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Abstract

Automated chromosome classification is an essential task in cytogenetics and has been an important pattern recognition problem. Numerous
attempts were made in the past to characterize chromosomes for the purposes of clinical and cancer cytogenetics research. It is important to
determine good features and develop feature extraction schemes for chromosome classification. In this paper we propose efficient approaches
for medial axis determination and profile matching of human chromosomes without identifying centromeres. The medial axis determination is
based on simple cross-section analysis. The features of the band profile obtained along the axis are then used to classify a chromosome based
on a subsequence matching technique. Using a special indexing structure, we are able to perform fast similarity search and dynamic insertion
and deletion over the established subsequence database of chromosome profiles. According to the experimental results, the developed adaptive
system can automatically and efficiently determine the medial axis of a given chromosomes, and achieve satisfactory classification results.
� 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Chromosome classification is an essential task in cytoge-
netics and has been an important pattern recognition problem.
Numerous attempts were made in the past to characterize
chromosome for prenatal screening, genetic syndrome diagno-
sis, cancer pathology research, and environmentally induced
mutagen dosimetry. However, chromosome classification and
analysis, which create karyotypes, are manually performed in
most cytogenetics laboratories nowadays in a repetitive, time-
consuming and therefore expensive procedure [1,2]. Hence, the
development of computerized methods to automate the proce-
dure has attracted much attention. Such a system should be able
to extract chromosome image features and use these features
for classifier training as well as actual classification tasks. It is
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important to determine optimum features and develop a feature
description scheme for chromosome classification. In general,
the features used for chromosome classification include shape
descriptors, such as length and centromere index, and band pat-
tern representation. Lengths are simple to measure if the chro-
mosomes are segmented properly, but the centromeres are sub-
tle and sometimes difficult to locate. Several shape-based tech-
niques have been proposed. In Ref. [3], the curvature of each
chromosome is studied, and the feature vector extracted from
the curvature is used for the classification of each chromosome.
The wavelet packet transform and Fourier transform for shape
representation also motivate the development of the approaches
for chromosome classification in Ref. [4]. The performance
of shape-based approaches depends heavily on the quality of
the input images as well as the resolution of the boundary of
the segmented chromosome. Since length and centromere in-
dex by themselves cannot be used to classify human chromo-
somes reliably into their 24 classes, band patterns produced
by modern specimen staining techniques have been used as an
important feature for both manual and automated chromosome
classification.
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While band patterns are often used in the discrimination of
human chromosomes into their corresponding ISCN categories
[5], they are difficult to extract automatically in general. For
example, chromosomes are often bent, and the colors of the
pixels within the same band produced by the staining process
are usually nonuniform. As a result, the sampled gray-values are
often noisy and contain outliers [6,7]. As stated in Refs. [1,8],
the combination of features from both band pattern and shape
representation is able to reduce the error rate of karyotyping
systems.

A medial axis transform is usually performed as a basis for
measuring a band profile, and therefore is a required and par-
ticularly critical step. The authors of Ref. [9] obtain the band
profile by integrating the intensities along cross-sections per-
pendicular to the medial axis, or longitudinal axis, but severely
bent chromosomes could be difficult to straighten. In general,
medial axis determination usually involves (i) an iterative thin-
ning process, and (ii) a pruning process to eliminate spurious
branches produced by (i), and is a difficult task [10]. Many ap-
proaches have been proposed to perform this task [6,10–12].
In Refs. [10,12], the authors obtain the medial axis based on
the dominant points of the contour and cubic splines of the
boundary, and use a simple constrained classifier to classify
chromosomes. Some medial axis calculation methods are based
on second order moments of the chromosome gray-values, but
they are not applicable to bent chromosomes [11].

To represent extracted chromosome band patterns, several
transforms have been proposed. Some of them are based on dis-
crete Fourier transform (DFT) to derive global descriptors of the
density profile [13]. The weighted density distribution (WDD)-
based approach correlates the band profile with a set of basis
functions, and the correlations, rather than the profile itself,
serve as the representation of the chromosome [14,15]. Markov
chain-based methods quantize the band profiles of chromo-
somes and represent them as chains of symbols [16]. Neural
network (NN)-based approaches are proposed to classify chro-
mosomes as well [1,9,17,18]. In Ref. [1], a multi-layer per-
ceptron is implemented which uses chromosome length, cen-
tromere index, and 15 points from a 64-element density profile
as features. The classifiers are highly dependent on the repre-
sentation of chromosome features.

In this paper, we propose a novel approach for chromosome
classification based on band profile similarity. The band profiles
extracted along approximate medial axes are partitioned into
subsequences, and the classification is achieved by performing
subsequence matching over a dynamically updated database. In
our experiments, the chromosome images have been segmented
by Lumens Digital Optics Inc., Taiwan. Because the centromere
positions, which are often important features [6,15,19–21], are
difficult to identify in these images, the proposed approach
uses only band profiles for classification. Since chromosomes
have no branches and their shapes are elongated with nearly
uniform width, our method approximates the medial axis by
simple cross-section analysis along four scan-line directions as
described in Section 2. To improve the robustness of band pro-
file extraction, gray-values at three different locations on each
cross-section along the medial axis are sampled and combined,

as discussed in Section 3. Section 4 describes the classification
approach based on subsequence matching. Section 5 presents
the experimental results and Section 6 gives the conclusion of
this paper.

2. Medial axis extraction

The fact that chromosomes can be very sinuous, especially
for the classes of longer ones, results in major challenges for
automatic classification of a chromosome, or the composition
of a karyotype. Fig. 1 shows a segmented image of a long,
bent chromosome. A practical way to represent such elongated
objects is by using their longitudinal axes, or medial axes,
which are usually extracted with either area-based thinning
or boundary-based skeletonization approaches [6,22]. In order
to extract features that are invariant to chromosome bending,
some determines the orientation of the minimum width enclos-
ing rectangle [6]. On the contrary, our proposed approach for
extracting the medial axis neither computes the chromosome
orientation nor assumes that the chromosome is straight or only
slightly bent. Furthermore, it avoids some problems that are of-
ten encountered in the skeletonization process, such as highly
variable stroke directions and thicknesses of chromosomes as
described in Ref. [22].

The approach for medial axis extraction proposed in this pa-
per is based on an efficient analysis of the cross-sections of
a chromosome obtained in different orientations. Most of the
midpoints of such cross-sections along different orientations
are very close to the medial axis. Therefore, given a sufficient
number of such cross-sections, the polygonal curve computed
by connecting their midpoints in the proper order will provide
a good approximation to the actual medial axis. The proposed
approach first obtains chromosome cross-sections along scan-
lines with four equally spaced angular orientations: 0◦, 45◦,
90◦, and 135◦. Subsequently, by properly selecting the cross-
sections within a specific range of their lengths, and by con-
necting the midpoints of the selected cross-sections in the right
order, a polygonal approximation of the medial axis can be ob-
tained.

Fig. 2 depicts the flowchart of the proposed algorithm for
medial axis extraction. The algorithm consists of three stages:
(a) cross-section generation and selection, (b) grouping of

Fig. 1. An image of a chromosome.
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Fig. 2. The flowchart of the proposed algorithm for medial axis extraction, where (a) represents the cross-section generation and selection stage, (b) groups
midpoints of cross-sections, and (c) connects polygonal segments.
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Fig. 3. (a) Cross-sections of the chromosome in Fig. 1 in four different
orientations. (b) The length histogram of cross-sections in four different
orientations. (c) Cross-sections whose lengths are within range R.

midpoints of cross-sections, and (c) connecting of polygonal
segments, each representing a group in (b).

In stage (a), cross-sections are generated with scan-lines
along the four orientations using the interval step determined
initially as 10% of length of the longer side of the input image,
as shown in Fig. 3(a). The objective of this stage is to identify
and discard improper cross-sections. Since the chromosome
has an elongated shape, most of the cross-sections have lengths

relatively close to the width of the chromosome. To select rep-
resentative cross-sections of the chromosome, we take advan-
tage of the observation that the peaks of the four distributions
are close to one another in the length histogram, e.g., ranging
from 6 to 12 pixels in Fig. 3(b). A range R = (rmin, rmax) on
the lengths is determined by this interval to select such cross-
sections. Fig. 3(c) illustrates the representative cross-sections
selected in this stage. Since we choose the range R to be rel-
ative to the size of the input chromosome image, it has the
advantage of being adaptive to different data sets.

The medial axis of a chromosome is a simple curve and can
be approximated by a series of polygonal segments. Stage (b)
aims to organize the midpoints of the selected cross-sections
and connect them into untouched polygonal segments. The idea
is that the cross-sections obtained previously can be partitioned
into several groups, each consisting of cross-sections obtained
from scan-lines of the same orientation. Since the cross-sections
remaining from stage (a) are the ones most likely to be perpen-
dicular to the medial axis, the line passing through their mid-
points roughly indicate the direction of the medial axis. In this
stage, we group consecutive cross-sections of the same orien-
tation, and connect the midpoints of the cross-sections within
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Fig. 4. (a) Polygonal segments obtained after grouping process. (b) The
polygonal segments from different orientation of cross-sections are shown in
the corresponding columns.

Fig. 5. The polygonal segments in Fig. 4(a) are no longer overlapped or
touched to each other after the splitting and shortening process.

each group into a polygonal segment, which gives an approxi-
mation to part of the medial axis. Fig. 4(a) shows an example
of such approximation, while Fig. 4(b) shows individual polyg-
onal segments of different orientations.

Although polygonal segments are very close to the medial
axis of the chromosome, it is possible that they cross or touch
each other. An algorithm based on simple splitting and gradual
shortening is applied to address this issue. To keep the previ-
ously obtained segments as long as possible, for each pair of
polygonal segments that touch each other, the shorter one is
shortened by deleting its end vertex most close to where the
two segments touch. This is repeated till the two polygonal seg-
ments are separated. This process is also applied to polygonal
segments that touch the boundary of the chromosome. Eventu-
ally, all of the polygonal segments are adjusted into untouched
ones. Fig. 5 shows the result computed from Fig. 4(a).

The result of stage (b) is only a partial approximation of
the medial axis of the chromosome. As shown in Fig. 5, there
might be missing segments. This is due to either sudden bend-
ing of the chromosome or the cross-sections at that location
being eliminated in stage (a). Hence, stage (c) is conducted
to progressively connect the polygonal segments obtained in
stage (b) into a single connected polygonal curve to derive
the complete approximation of the medial axis. Specifically,
we define available connections of the polygonal segments as
those that connect end vertices of polygonal segments without
crossing or touching the boundary of the chromosome. An it-
erative procedure is performed to connect the vertices of the
shortest available connection in each iteration without generat-

ing cyclic polygonal segments. Note that if the representative
cross-sections selected in stage (a) are not enough or, in other
words, the range of R was too small, the polygonal segments
could not be connected into a single polygonal curve success-
fully. If this happens, the system will enlarge R by 4 pixels, i.e.,
rmin← rmin− 2 and rmax ← rmax + 2, which allows us to ob-
tain more cross-sections, and repeat stages (a) and (b). On the
other hand, we also expect that the final polygonal curve is as
long as possible. An estimated chromosome length �, which is
defined as 70% of the length of the longer side of an image in
stage (a), is utilized here as a lower bound. If the length of the
final polygonal curve is less than �, we also enlarge R and then
repeat stages (a) and (b) in order to obtain longer polygonal
segments.

Another task performed in stage (c) is to extend the polygo-
nal curve by finding the tip points on the periphery of a chro-
mosome image and connect them to the endpoints of the polyg-
onal curve. Reasonable connecting lines should be perpendic-
ular to the bands of the chromosome. Let Si (i = 1 and 2) be
the two endpoints of the single connected polygonal curve, and
li (i=1 and 2) be the line segment containing Si , as illustrated
in Fig. 6. A search area ℘ on the chromosome boundary is de-
fined according to Si and the direction of li . For any pj ∈ ℘,
if length(pjSi) > 2× rmax , R will be enlarged and the system
will repeat stages (a) and (b) again. (This happens when cross-
sections around the end of the chromosome were not selected.)
For each pjSi , we obtain a chord cj passing through the mid-
dle point of pjSi and perpendicular to pjSi , as indicated in the
figure, and compute the variance �2

j of gray-levels along cj .
Finally, the orientation of the chord having minimum variance
is assumed to be parallel to the band orientation of the chromo-
some, and the corresponding pj is selected as the tip point. The
polygonal curve is thus extended from Si to pj . Fig. 6(b) and
(c) show the extended polygonal curves of two chromosomes
along with their corresponding gray-level images in Fig. 6(d)
and (e). The bold segments on the boundary indicate the search
areas. The arrows in the figure indicate the lines connecting the
endpoints to the tip points found in the search area.

The final step in stage (c) is a smoothing procedure for the
extended polygonal curve. We perform linear interpolation of
slopes at sample points along the extended polygonal curve.
Given a point qi

k which lies on line segment lk , we denote the
two vertices of lk as q1

k and qI
k , and the slopes of {lk−1, lk, lk+1}

as {Sk−1, Sk, Sk+1}, respectively. The interpolated slope S′ki
at

qi
k can be calculated by

Si
k =

1

2
Sk + 1

2

(
n

m+ n
Sk−1 + m

m+ n
Sk+1

)
, (1)

where m and n denote the lengths of q1
k qi

k and qi
kq

I
k , respec-

tively. For the first line segment we let S0 = S1, and for the
last line segment, SK+1=SK . We can then obtain a new cross-
section passing through qi

k that is perpendicular to the inter-
polated slope Si

k . We apply this to every sample point on the
polygonal curve, and finally obtain a new set of cross-sections.
The midpoints of these new cross-sections are then connected
sequentially to form the final approximation of medial axis.
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Fig. 6. (a) Extend an endpoint to a tip of chromosome. (b), (c) Two results after connecting endpoints of polygonal curves to tip points of boundaries of
chromosomes. (d), (e) The corresponding gray-level images of (b) and (c), respectively.

a b c

Fig. 7. An example of the smoothing process in stage (c) for a severely bent
chromosome. (a) The cross-sections selected in stage (a); (b) the regener-
ated cross-sections using interpolated slopes; (c) the gray-level image of the
chromosome overlaid with the regenerated cross-sections and the final medial
axis.

Fig. 7(a) shows the cross-sections selected in stage (a) and
Fig. 7(b) shows the ones newly generated using the smoothed
slopes. One can see that, not only the transitions of the orien-
tation of the cross-sections in Fig. 7(b) become more smooth
than those in Fig. 7(a), but also the intersections between cross-
sections are avoided. Fig. 7(c) presents the gray-level image
of the chromosome overlaid with the cross-section in Fig. 7(b)
and the final approximation of the medial axis.

3. Band profile extraction

The approximate medial axis is the basis for the extraction of
the band profile of a chromosome. To reduce the effect of noisy
data at the boundary pixels of a chromosome, and to reduce out-
liers caused by the bending of chromosomes and the image ac-
quisition process, we compute the profile using a combination
of gray-values sampled at 1

4 , 1
2 , and 3

4 of width along each cross-
section. Since the more similar two of the samples are, the more
likely the other one is an outlier, we use a continuous interpola-
tion function I ′. Assume that the sorted gray-values of the three
sampled pixels are denoted as Imax , Imid , and Imin, respec-
tively. We define a quadric function f (x)= (2/D) ∗ x2 where
D = Imax − Imin, and obtain the combined gray-value using

I ′ =
{

Ic + f (Imid − Ic) if Imid �Ic,

Ic − f (Imid − Ic) if Imid < Ic,

where Ic = (Imax + Imin)/2.

Imin

Imin

Imid

Imax

Imax

I’

median

average

I’

Fig. 8. The behaviors of three interpolation functions where the x-axis is the
values of Imid and the y-axis is the combined gray-values. The dotted curve
denotes the median of the three sampled intensities. The dashed line denotes
the average, and the solid curve denotes the result using our interpolation
function.

Fig. 8 is a comparison of the behavior of our interpola-
tion method and those using the median and average func-
tions of the three sampled intensities. When the three samples
are similar, our interpolation function is similar to performing
their average. Otherwise, it is similar to the median function,
having the effect that the most different one is treated as an
outlier. For example, given 200, 200, 100 as the sampled gray-
values, 100 is completely discarded and the combined result
is 200.

Fig. 9(a) shows the cross-sections of the chromosome image
in Fig. 1 used for band profile extraction. Each cross-section
is partially shown from its 1

4 to 3
4 width. Fig. 9(b) presents the

three curves, each representing the gray-values obtained at one
of the three pixels located at 1

4 , 1
2 and 3

4 width of the cross-
sections in Fig. 9(a). Fig. 9(c) shows the combined band profile
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Fig. 9. (a) The cross-sections of Fig. 1 used for extract band profiles. (b) The three curves of gray-values obtained at the 1
4 , 1

2 and 3
4 width of cross-sections.

(b) The final band profile obtained by combining the three curves in (b).

from the three curves in Fig. 9(b). One can see that the outliers
in Fig. 9(b) are significantly reduced.

4. The classification algorithm using band profile similarity

A central task in chromosome recognition is to evaluate
the similarities between known samples and the query ones.
According to ISCN [5], each of the 24 categories of human
chromosomes has distinct features. Common features used in
the recognition or classification process include the centromere
index, i.e., p/q-arm ratio, the length, and the band pattern of
a chromosome. Since the chromosomes in our database do not
have significant centromere features, our method of chromo-
some similarity evaluation is based on the band profiles ob-
tained in Section 3, which capture the lengths and the band
patterns of the chromosomes.

A band profile is a sequence of gray-values sampled along
the medial axis of a chromosome and can be intuitively treated
as a time sequence of a specific length. We use the term “BP
sequence” to denote such a sampled sequence in this paper
where BP stands for “band profile”. Accordingly, the problem
of classifying a band profile is formulated as a problem of eval-
uating similarity between a query BP sequence and multiple
classes of BP sequences, where each class contains multiple
labeled instances. Two sequences are considered similar if (i)
they have enough nonoverlapping time-ordered pairs of subse-
quences that are similar, and (ii) their lengths are also similar.
However, the sequences are usually variant on clinical practice
even for homologue of the same specimen, resulting in various
difficulties in evaluating the similarities. For example, BP se-
quences of the same class may have different lengths, making
it difficult or impossible to embed the sequences in a metric
space.

This paper proposes a classification approach using a novel
sequence matching technique, which is an improvement over a
previous method [23]. The primary focus of Ref. [23] is a data
mining environment where one tries to find in a given set of
sequences those are similar to a query sequence. In particular,
a similarity model based on the amplitudes of subsequences
is defined and the problem of determining similarity of two
sequences is decomposed into three subproblems: atomic
matching, window stitching, and subsequence ordering. Also,
an R+-tree is used as an indexing structure to store the trans-

formed subsequences to achieve efficient search and to discover
all similar ones in a set of sequences. In this paper, the similar-
ity model is extended and the searching technique is improved
to perform BP sequence classification. The indexing structure
is also modified to store associated length information of BP
sequences.

4.1. Related works on classification using band profiles

Although the standardized nomenclature [5] provides good
description of features for each class of human chromosomes,
the band profiles of the same class can be quite different across
different batches of chromosome images in practice. In general,
sources of these differences include noise in the amplitude of
the profile, nonlinear size scaling along the medial axis, and
intensity offset of the profile due to variations of illumination.

A number of approaches have been applied to the classifi-
cation of sequences. The methods using DFT map a sequence
to the frequency domain, drop all but the first few frequencies,
and use them as features for classification [13,24]. An indexing
structure for fast similarity search is used in Ref. [24], with the
assumption that the reference data as well as query sequences
are of the same length. The authors in Ref. [25] develop a more
flexible approach to subsequence matching by mapping each
subsequence to frequency domain. In general, Fourier anal-
ysis of the whole BP sequence has a serious drawback that
the temporal information is lost. Such information often offers
important nonstationary or transitory characteristics of a BP
sequence.

Markov networks have been used in chromosome analysis in
Refs. [16,26,27]. A band profile is quantized and represented as
a chain of symbols (a string). Ref. [19] provides a comparison
of performance between hidden Markov model (HMM)-based
method and other approaches, including NN, singular value de-
composition (SVD), principal components analysis (PCA), and
fisher discriminant analysis (FDA). Although Markov models
have been used with some success, quite a few parameters need
to be incorporated into the model, such as transition probabil-
ities and exclusionary and inclusionary substring probabilities
to specific classes.

On the other hand, in the field of data mining and data ware-
housing, a number of sequence or subsequence matching ap-
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proaches over time-sequence databases have been developed
[23,24,28,29]. The substring matching approaches using dy-
namic programming and dynamic time warping techniques are
also applicable, but they have some limitations when employed
in practical applications [30–33]. For example, matching meth-
ods for text subsequences normally use a few discrete symbols,
which result in difficulties in dealing with scaling and resolution
change/variation of a sequence of real numbers. The matching
process of a dynamic-time-warping-based approach also has
high complexity and is computationally expensive [33].

To address the above concerns when classifying band pro-
files of chromosomes, we propose a novel approach wherein
the similarity model and the searching technique over an in-
dexing structure developed in Ref. [23] are improved for the
classification of BP sequences. The properties that each BP se-
quence belongs to one of the 24 classes and that each class
has a specific range of length relative to the global scale of the
data set motivate the idea of grouping BP sequences by their
lengths in the classification process. Moreover, a labeled BP se-
quence, either by an expert or by the system, can be dynamically
inserted into the database as a sample of its class. Finally, pre-
viously inserted BP sequences can also be deleted on demand
from the database. In the following we present more detail of
our approach.

4.2. The overview of the classification system

Our approach to sequence matching for band profile classifi-
cation extends the method described in Ref. [23] by incorporat-
ing the length information to improve the overall classification
capability. Fixed-sized subsequences are extracted from each
labeled BP sequence and then stored in a data structure together
with the length information of the associated BP sequence. The
database employs an R+-tree and linked-list tables as its under-
lying data structure to facilitate fast search. Given the database
and a query BP sequence, we classify the query sequence by
examining the similarity between its subsequences and those
of each chromosome class. More precisely, we first compute
candidate classes for the query sequence using the length in-
formation. We then extract fixed-sized subsequences from the
query BP sequence and search over the database for atomic
matches between them and those of the candidate classes. Fi-
nally, the similarity for each class is obtained by evaluating the
longest global match (LGM), which is a composition of the lo-
cal atomic matches for that class. We outline the classification
procedure for BP sequences as follows.

Building the database: We maintain a multidimensional R+-
tree that keeps fixed-sized subsequences extracted from each
labeled BP sequence. The database allows multiple labeled
BP sequences of the same class to be inserted, possibly from
different batches of chromosome data and having different
scaling and intensity offset. On the other hand, the average
length of such classified BP sequences of each class is also
recorded in a linked-list table. By using R+-tree and linked-
list tables, insertion and deletion of labeled BP sequences
can be performed on demand without rebuilding the whole
database.

Determination of candidate classes: For each class of chro-
mosome, both the number of BP sequences labeled as that
class and their average length are recorded in a linked-list ta-
ble. These records are updated whenever a BP sequence is in-
serted or deleted. If the length of a given query BP sequence is
within a predefined range around the average length of a cer-
tain class, that class is identified as a candidate class of that
query sequence.

Sequence matching: Similar to the labeled BP sequences,
we also extract fixed-sized subsequences from the query BP
sequence before matching. For each subsequence the system
finds similar ones in the R+-tree. They may come from several
labeled BP sequences, possibly from several different classes.
Some constraints are then applied to stitch all local atomic
matches, and a LGM is derived. The class of the query BP
sequence is selected to be the same as the one that yields the
LGM which satisfies the following:

(i) length of the LGM is long enough;
(ii) sum of the length of all gaps within the LGM is short

enough;
(iii) length of the LGM is close to the average length of the

classified BP sequences of that class.

4.3. The similarity model

Our similarity model is described in this section. Since it is
an improvement over that in Ref. [23] with the utilization of
length information of sequences, we start with a brief descrip-
tion of Ref. [23]. Fig. 10 is partially reproduced from Ref. [23]
to illustrate the basic procedure of determining the similarity
between two sequences. Fig. 10(a) shows two sequences S and
T. Note that their lengths LS and LT are not the same. Instead
of stretching the BP sequences to normalize them, we use mul-
tiple BP sequences of different length. In Fig. 10(b), the two
sequences are first translated by their intensity offsets to align
vertically. The amplitude of T is then scaled as shown in Fig.
10(c) to see whether its subsequences lie within an envelope of
a pre-defined width around some corresponding subsequences
of S. Fig. 10(d) shows an example where such a condition is
met between subsequence pairs {S1, T1} and {S2, T2}, respec-
tively. These pairs are denoted as matched subsequences, or
atomic matches, while the nonmatched subsequences, such as
G1, G2 and G3 in Fig. 10(e), are also identified.

With the above results, the proposed approach further classi-
fies a query BP sequence by evaluating the similarity between
the whole sequence and those being pre-classified as some in-
stances of certain classes. The method not only searches for
similar subsequences, but also investigates the satisfaction of
constraints related to lengths of BP sequences. To that end,
the problem is decomposed into atomic matching and window
stitching, as described next.

Notations: A BP sequence is an ordered set of real values.
Let S[i] denote the ith element of a BP sequence S, s[i, j ]
denote a subsequence of S from its ith element to its jth ele-
ment, and s[k] denote the kth element of s. We use first(s) and
last(s) to represent the indices within S of the first and last
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Fig. 10. Determination of similarity. (a) Two sequences. (b) Translating by their intensity offsets. (c) Amplitude scaling. (d) Subsequence matching by envelope.
(e) Ignoring gaps.

elements, respectively, of a BP subsequence s. Two BP subse-
quences s and t overlap iff either first(s)�first(t)� last(s) or
first(t)�first(s)� last(t). Given two BP subsequences sp and
sq of a BP sequence S with first(sp) < f irst(sq), the gap be-
tween them is defined as

gap(sp, sq)=

⎧⎪⎨
⎪⎩

0 if sp and sq overlap;
first(sq) if sp and sq do not overlap.

−last(sp)− 1

Thus, given ordered BP subsequences s1 . . . sm, the total length
LS is last(sm)− f irst(s1)+ 1. The total gaps among BP sub-
sequences s1 . . . sm is

gap({s1, . . . sm})=
m−1∑
i=1

gap(si, si+1).

Atomic matches and window stitching: The definition of
atomic matches is similar to the one defined in Ref. [23]. All
the subsequences have the same length �. The value of each

element of a subsequence s is normalized according to

s̃[i] = s[i] − �s

�s

. (2)

Here �s=(smax+smin)/2 is the intensity offset translation, and
�s = (smax − smin)/2 is the amplitude scaling, with smax and
smin being the maximum and minimum intensity values within
the subsequence s, respectively.

A subsequence of a sequence labeled as class c, s̃c
i , and a

subsequence of a query sequence, t̃j , are regarded as similar if:

(1) The values of the ordered elements of each subsequence
are similar, in the L∞ sense as adopted in Ref. [23], i.e.,

|s̃c
i [k] − t̃j [k]|�� for 0�k��− 1. (3)

(2) They have similar scaling:

1

�
�

�s̃c
i

�t̃j

��, (4)

where � > 1 is the scale tolerance.
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(3) They have similar offset translation:

|�s̃c
i
− �t̃j
|�	, (5)

where 	 is the offset tolerance.

Fig. 11 shows an example for �=8. {s̃3 . . . s̃13} and {t̃1 . . . t̃10}
are BP subsequences of two band profiles S and T, respec-
tively. One can see that T̃ [1] . . . T̃ [18] are within the envelope
around S̃ except for T̃ [9]. The subsequences t̃2, . . . , t̃9, which
contain the element T̃ [9], are thus identified as not similar to
subsequences of S̃ according to Eq. (3). As a result, the atomic
matches between S and T are (s̃3, t̃1)and (s̃12, t̃10), with a gap
of 1 element for both S and T.

For each subsequence t̃j of a query BP sequence T, the
discovered atomic matches (s̃c

i , t̃j ) might come from BP sub-
sequences of different classes of chromosome. Basically, we
stitch atomic matches to derive LGM for each class based on
a procedure similar to that in Ref. [23]. The LGM is obtained
by applying general longest path algorithm over the underly-
ing match graph. We present the corresponding data structure
in Section 4.4 and the determination of �, � and 	 in Section 5.

Similarity model and classifications: Unlike the similarity
model proposed in Ref. [23], our model utilizes scaling and
offset translation of subsequences for the local similarity mea-
sure, and length information of sequences for the global simi-
larity measure. Let the average length of sequences labeled as
class c stored in the database be Lc

Avg . Given a LGM consisting

of M stitched atomic matches {(s̃p1 , t̃q1), . . . , (s̃pM
, t̃qM

)}, the
global similarity measure Vc for class c is defined as the sum
of Lc

Avg and the length of the query subsequence, minus the
gaps within all atomic matches and a penalty term for length
difference. That is,

Vc = Lc
Avg + LT − gapc({s̃c

p1
, . . . , s̃c

pM
})

− gapc({t̃q1 , . . . , t̃qM
})− 
× |Lc

Avg − LT |, (6)

where 
 is the weight of length difference. A chromosome is
classified as the class c∗ whose corresponding LGM achieves
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Fig. 12. An example of MBRs in �-dimensional space for � = 3. While
MBRt̃n

is constructed by a BP subsequence of T, MBRs̃m , MBRs̃o , MBRs̃n
and MBRs̃p are constructed by some pre-classified BP subsequences of S,
respectively. In this case, these pre-classified subsequences belong to an
internal node of R+-tree, MBRInt, as illustrated by the cube in dashed line.
Subsequence tn is within the envelope of subsequence sm since their MBRs
overlap.

the highest global similarity, i.e.,

c∗ = arg max
c

(Vc). (7)

4.4. Data structure and algorithms

This section presents the data structure and algorithms of
the proposed approach and also addresses some implementa-
tion issues. We utilize R+-tree [34] as the indexing structure
as in Ref. [23] and develop additional mechanisms to prevent
node overflow during tree operations. To build the initial index
structure, we scan each labeled BP sequence from end to end,
extract and normalize subsequences of width � using Eq. (2),
and insert the corresponding �-dimensional vectors into the
R+-tree. The envelope in Eq. (3) is represented by a minimum
bound rectangloid (MBR) centered at the �-dimensional point
with its size being ��.

Fig. 12 shows an example of MBRs in �-dimensional space
when � = 3. MBRs̃m , MBRs̃o , MBRs̃n and MBRs̃p are con-
structed by some labeled BP subsequences of S. An internal
node of the R+-tree stores a MBR enclosing all MBRs of
its children, as indicated by the cube MBRInt in dashed line.
MBRt̃n

is constructed from a subsequence tn of a query se-
quence T. By a query operation of R+-tree, one can see that
the subsequence tn is within the envelope of the subsequence
sm since their MBRs overlap.

Still, several difficulties arise if we apply R+-tree directly to
store normalized BP subsequences. Since BP subsequences of
one class of chromosomes may be in fact very similar to those
of others, and we allow an arbitrary number of BP sequences
of each class to be inserted into the database, many identical
BP subsequences might be extracted. The corresponding MBRs
will thus coincide in the �-dimensional space, as indicated by
{M, O, U}, {G, R}, {K, Q}, and {W, I } in the 2D case shown
in Fig. 13(a). As the branch factor of an R+-tree node is lim-
ited, insertions of these coincident MBRs will result in many
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Fig. 13. (a) Some MBRs organized into an R+-tree. (b) Cooperation of the R+-tree structure and a track table implemented using linked-lists. The associated
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Fig. 14. Two raw images of specimens provided by (a) Cathay General
Hospital, and (b) Cheng Gung Memorial Hospital, respectively.

overflowed nodes, and the induced partition operations may
lead to under-filled internal and leaf nodes, making the R+-tree
grow faster than necessary and the performance being seriously
reduced.

We solve this problem by introducing a linked-list table,
called TrackTable, to track identical normalized �-dimensional
points from different chromosome classes instead of inserting
the same MBRs repeatedly. Fig. 13(b) shows an R+-tree and
the associated TrackTable. Upon an insertion, if the MBR is
identical to that of some previously inserted ones, the asso-
ciated data will be recorded in TrackTable instead of being
inserted into the R+-tree as a new node. For example, since
{O, U} are at the same location as previously inserted {M},
they are recorded as its successors in the corresponding linked-
list in TrackTable. For a labeled subsequence s inserted into
the R+-tree as a leaf node, the stored information includes:
(1) the corresponding MBR, (2) its class-id, (3) the index of
the starting element, first(s), (4) its scaling factor, �s , and (5)
its offset translation �s . On the other hand, the information
recorded in the linked-list includes: (1) the class-id, (2) the
index of the first element of the subsequence, (3) the scaling
factor �, and (4) the offset translation �. Note that whenever a
deletion of a leaf node of R+-tree occurs, the immediate suc-
cessor of the node in TrackTable, if any, should replace the
deleted leaf node and the linked-list should also be updated for
consistency.

In order to keep track of the value of Lc
Avg used in

Eq. (6), another data structure, LengthTable, is also used. Let
Nc be the number of labeled BP sequences of class c stored
in the R+-tree. Whenever a new BP sequence S of class c is

Table 1
Number of iterations required to obtain approximate medial axes of given
data sets

Iterations 1 2 3 4 5 �6
Percentage 49 29 12 2 1 7

Individual percentage is also listed.

Fig. 15. Three cases where the medial axes cannot be determined automati-
cally. For each case, both gray-value and segmented binary images are shown.

Table 2
The combinations of parameter values used in the cross-validation examination

Minimum Maximum Increment

� (window size) 4 12 1

� (scale tolerance) 1 3 0.2
	 (offset tolerance) 0 50 10
� (envelope width) 0 0.5 0.05

 (weight of length difference) 0 10 2
� (length tolerance) 0 0.5 0.1

inserted into or deleted from the data structure, the correspond-
ing record in LengthTable is updated according to Nc and
its length.

Algorithms: The algorithms for the proposed band profile
classification system include (1) profile classification, (2) can-
didate class determination, (3) insertion, and (4) deletion. The
main algorithm, the first one, calls the second algorithm to
determine candidate classes for a query BP sequence based
on the information stored in LengthTable, and classifies the
sequence using the similarity model and the data structures
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Table 3
The average classification rate using parameters (�,�, 	, �,
,�)= (8, 2, 30, 0.2, 4, 0.2)

Class 1 2 3 4 5 6 7 8 9 10 11

Rate 100 100 97.1 100 88.6 82.8 91.4 77.1 94.3 91.4 97.1

Class 12 13 14 15 16 17 18 19 20 21 22 Overall
Rate 80 88.6 88.6 85.7 85.7 94.3 88.6 91.4 94.3 91.4 74.3 90.12

Unit: %.
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Fig. 16. Classification result over the database provided by Cheng Gung
Memorial Hospital using the parameters determined in phase 1.

described above. When a labeled BP sequence is inserted into
the R+-tree with the third algorithm, it is the extracted BP sub-
sequences that are actually stored, while the BP sequence itself
is directly copied to a repository database. An inserted sequence
can be reviewed or deleted on demand form the database with
the fourth algorithm.

5. Experimental results

The data sets of chromosome images used in the experiments
are provided by Cathay General Hospital (13 specimens) and
Cheng Gung Memorial Hospital (78 specimens). Fig. 14 shows
two raw images of the two data sets, respectively. Different scal-
ing and offset translation, truncation, noise due to debris, over-
lapping and touching among chromosomes, etc., are present in
these data sets. The segmentation of the raw images into images
of individual chromosomes, including the labeling of chromo-
some and background pixels, is carried out by Lumens Digital
Optics, Inc. The largest image size is 40 × 132 pixels. In the
following, the experimental results are presented separately for
medial axis extraction and the classification of BP sequences.

Medial axis extraction: The proposed approach for medial
axis extraction is applied to all segmented chromosomes in the
data sets. Since the proposed method of band profile extraction
is insensitive to the exact location of the medial axis, the goal
is not to extract an ideal but rather a simple polygonal approx-
imation of the medial axis. Table 1 gives a summary of the
required number of iterations for the algorithm in Fig. 2 over
the given data sets. For the total of 4186 chromosomes from
the two data sets, the algorithm is able to automatically extract
99.7% (4170) of them, with most of them (78%) computed
within two iterations.

Upon further inspection, the required number of iterations is
mainly related to the shape of a chromosome, and is indepen-
dent of its class association. Chromosomes which are severely
bent or have irregular shapes usually require more iterations to
find the medial axes. Unsuccessful cases (16 out of 4186) are
mainlydue to poor segmentation of overlapping and touching
chromosome images. Fig. 15 gives three examples where the
medial axes cannot be determined automatically. One can see
that the boundaries of these segmented chromosome images are
extremely irregular, so that stage (c) in Fig. 2 fails to connect
polygonal segments into a single polygonal curve.

Classification of BP subsequences: The experiment for clas-
sification consists of two phases: the determination of the op-
timal parameter set and the performance evaluation of the sys-
tem using that parameter set. In the first phase, since the num-
bers of X-class and Y-class chromosomes of the disjoint sub-
sets vary significantly, we skip these two classes of chromo-
somes. We perform 5-fold cross-validation examination on the
data set of Cathay General Hospital over six system parame-
ters (�, �, 	, �, 
 and �). The combinations of these parameters
used in this examination are listed in Table 2.

For each combination of the parameters, e.g., (�, �, 	, �, 
, �)

= (5, 1.4, 10, 0.5, 6, 0.2), a cross-validation trial is performed
as follows. The data set is partitioned into five subsets. Of the
five subsets, a single subset is retained as test (query) data,
and the remaining four subsets are used as training data for
building the database using that combination of parameters.
The process is repeated five times, with each of the five subsets
used exactly once as the test data. The five resulting classifi-
cation rates are then averaged to produce an overall classifi-
cation rate. The combination of parameters that produces the
highest average classification rate is selected as the optimal
parameter set.

The average time to build the database of 242 BP sequences
for one trial is 12.3 s on a notebook equipped with a 1.7 GHz
Pentium IV processor and 512 MB of system memory, and the
final height of the R+-tree is 6. The average time of classifica-
tion spent for one trial is 3.3 s, hence the system approximately
spends 0.075 s to classify a BP sequence. Table 3 shows the
average classification rate using the combination of parameters
(�, �, 	, �, 
, �)= (8, 2, 30, 0.2, 4, 0.2), which gives the high-
est average classification rate (90.1%).

The purpose of phase 2 is to evaluate the average classifi-
cation rate with respect to different databases built with differ-
ent numbers of chromosomes using the optimal parameter set.
We perform phase 2 on the data set provided by Cheng Gung
Memorial Hospital. Twenty runs are carried out and each run
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is executed 20 times. In each execution of the ith run, i labeled
BP sequences of each class are randomly drawn from the data
set and inserted into the database. The remaining BP sequences
are then used as test data. We plot in Fig. 16 the correct classifi-
cation rate versus i. One can see that the average classification
rate approaches 90% when the number of inserted band profiles
for each class approaches 8. Moreover, the standard deviation
narrows to below 5% after the number of inserted band profiles
exceeds 15.

6. Conclusion

Automated chromosome classification is an essential task in
cytogenetics. Numerous attempts have been made to charac-
terize chromosomes to perform clinical and cancer cytogenet-
ics research. In this paper we propose novel approaches for
medial axis extraction and band profile classification without
using the centromere feature. In particular, the medial axis is
obtained by simple cross-section analysis and the classifica-
tion is based on local subsequence similarity match and global
length information. Two data sets are used for the determina-
tion of system parameters and the evaluation of system perfor-
mance, respectively. One desirable feature of the proposed ap-
proach is the possibility of dynamic insertion and deletion of
BP sequences without rebuilding the database, which enhances
the usability and flexibility of the classification system. Ac-
cording to the experimental results, the developed classification
system can efficiently compute band profiles of the chromo-
somes along the extracted medial axes, and obtain satisfactory
classification results.
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