubes.
CostTL The total materialization cost, which includes the total query cost

and total DW maintenance cost.
CostTQ The total query cost.
CostTM The total DW maintenance cost.

fc The invoking frequency of cube c, fc ¼
P

q2Q, c¼cq
fq in which the

cube with just the same dimensions as query q be cq.
gu The frequency of insertions to the fact table.

E(ci, M) The cost for evaluating cube ci with respect to M.
U(c, M) The cost for updating cube c with respect to M.

sj The required memory space of cj.
S The total memory space available.

The total cost, CostTL, consists of query cost, CostTQ, and DW maintenance cost,
CostTM (Lin and Kuo 2000, 2004). The query cost represents the cost caused by the
aggregations functions in the OLAP analysis. The formulation of query cost defined
in Harinarayan et al. (1996) is adopted herein. In Harinarayan et al. (1996) the query
cost is equal to the number of non-null cells in the materialized cube used to answer
the query. A linear relationship between the cube size and query evaluation time is
investigated and confirmed by Harinarayan et al. (1996). The query cost takes the
form (Harinarayan et al. 1996) as

CostTQ ¼
Xn
i¼1

fci � Eðci,MÞ ð1Þ

For the DW maintenance cost, the insertion of tuples into the
fact table from which the cubes are derived is taken into consideration (Lin
and Kuo 2000, 2004). The DW maintenance cost takes the form (Lin and Kuo
2000, 2004) as

CostTM ¼ gu
X
c2M

Uðc,MÞ ð2Þ

Designing data warehouses for equipment management system 6121
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Hence, the total materialization cost can be expressed (Lin andKuo, 2000, 2004) as

CostTL ¼
Xn
i¼1

fci � Eðci,MÞ þ gu
X
c2M

Uðc,MÞ ð3Þ

The cube selection problem attempts to minimize the total materialization cost
under the space memory constraint. The constraint of memory space can be
expressed as: X

si2M

si � S ð4Þ

The dimensions and measures adopted in cubes are selected according to user
requirement analysis. In practice each dimension should therefore be considered in
one of the cubes, that is, at least one cube related to the dimension should be
materialized. Hence, the number of dependent sub-cubes that are materialized
should be at least one. This constraint takes the expression as

ðc,MÞ
�� �� � 1 ð5Þ

where |(c, M)| represents the number of dependent sub-cubes that are materialized.
In particular this constraint may be violated in the case of insufficient memory space.

5. The cube selection approach

The cube selection problem described in the previous section can be optimized to
design a DW for effective equipment management. The cube selection is recognized
as an NP-hard problem (Harinarayan et al. 1996, Lin and Kuo 2004). As a result,
a GA-based cube selection approach as is proposed in this paper incorporates the
greedy search (GS) to generate initial solutions for further evolution and
improvement.

5.1 Greedy search

The greedy search (GS) approach was proposed by Harinarayan et al. (1996) for
dealing with the cube selection problem. Since the maintenance cost was not
considered in Harinarayan et al. (1996), GS iteratively select cubes until no cube can
be included due to the memory space constraint. Harinarayan et al. (1996) then
defined a benefit function to select the most appropriate cube to be included in each
iteration. The benefit function B(c, M) can be defined (Harinarayan et al. 1996) as

Bðc,MÞ ¼
1

S

X
ci2M

½Eðci,MÞ � Eðci,M [ cÞ� þ
X
ci2M

½Uðci,MÞ �Uðci,M [ cÞ�

)(
ð6Þ

where E(ci, M[ c)]} and U(ci, M[ c)]} respectively represent the query cost and
maintenance cost when adding cube c for materialization. Hence B(c,M) represents
the saving of both query and maintenance costs per space if cube c is materialized.
The forward GS (FGS) algorithm is presented as follows.

6122 K.-Y. Chen et al.
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Forward greedy search algorithm

Step 0: M¼{cs}, in which cs is randomly selected from the set of sub-cubes C.

Step 1: If
P

si2M
si � S, then perform Steps 2 to 4. Otherwise proceed to Step 5.

Step 2: Calculate benefit function B(c,M) for each candidate cube according to
equation (6).

Step 3: Select the cube c with the maximal benefit.

Step 4: Add cube c for materialization, M M[ c. Return to Step 1.

Step 5: If each dimension is considered in one of the sub-cubes (|c, M|�1), then
go to Step 6. Otherwise return to Step 0 to restart the search.

Step 6: Terminate the search and return M.

5.2 Forward greedy search and genetic algorithm

This subsection describes the hybrid approach based on FGS and genetic algorithm
(GA), namely FGSþGA. The solutions obtained by FGS are taken as the initial
solutions for GA to further polish the cube design. The algorithm of FGSþGA is
presented as follows:

FGSþGA algorithm.

Step 0 (Initialization): Initialize the cube selection and algorithm-specific
parameters.

Step 1 (Initial population generation): Generate an initial population P(0), for GA
by running FGS. Set t¼ 0.

Step 2 (Termination test): If t � maximum_generation, then perform Steps 3 to 7.
Otherwise proceed to Step 8.

Step 3 (Fitness evaluation): Check the feasibility of each individual (cube
selection), Mj2P(t). If Mj is not a feasible solution then penalise Mj. Compute the
fitness value.

Step 4 (Selection): Select a pair of chromosomes as parent by roulette wheel
selection. If |O(t)|5population_size (in which O(t) is the offspring in generation t),
then repeat Steps 5 and 6. Otherwise proceed to Step 7.

Step 5 (Crossover): Perform crossover mechanism.

Step 6 (Mutation): Perform mutation mechanism.

Step 7 (Replacement): Take the evolved offspring O(t) as new population for next
generation P(tþ1).

Step 8 (Termination): Terminate and return the optimal cube design.

The details of chromosome encoding, fitness evaluation and genetic operators are
described as follows.

Encoding: The chromosome for cube design is encoded as a binary string. In a
chromosome each gene (bit) represents the materialization condition of a sub-cube.
The bit with ‘1’ implies the sub-cube is selected for materialization. For example,
a chromosome of eight genes, (10011010), is used to represent the materialization
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condition of eight sub-cubes. In this example, sub-cubes 1, 4, 5 and 7 are selected

for materialization.

Fitness evaluation: The cube selection problem intends to minimize the total

materialization cost. Therefore, the fitness value of cube design is the reciprocal of

total cost, and it takes the form of

FitnessðMiÞ ¼
1

CostTLðMiÞ
ð7Þ

Selection: The roulette wheel selection (Goldberg 1989) is adopted in this paper.

The selection probability of each chromosome is proportional to the fitness.

The selection probability takes the form as

PrðciÞ ¼
FitnessðMiÞP
FitnessðMiÞ

ð8Þ

Penalty function: The genetic operators may generate infeasible solutions, which

violate the memory space and dependent sub-cube constraints. In this paper

the penalty function has been adopted to force GA to locate feasible solutions.

The penalty function takes the form of

PenaltyðMiÞ ¼

LN�
Pn
j¼1

sj � S

 !2

, if
Pn
j¼1

sj > S;

LN, if ðc,MiÞ
�� �� ¼ 0;

LN�
Pn
j¼1

sj � S

 !2

þ1

2
4

3
5, ifPn

j¼1

sj > S and ðc,MiÞ
�� �� ¼ 0;

0, otherwise:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð9Þ

where LN is a relatively large positive number.

Crossover: The uniform crossover (Gen and Cheng 1997) is used herein. It randomly

generates a mask which is a binary string with a similar length to that of the

chromosome. The pair of parent chromosomes exchanges their genes if

the corresponding values in the mask are ‘1’. Figure 3 schematically illustrates the

uniform crossover by using an example.

Mutation: A mask is also randomly generated in the uniform mutation mechanism

(Gen and Cheng 1997). The length of the mask is similar to that of the chromosome.

The values in the mutation mask are between 0 and 1. The genes are mutated

provided that the corresponding values in the mask are greater than the specified

mutation rate. The flip-flop mechanism is adopted in the mutation operator.

Figure 4 schematically illustrates the uniform crossover by using an example.
In the above-mentioned review papers (Aytug et al. 2003, Chaudhry and

Luo 2005, Oduguwa et al. 2005), most production and operations management

problems addressed by GAs are NP-hard and difficult to obtain the exact solutions.

Due to the parallel adaptive nature, meta-heuristics (including GA) afford additional
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optimization methods to conventional ones for resolving production problems
(Oduguwa et al. 2005).

There are four main advantages when applying GAs to optimization problems
(Gen and Cheng 1997). First, GAs can handle any kind of objective functions and
any kind of constraints defined in discrete, continuous, or mixed search spaces.
Second, the evolution operators make GAs very effective and reliable at finding
nearly-global optima. Third, GAs can be easily incorporated with domain-dependent
heuristics to enable the efficient implementation. Fourth, GAs have a high
extensibility in algorithm design. Therefore, GAs have been successfully applied
to resolve various difficult real-world problems (Goldberg 1989, Goldberg 1994,
Gen and Cheng 1997).

Parent 1

Mask

Parent2

Uniform crossover

Child1

Child2 0 0

0 0 0 0 0

01 1111

1 1 1

0 0 0

0 0 01 0 0

000 0

11

11

1 11

1 1 1

1

Figure 3. Illustration of uniform crossover.

1 1

1111

10000

0

Mutation

0

000

Figure 4. Illustration of uniform mutation.
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Some researchers have tried to provide the theoretical foundation for the
optimality of GAs. Greenhalgh and Marshall (2000) demonstrated that a GA can
converge to the global optimum with any specific confidence level provided that a
substantial amount of computational effort is afforded. They also theoretically built
a bound for the number of required iterations to converge if some GA conditions are
satisfied. Liang et al. (2001) performed the convergence analysis for an extended
strings-based GA (ESGA) which is corresponding to the canonical GA (CGA).
From their theoretical analysis, ESGA can reach a global optimum averagely with
a finite computational requirement. Although the bound for number of required
iterations and rate of convergence presented in Greenhalgh and Marshall (2000) and
Liang et al. (2001) are met with some particular conditions, they support the primary
underpinning of GAs in addressing the complex optimization problems.

The combinatorial optimization is a valuable area for the applications of
evolutionary computation (EC) algorithms (Eiben and Schoenauer 2002).
Furthermore, incorporating EC with traditional operational research approaches
can obtain impressive improvement on some classical combinatorial optimization
problems. Therefore, this paper presents an optimization approach (FGSþGA),
which hybridizes GA and FGS, is used to optimally materialize the EMS DW.
Provided that the memory space is relatively tight, BGSþGA developed by Lin
and Kuo (2004) may require much more iterations to correct the infeasible
cube design.

Nevertheless, some barriers of implementing meta-heuristics to the real-world
optimization problems in industry were summarized by Oduguwa et al. (2005).
From the review in Aytug et al. (2003), a conclusion was also drawn that very few
previous studies had demonstrated the enthusiastic comparison results of GAs to
alternative meta-heuristics in production and operations management problems.
They referred to the no free lunch (NFL) theorems (Wolpert and Macready 1997)
on the performance evaluation of meta-heuristics. According to NFL theorems,
Greenhalgh and Marshall (2000) also indicated that GAs outperform other heuristics
on some subsets of problems; others, however, can outperform GAs on problems out
of the subsets. Aytug et al. (2003) pointed out some limitations in the effective
evaluation of GAs. They additionally advised that the effectiveness of GAs should
be substantially investigated according to the guidelines given in Barr et al. (1995)
and Hooker (1995), who mainly suggested that the helpful evaluation of heuristics
requires a set of well-defined experiments.

6. Implementation and experimentation

In order to test the performance of the proposed cube design approach, FGSþGA,
a case of equipment management in a Taiwan semiconductor packaging
manufacturer was applied for the purposes of this paper. There are 200 000 records
related to the semiconductor manufacturing equipment, maintenance and spare
part in the EMS database. In this case there are five plants with 34 categories of
equipment such as implantation machine, wafer cutting machine, cleaning machine,
laser printing machine, framing machine, etc. There are 21 suppliers to support the
semiconductor equipment maintenance and spare part replenishment.
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The EMS DW was developed on a Microsoft SQL 2000 Server and Analysis
Service (Microsoft SQL 2000 OLAP). The dynamic visualization of OLAP is
supported by PIVOT function in Microsoft Excel. Users can browse the OLAP
results through Internet Explorer in the client tier.

6.1 Equipment management data warehouse

The EMSDW includes two schemas of equipment maintenance management (EMM)
and spare part management (SPM) in the semiconductor packaging manufacturer.
Figures 5 and 6 illustrate the schemas of EMM and SPM, respectively.
In these two schemas, there are nine dimensions consisting of: equipment, failure,
location, employee, equipment vendor, spare part storage, spare part item, spare part
vendor and time (maintenance time and order time).

Equipment Type
Equipment TypeNo
Equipment TypeName

Inventory

InventoryNo

InventoryNo

InventoryName

Item Vendor
VendorNo

VendorNo

Item
ItemNo

ItemCost

POQty

UsedQty

OverQty

EqCost

POQCOST

OverQCOST

DeliveryTime

ItemName

MT_FACT
MtNo

ItemNo

ODTIME
OrderDate

OrderDate

VendorName

Equipment
EquipmentNo

EquipmentNo

Equipment TypeNo
EquipmentName

Figure 6. Cube schema of SPM.

Equipment Type
EquipmentEquipment TypeNo

Equipment TypeName

Equipment TypeNo

VendorNo

VendorNo

VendorName

Vendor

PMDate

PMDate

EquipementNo

MtNo

EmployeeNo

FailureNo

LocationNo

PMDate

CMCOST

TBF

TTR

Help Time

EquipmentNo

EquipmentName

Employee Name

Employee

PM_FACT*

Employee No

Failure

FailureName

FailureNo

Location
LocationNo

LocationName

Figure 5. Cube schema of EEM.
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The measures in EMM include machine utilization, time to repair (TTR), time
between failures (TBF), maintenance cost (CMCost), number of maintenance, and
mean time to respond of vendor (MTRV). In SPM there exist four measures
involving mean time to respond of spare part (MTRS), quantity of spare part (QSP),
unused rate of spare part (URS) and storage rate of spare part (SRS). Figure 7
schematically illustrates the EMS DW for the semiconductor packaging
manufacturing.

6.2 Cube selection

In EMM the cubes of equipment availability, MTTR, MTBF, equipment
maintenance cost and maintenance frequency are built by using the schema
presented in figure 5. In this subsection the cube of equipment maintenance cost
(CMCost) in EMM was adopted to demonstrate the effectiveness of the proposed
FGSþGA approach for optimal cube selection. Before the cube design procedure,
the query frequency and required memory space of equipment maintenance cost were
estimated for the 96 possible sub-cubes, and they are summarized in tables 2 and 3
respectively. Additionally, provided that no sub-cube is materialized for a
specific query, it is necessary to aggregate the data from the original database.
In such situations the query cost is much larger than those from materialized
cubes. In tables 2 and 3, M, E, F, D, V and L respectively represent the dimensions
equipment, employee, failure, maintenance time, vendor and location being selected
in the GROUP BY statement in SQL. The symbol ‘-’ implies the corresponding
dimension is not used in the view.

In this paper we compared the cube selection results obtained by the proposed
FGSþGA to those of FGS and BGSþGA developed by Lin and Kuo (2004).
In BGSþGA, BGS was incorporated with GA to repair the infeasible solutions.
Unlike FGS, BGS initially assumes all sub-cubes are materialized and then
iteratively eliminates the sub-cube which has the least influence on the cube design.

Figure 7. Illustration of EMS DW for semiconductor packaging manufacturing.
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Table 3. The query frequency for sub-cubes in equipment maintenance cost.

MEFDVL 1000 M–DVL 454 M-FDVL 2000 -E-F– 222
MEFDV- 200 M–DV- 672 M-FDS- 1100 -E-DVL 222
MEFD-L 200 M–D-L 731 M-FD-L 555 -E-DV- 2000
MEFD– 200 M–D– 2000 M-FD– 5000 -E-D-L 222
MEF-VL 200 M—VL 232 M-F-VL 666 -E–VL 222
MEF-V- 200 M—V- 333 M-F-V- 345 -E–V- 222
MEF–L 200 M––L 404 M-F–L 231 -E—L 555
MEF— 200 M— 2000 M-F— 223 -E–– 555
ME-DVL 200 MEFDVL 222 M–DVL 222 –FDVL 555
ME-DV- 200 MEFDV- 222 M–DV- 223 –FDV- 555
ME-D-L 200 MEFD-L 312 M–D-L 666 –FD-L 555
ME-D– 200 MEFD– 222 M–D– 2000 –FD– 876
ME–VL 200 MEF-VL 222 M—VL 999 –F-VL 665
ME–V- 200 MEF-V- 222 M—V- 777 –F-V- 888
ME—L 200 MEF–L 222 M––L 755 –F–L 222
ME–– 20 MEF— 222 M— 2000 –F— 2000
M-FDVL 1000 ME-DVL 222 -EFDVL 222 —DVL 333
M-FDV- 2000 ME-DV- 222 -EFD-L 222 —DV- 444
M-FD-L 900 ME-D-L 222 -EFD– 222 —D-L 10
M-FD– 2000 ME-D– 222 -EF-V- 222 —D– 10
M-F-VL 1100 ME–VL 222 -EF-SL 222 ––VL 150
M-F-V- 1200 ME–V- 222 -EF–L 222 ––V- 666
M-F–L 140 ME—L 222 -EF— 222 ––L 254
M-F— 202 ME–– 222 -EDF-L 222 ––– 1

Table 2. The required memory space for sub-cubes in equipment maintenance cost.

MEFDVL 200.000 M–DVL 185.438 M-FDVL 200.000 -E-F– 1.010
MEFDV- 195.952 M–DV- 72.144 M-FDS- 197.368 -E-DVL 184.813
MEFD-L 200.000 M–D-L 146.211 M-FD-L 200.000 -E-DV- 48.748
MEFD– 200.000 M–D– 26.316 M-FD– 187.485 -E-D-L 140.957
MEF-VL 38.956 M—VL 2.116 M-F-VL 28.499 -E–VL 0.750
MEF-V- 5.050 M—V- 0.075 M-F-V- 2.255 -E–V- 0.025
MEF–L 22.781 M––L 0.449 M-F–L 12.269 -E—L 0.150
MEF— 1.010 M— 0.015 M-F— 0.451 -E–– 0.005
ME-DVL 196.149 MEFDVL 200.000 M–DVL 189.122 –FDVL 200.000
ME-DV- 139.124 MEFDV- 200.000 M–DV- 99.176 –FDV- 195.914
ME-D-L 185.303 MEFD-L 200.000 M–D-L 160.39 –FD-L 200.000
ME-D– 72.003 MEFD– 197.435 M–D– 44.869 –FD– 180.283
ME–VL 7.289 MEF-VL 41.560 M—VL 4.008 –F-VL 22.176
ME–V- 0.375 MEF-V- 10.644 M—V- 0.170 –F-V- 1.010
ME—L 2.123 MEF–L 29.095 M––L 1.008 –F–L 5.878
ME–– 0.075 MEF— 2.255 M— 0.034 –F— 0.202
M-FDVL 200.000 ME-DVL 196.918 -EFDVL 200.000 —DVL 140.573
M-FDV- 195.914 ME-DV- 99.176 -EFD-L 200.000 —DV- 10.606
M-FD-L 200.000 ME-D-L 160.390 -EFD– 195.952 —D-L 57.035
M-FD– 180.283 ME-D– 44.869 -EF-V- 5.050 —D– 2.190
M-F-VL 22.176 ME–VL 4.008 -EF-SL 38.956 ––VL 0.150
M-F-V- 1.010 ME–V- 0.170 -EF–L 22.781 ––V- 0.005
M-F–L 5.878 ME—L 1.008 -EF— 10.604 ––L 0.030
M-F— 0.202 ME–– 0.170 -EDF-L 200.000 –– 0.001
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For the memory space constraint, a set of nine different space limits was used to

test the effectiveness of FGS, BGSþGA and FGSþGA. The space limitations were

set at 10%–90% of the total size of all sub-cubes. For FGSþGA and BGSþGA,

several GA-specific parameters were defined by using some pilot runs with various

settings. After the pilot runs these parameters were set to: maximum_

generation¼ 150, population_size¼ 50, crossover_rate¼ 1.0 and mutation_rate¼ 0.2.

Due to the stochastic nature of GA, 30 runs were performed to obtain the statistics

of cube design.
The computational results with various space limits by FGS, BGSþGA and

FGSþGA are summarized in tables 4 to 6, respectively. In tables 5 and 6, Umean,

Umax, Umin and Ustd represent average cost, maximum cost, minimum cost and

standard deviation of cost in cube design. As can be seen from these tables, the

results indicate that it is more difficult to find a suitable cube design in cases which

have tight space limits. Additionally, tables 7 and 8 respectively present the ratios of

total cost of FGS to FGSþGA and BGSþGA to FGSþGA, and the ratios of

CPU time of FGS to FGSþGA and BGSþGA to FGSþGA.
Figure 8 illustrates the comparison of total costs by FGS, BGSþGA and

FGSþGA. The computational requirements of BGSþGA and FGSþGA are shown

in figure 9. The CPU time of FGS is relatively short (less than 5 seconds). In the cases

of FGSþGA and BGSþGA, the average cost and average CPU time are presented in

figures 8 and 9.

Table 4. Computational results of FGS with various space limits.

90% 80% 70% 60% 50%

Total cost 4964.65 4964.65 4964.65 4980.97 5488.12

40% 30% 20% 10%

Total cost 6674.15 8995.68 13138.75 20372.88

*The CPU time of FGS is less than 5 seconds.

Table 5. Computational results of BGSþGA with various space limits.

90% 80% 70% 60% 50%

Umean 4928.86 4928.55 4928.86 4929.32 4935.12
Umax 4931.16 4929.40 4930.67 4930.91 4940.81
Umin 4928.48 4928.48 4928.48 4928.48 4931.95
Ustd 0.67 0.19 0.55 0.87 2.17
CPU time (sec.) 39 46 65 113 191

40% 30% 20% 10%

Umean 4949.49 4979.32 5134.24 6484.78
Umax 4964.19 4994.24 5217.65 6837.31
Umin 4942.73 4955.30 5059.75 6108.66
Ustd 4.89 10.56 44.70 280.60
CPU time (sec.) 328 543 909 1289
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From tables 4 to 8 and figures 8 and 9, although FGS search required a shorter

CPU time to locate a cube design solution, the solution quality was much inferior. In

the cases with smaller spaces, particularly, solutions generated by FGS were far from

those by BGSþGA and FGSþGA. From the computational results, FGSþGA

and BGSþGA outperform FGS in terms of solution quality. Except for the case

with a 10% space limit, FGSþGA and BGSþGA perform evenly in terms of

solution quality. Where there are very tight space limits, BGSþGA generate better

solutions than FGSþGA. However, BGSþGA generally require much more

computational requirements than FGSþGA (see table 8). As mentioned above,

Table 8. CPU time ratios of FGS to FGSþGA and BGSþGA to FGSþGA.

90% 80% 70% 60% 50%

FGS/FGSþGA 0.13889 0.13889 0.13514 0.13889 0.13158
BGSþGA/FGSþGA 1.08333 1.27778 1.75676 3.13889 5.02632

40% 30% 20% 10%

FGS/FGSþGA 0.13158 0.13158 0.12821 0.13514
BGSþGA/FGSþGA 8.63158 14.28947 23.30769 34.83784

Table 7. Total cost ratios of FGS to FGSþGA and BGSþGA to FGSþGA.

90% 80% 70% 60% 50%

FGS/FGSþGA 1.00734 1.00734 1.00734 1.01032 1.11219
BGSþGA/FGSþGA 1.00008 1.00001 1.00008 0.99984 1.00013

40% 30% 20% 10%

FGS/FGSþGA 1.34742 1.80270 2.56092 2.27976
BGSþGA/FGSþGA 0.99924 0.99784 1.00073 0.72566

Table 6. Computational results of FGSþGA with various space limits.

90% 80% 70% 60% 50%

Umean 4928.48 4928.48 4928.48 4930.10 4934.50
Umax 4928.48 4928.48 4928.48 4933.76 4938.90
Umin 4928.48 4928.48 4928.48 4928.48 4931.36
Ustd 0.00 0.00 0.00 2.06 2.35
CPU time (sec.) 36 36 37 36 38

40% 30% 20% 10%

Umean 4953.27 4990.11 5130.48 8936.43
Umax 4966.17 5020.74 5230.52 14600.21
Umin 4944.76 4967.23 5068.52 5468.75
Ustd 6.93 15.39 42.37 2549.07
CPU time (sec.) 38 38 39 37
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BGSþGA may require much more iterations to correct the infeasible cube design
provided that the memory space is relatively tight.

Taking the cube of equipment maintenance cost (CMCost) with a 30% space
limit as an example, the optimal cube design is summarized in figure 10.
In this figure the sub-cubes highlighted in grey are materialized. The other cubes
of EMS are also designed by using the proposed FGSþGA. The query response
times are then experimented upon by using 15 queries. As seen from figure 11, the
response times of full materialization and partial materialization are close in these 15
queries. Table 9 lists and compares the memory spaces of five cubes by full

MI---- MI---L MI--V- MI--VL MI-D-- MI-D-L MI-DV- MI-DVL 
M-F--- M-F--L M-F-V- M-F-VL M-FD-- M-FD-L M-FDV- M-FDVL
M----- M----L M---V- M---VL M--D-- M--D-L M--DV- M--DVL 
EIF--- EIF--L EIF-V- EIF-VL EIFD-- EIFD-L EIFDV- EIFDVL 
EI---- EI---L EI--V- EI--VL EI-D-- EI-D-L EI-DV- EI-DVL 
E-F--- E-F-V- E-F-VL E-FD-- E-FD-L E-FDS- E-FDVL 
E----- E----L E---V- E---VL E--D-- E--D-L E--DV- E--DVL 

-IFDV- -ID--- -IF--L -IF-SL -IF-V- -IFD-- -IFD-L -IFDVL 
-I---- -I---L -I--V- -I--VL -I-D-L -I-DV- -I-DVL -I-F-- 
--F--- --F--L --F-V- --F-VL --FD-- --FD-L --FDV- --FDVL 
------ -----L ----V- ----VL ---D-- ---D-L ---DV- ---DVL

E-F--L

Figure 10. The optimal cube design for equipment maintenance cost.
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Figure 9. Comparison of BGSþGA and FGSþGA in CPU time.
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Figure 8. Comparison of three approaches in total cost.
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materialization and partial materialization. The query response times of partial
materialization and full materialization are similar. However, the required memory
spaces of partial materialization are much less than that of full materialization. The
proposed FGSþGA approach is also demonstrated to be a practical design approach
for EMS DW to help equipment engineers make maintenance decisions with various
equipment related dimensions for effective equipment management in semiconductor
packaging manufacturing.

7. Conclusions

Effective equipment management is one of the important tasks for modern
manufacturing companies in order to keep their competitive edge. The rapid
advancements in e-manufacturing accelerate the enormous growth of equipment
engineering data, which can be integrated and aggregated by data warehousing for
supporting effective e-maintenance and e-diagnostics. In this paper a data warehouse
for equipment management system, or EMS DW, was developed for a semiconduc-
tor packaging manufacturer. EMS DW could easily integrate heterogeneous data
derived from various shop floor systems and manage data complied with OLAP for
decision-making purposes. EMS DW allowed equipment engineers to analyse the
aggregated equipment data with multi-dimensional views. This paper not only
develops a GA-based approach, namely FGSþGA, to optimally select cubes
(views), but also shows an implementation for designing the EMS DW for the

Table 9. The memory space of five cubes by full materialization and
partial materialization.

Full materialized Partial materialized Partial/Full

Cost cube 7685.073 2284.714 29.7%
Frequency cube 7685.073 2280.657 29.6%
MTTR cube 1397.988 356.241 25.4%
MTBF cube 255.601 156.424 61.1%
Availability cube 73.425 47.109 64.1%
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Figure 11. The response times of full materialization and partial materialization.
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semiconductor packaging manufacturing. According to the experimental results, the
partial materialization suggested by the proposed FGSþGA approach can decrease
by 70% the memory space of full materialization, while the query response times are
approximately unchanged. The further performance evaluation of the proposed
heuristic with respect to the guidelines recommended in Barr et al. (1995) and
Hooker (1995) is one part for future work.
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