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In conventional system reliability analysis, the failure probabilities of components of a system are treated
as exact values when the failure probability of the entire system is estimated. However, it may be difficult
or even impossible to precisely determine the failure probabilities of components as early as the product
design phase. Therefore, an efficient and simplified algorithm to assess system reliability is needed. This
article proposes a deductive top-down estimation methodology, which combines intuitionistic fuzzy set
(IFS) and ordered weighted averaging (OWA) operators to evaluate system reliability. A case of an aircraft
propulsion system from an aerospace company is presented to further illustrate the proposed approach.
After comparing results from the proposed method and two other approaches, this research found that the
proposed approach provides a more accurate and reasonable reliability assessment.

Keywords: reliability assessment; ordered weighted averaging; OWA tree; intuitionistic fuzzy set

1. Introduction

Product reliability is one of the most important factors in determining the quality and competitive-
ness of a product. In conventional reliability theories, it is assumed that components and systems
have only two abrupt states: good or bad. This implies that success and failure are precisely defined
and that there is no intermediate state between them. However, in real-world applications, the col-
lected data or system parameters are often fuzzy or imprecise because of incomplete or unobtain-
able information. Under these circumstances, conventional probability-based reliability analysis is
inadequate to account for such built-in uncertainties in data. In order to handle the hurdles that are
posed by insufficient information, the fuzzy approach is often used to evaluate failure rate status.

Fuzzy reliability theory uses a fault-tree technique to obtain a system’s reliability. Related
studies include Tanaka et al. (1983), who use the trapezoidal fuzzy number to replace probability
and apply fault-tree analysis to obtain the system’s fault interval. Singer (1990) uses fuzzy numbers
to represent the relative frequencies of basic events. He demonstrates use of then-array possibilistic
AND, OR and NEG operators to construct possible fault-trees. Recently, Chang et al. (2006)
proposed a vague fault-tree analysis procedure to determine a weapon system’s reliability. Their
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908 K.-H. Chang et al.

approach integrated experts’ knowledge and experience in terms of providing the possibility of
failure of bottom events, and used a triangular vague set to perform the calculation. In fault-tree
analysis, AND-gates and OR-gates are used to represent independent and mutually exclusive
relationships between events, respectively. To generalize this idea, Yager (1988) introduced a
new family of aggregation techniques called the ordered weighted average (OWA) operators,
which is a general mean type aggregator that provides a flexible aggregation operation that ranges
between the minimum and maximum operators. The OWA tree is useful in illustrating the mode
of occurrence of an accident logically. When the failure probabilities of system components are
given, the probability of the whole system can be calculated.

O’Hagan (1988) developed a procedure to generate the OWA weights for a given degree of
ornessα, to maximize entropy. Many related studies have been published in recent years. For exam-
ple, Fuller and Majlender (2001) used Lagrange multipliers to derive a polynomial equation to
determine the optimal weighting vector by solving a constrained optimization problem. Sadiq and
Tesfamariam (2007) utilized probability density functions to generate OWA weight distributions.

Schneier (1999) proposed attack trees to analyse the security of systems and sub-systems. The
attack tree is a formal methodology that provides a way to consider security, capture and reuse
expert expertise regarding security, and respond to changes in security. In the product design
phase, when the malfunction data of the system elementary event are incomplete, the conventional
approach to calculate reliability is no longer applicable. Huang et al. (2004) proposed the posbist
fault-tree analysis method to find a system’s reliability by redefining AND and OR operators
based on the minimal cut of a posbist fault-tree. However, their method selects the maximal failure
probability of the bottom event, which can result in biased conclusions. To solve this problem, this
article proposes a new reliability method that collects expert knowledge and experience on the
problem domain to build the possibility of failure of leaf nodes through combining intuitionistic
fuzzy set (IFS) and OWA operators to evaluate system reliability. A malfunction of an aircraft
propulsion system is presented as a case study to further illustrate the proposed method. This
article also compares the proposed approaches with several other listed methods.

The rest of this article is organized as follows. Section 2 introduces the basic definition and some
operations of the OWA operators, the methodology that is used to determine OWA weights and
the OWA tree. In Section 3, the definition of the IFS and its operations are introduced. Section
4 presents the proposed approach, which combines the IFS and the OWA tree for reliability
assessment.An example that is drawn from an aircraft propulsion system is used with the proposed
approach for reliability assessment in Section 5. Section 6 concludes the article.

2. OWA operators and its operations

2.1. OWA operators

The concept of OWA operators was first introduced by Yager (1988) with regards to the problem
of aggregating multi-criteria to form an overall decision function. OWA operators can provide an
aggregation that lies between these two extremes (between the AND and OR situations), so it is
a more compatible human thought than other operators (see Figure 1).

Yager (1988) proposed an OWA operator that was able to obtain optimal weights of attributes
based on the rank of these weighting vectors after an aggregation process (see Definition 1).

DEFINITION 1 An OWA operator of dimension n is a mapping F : Rn → R, which has an
associated n weighting vector W = [w1, w2, . . . , wn]T that has the properties

∑
i

wi = 1, ∀wi ∈ [0, 1], i = 1, . . . , n,
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Engineering Optimization 909

Figure 1. Common aggregation operators (Sadiq and Tesfamariam 2007).

such that

f (a1, a2, . . . , an) =
n∑

i=1

wibi, (1)

where bi is the ith largest element in the vector (a1, a2, . . . , an) and b1 ≥ b2 ≥ · · · ≥ bn.

A number of special cases of this operator are illustrated in the following instances. If the
components in W are such that w1 = 1 and wj = 0 for all j �= 1, we get OWA(a1, a2, . . . , an) =
Maxj [aj ]. This weighting vector is denoted as W ∗. If the weights are wn = 1 and wj = 0 for
j �= n, one gets OWA(a1, a2, . . . , an) = Minj [aj ]. This weighting vector is denoted W∗. If the
weights are wj = 1/n for all j , denoted as Wn, then OWA(a1, a2, . . . , an) = (1/2)

∑n
j=1 aj .

Yager (1988) introduced two important characterizing measures with respect to the weighting
vector W of an OWA operator. One of these two measures is orness of the aggregation, which is
defined as follows.

DEFINITION 2 Assume F is an OWA aggregation operator with weighting function W =
[w1, w2, . . . , wn]. The degree of orness associated with this operator is defined as

orness(W) = 1

n − 1

n∑
i=1

(n − i)wi, (2)

where orness(W) = α is a situation parameter.

The second is a measure of dispersion of the aggregation, defined in Definition 3.

DEFINITION 3 Let W be a weighting vector with elements w1 . . . wn. The measure of dispersion
of W is defined as

dispersion(W) = −
n∑

i=1

wi ln wi. (3)

The dispersion measure of W takes into account all information in the aggregation. It is really
a measure of entropy, which implies the following properties:

(1) if wi = 1 for some i, then the dispersion(W) = 0, a minimum value.
(2) if wi = 1/n for all i, then the dispersion = ln n, a maximum value.
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910 K.-H. Chang et al.

O’Hagan (1988) combined the principle of maximum entropy and OWA operators to propose
a particular OWA weight that has maximum entropy with a given level of orness. This approach
is based on the solution of the following mathematical programming problem:

Maximize : −
n∑

i=1

wi ln wi

Subject to : 1

n − 1

n∑
i=1

(n − i)wi = α, 0 ≤ α ≤ 1,

n∑
i=1

wi = 1, 0 ≤ wi ≤ 1, i = 1, . . . , n (4)

2.2. Determination of OWA weights

Fuller and Majlender (2001) used the method of Lagrange multipliers to transfer Yager’s OWA
equation to derive a polynomial equation that can determine the optimal weighting vector under
maximal entropy. By their method, the associated weighting vector is obtained by Equations
(5)–(7).

ln wj = j − 1

n − 1
ln wn + n − j

n − 1
ln w1 =⇒ wj = n−1

√
w

n−j

1 w
j−1
n (5)

and

wn = ((n − 1)α − n)w1 + 1

(n − 1)α + 1 − nw1
(6)

then

wn[(n − 1)α + 1 − nw1]n = ((n − 1)α)n−1 · [((n − 1)α − n)w1 + 1] (7)

where w is a weight vector, n is the number of attributes and α is the situation parameter.
The optimal value of w1 should satisfy Equation (7). Once w1 is obtained, then wn can be deter-

mined from Equation (6), and the other weights are obtained from Equation (5). In a special case,
when w1 = w2 = · · · = wn = 1/n, then dispersion(W) = ln n, which is the optimal solution to
Equation (4) when α = 0.5.

2.3. OWA tree

In many real-world applications, AND/OR nodes are not sufficient to represent the sophisticated
relationship between a parent node and its children. Yager (2006) proposed an OWA node as
an extension of the AND/OR node and its use to generalize AND/OR trees to OWA trees. As
opposed to an AND/OR node, an OWA node is characterized by a vector W , called an OWA
weighting vector. The dimension of vector W is equal to the number of children, n. Furthermore,
the components of W , wj , called the OWA weights, must satisfy the following two conditions:
(1) 0 ≤ wj ≤ 1 and (2)

∑
j wj = 1.

An OWA tree is generally initiated by a single node called the root node, and each path is
terminated by a leaf node (no children). The OWA tree includes the AND node, OR node and
OWA node. In an AND node (see Figure 2), accomplishment of the parent goal requires the
success of all of the children, i.e. Pand = ∏n

j=1 pj , which is the product of the probability of
accomplishment of all children. In an OR node (see Figure 2), the accomplishment for the parent
goal requires the success of any one of the children, i.e. Por = 1 − ∏n

j=1(1 − pj ), which is the
product of the probability of accomplishment of any one of the children.
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Engineering Optimization 911

Figure 2. AND, OR and OWA nodes.

The OWA node allows this research to model situations in which there is some probabilistic
uncertainty in the number of children that need be satisfied. An OWA node is defined as POWA =∑n

j=1 wjRj (see Figure 2). Here, wj indicates the probability that it must accomplish j sub-tasks
to satisfy the parent, and Rj indicates the probability that the required j sub-tasks are satisfied.
To succinctly express the form of Rj , the following notation is introduced. With pi being the
probability of the ith child succeeding, it assumes pid(k) to be the index of the child with the kth
highest probability of success. It follows that ppid(k) is the kth largest probability of success of a
child. Using this, one gets Rj = ∏j

k=1 ppid(k), which is the product of the j largest probabilities.

3. IFS and its operations

3.1. IFS

Zadeh (1965) proposed fuzzy sets to describe fuzzy phenomena under a specific attribute. A
fuzzy set A of the universe of discourse U , U = {u1, u2, . . . , un}, is a set of ordered pairs,
{(u1, μA(u1)), (u2, μA(u2)), . . . , (un, μA(un))}, where μA is the membership function of the
fuzzy set A, μA : U → [0, 1], and μA(ui) indicates the grade of membership of ui in A : ∀ui ∈ U .
The membership value μA(ui) is a single value between 0 and 1 that combines the evidence for
ui ∈ U and the evidence against ui ∈ U , without indicating how much there is of each. Thus,
Atanassov (1983) presented the concepts of the IFS. The notion of the IFS was introduced for the
first time by Atanassov in 1983 as a generalization of an ordinary Zadeh fuzzy set. An IFS A for a
given underlying set E is represented by a pair < μA, νA > of functions E → [0, 1]. For x ∈ E,
μA(x) gives the degree of membership to A, and νA(x) gives the degree of non-membership;
moreover, 0 ≤ μA(x) + νA(x) ≤ 1 must hold.

The uncertainty of x can be described as the differential value of (1 − νA(x)) − μA(x). If the
differential value is small, the value of x is more certain. If the differential value is great, the
computation is more uncertain about x. When 1 − νA(x) = μA(x), the IFS A regresses to a fuzzy

Figure 3. IFS explanation of a real number R.
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912 K.-H. Chang et al.

Figure 4. Triangle IFS A and B.

set. Obviously, when 1 − νA(x) = μA(x) = 1 or 1 − νA(x) = μA(x) = 0, the IFS A regresses
to a crisp set. From the above results, crisp sets and fuzzy sets can be viewed as special cases of
IFS. Figure 3 shows an IFS explanation of a real number R.

3.2. Arithmetic operations of triangle IFS

From the definition of the triangle IFS (Lee 1998), this article proposes four arithmetic operations
for the triangle IFS. Let A and B be two IFSs, as shown in Figure 4 (Lee 1998). If μA �= μB and
νA �= νB , then the arithmetic operations are defined as:

A = 〈[(a′
1, b1, c

′
1); μ1], [(a1, b1, c1); μ2]〉 (8)

B = 〈[(a′
2, b2, c

′
2); μ3], [(a2, b2, c2); μ4]〉 (9)

A(+)B = 〈[(a′
1, b1, c

′
1); μ1], [(a1, b1, c1); μ2]〉(+)〈[(a′

2, b2, c
′
2); μ3], [(a2, b2, c2); μ4]〉

= 〈[(a′
1 + a′

2, b1 + b2, c
′
1 + c′

2); min(μ1, μ3)], [(a1 + a2, b1 + b2, c1 + c2);
× min(μ2, μ4)]〉 (10)

A(−)B = 〈[(a′
1, b1, c

′
1); μ1], [(a1, b1, c1); μ2]〉(−)〈[(a′

2, b2, c
′
2); μ3], [(a2, b2, c2); μ4]〉

= 〈[(a′
1 − c′

2, b1 − b2, c
′
1 − a′

2); min(μ1, μ3)], [(a1 − c2, b1 − b2, c1 − a2);
× min(μ2, μ4)]〉 (11)

A(×)B = 〈[(a′
1, b1, c

′
1); μ1], [(a1, b1, c1); μ2]〉(×)〈[(a′

2, b2, c
′
2); μ3], [(a2, b2, c2); μ4]〉

= 〈[(a′
1a

′
2, b1b2, c

′
1c

′
2); min(μ1, μ3)], [(a1a2, b1b2, c1c2); min(μ2, μ4)]〉 (12)

A(/)B = 〈[(a′
1, b1, c

′
1); μ1], [(a1, b1, c1); μ2]〉(/)〈[(a′

2, b2, c
′
2); μ3], [(a2, b2, c2); μ4]〉

= 〈[(a′
1/c

′
2, b1/b2, c

′
1/a

′
2); min(μ1, μ3)], [(a1/c2, b1/b2, c1/c2); min(μ2, μ4)]〉 (13)

When a1 = a′
1, c1 = c′

1 and a2 = a′
2, c2 = c′

2, the IFS of its four arithmetic operations will be
easier.

3.3. Defuzzification of the triangle IFS

Defuzzification is the procedure that generates a crisp value out of one or more given fuzzy
sets. There are several defuzzification algorithms that have been developed. According to Wang
and Louh (2000), it has been demonstrated that for any triangular shape, the centroid position
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Engineering Optimization 913

Figure 5. The output fitted to triangular shapes.

could be computed as depicted in Equation (14). This method reduces the computational time by
decomposing the output in triangles and trapezoids, and then computes and combines its centroids.
The triangular centroid approximation is shown in Figure 5.

x̄t = 1

3
(a + xmax + b) (14)

The proposed approach modifies the definition proposed by Wang and Luoh (2000) and redefines
the centroid position of the triangular shape IFS as shown in Equation (15). The triangle IFS is
shown in Figure 4.

x̄t = 1

6
(a + a′ + 2b + c′ + c). (15)

4. Proposed combination of IFS and OWA tree approach

Huang et al. (2004) proposed a posbist fault-tree analysis based on posbist reliability theory. They
define the AND operator and the OR operator based on the minimal cut of a posbist fault-tree to
determine a system’s reliability. This method has the advantages of evaluating the probability of
failure in a system when historical data are scarce or the failure probability is extremely small.
However, the method by Huang et al. selects the maximal failure probability of the bottom event
and may obtain a biased conclusion. In the system design phase, the collected data or system
parameters are often vague due to incomplete or unobtainable information, and the probabilistic
approach that has been adopted in conventional reliability analysis is inadequate to account for
such built-in uncertainties in data. To solve this problem, a more general approach that combines
the IFS and the OWA tree model is proposed in this section.

4.1. The reason for using IFS

For a new product, due to uncertainties and imprecision of data, it may be difficult or even
impossible to precisely determine the failure probabilities of components as early as the product
design phase. Therefore, using an IFS and OWA tree can help to solve system reliability problems
in the product design phase when the available information is incomplete. The major advantage
of the IFS over the fuzzy set is that the IFS separate the positive (the degree of membership)
and negative (the degree of non-membership) evidence for membership of an element in the set.
Fuzzy sets are IFSs, but the converse is not necessarily true. For this reason, using the IFS, not
the fuzzy set, in OWA tree diagrams is more suitable.

The concept of the IFS can be viewed as an alternative approach to define a fuzzy set in
the case when available information is not sufficient or precise enough to define a conventional
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914 K.-H. Chang et al.

fuzzy set. In the product design phase, in the situation of vague or incomplete information, an
expert’s experience that is given maximum membership degree might not be equal to one. It is
corresponding to the IFS definition, but is not corresponding to the fuzzy set definition.

In the system design phase, the collected data or system parameters are often vague due to
incomplete or unobtainable information. Incomplete failure data will increase the difficulty of
reliability design and calculation. This issue cannot be fully resolved by traditional probability
reliability and fuzzy reliability. This article proposes to use experts’ opinions to speculate on
the system reliability of vague phenomena. According to expert knowledge and experience, the
intuitionistic fuzzy membership degree of each leaf node is obtained by reasonably giving different
fault membership functions of possibilities of failure distributions for different leaf nodes. This is
useful when the available information is imprecise, incomplete or uncertain in the design phase.

4.2. The reliability operation using the IFS and OWA tree

Based on the above discussion, this article now derives the reliability of an OWA tree in the AND
node, OR node and OWA node condition.

4.2.1. AND node

A parallel system is composed of n elements that perform identical functions, the success of any
of which will lead to system success. In other words, all of the components must fail in order to
cause system failure.

Example Suppose an AND node is composed of three assemblies, one with a reliability of 0.7
and the others with reliabilities of 0.8 and 0.9. Let QAND represent the system failure probability
of the AND node, and QAND can be calculated as

QAND =
3∏

j=1

qj = (1 − 0.7)(1 − 0.8)(1 − 0.9) = 0.006.

The system reliability of the AND node, PAND, is

PAND = 1 − 0.006 = 0.994.

4.2.2. OR node

A series system is composed of n elements, the failure of any of which will cause a system failure.

Example Suppose an OR node is composed of three assemblies, one with a reliability of 0.7
and the others with reliabilities of 0.8 and 0.9. Let QOR represent the system failure probability
of the OR node, then QOR can be calculated as

QOR = 1 −
3∏

j=1

(1 − qj ) = 1 − (1 − 0.3)(1 − 0.2)(1 − 0.1) = 0.496.

The system reliability of the OR node, POR, is

POR = 1 − 0.496 = 0.504. (16)
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Engineering Optimization 915

4.2.3. OWA node

An OWA node is composed of n elements, in which there is some probabilistic uncertainty in the
number of components that needs be satisfied.

Example Suppose an OWA node is composed of three assemblies, one with a reliability of 0.7 and
the others with reliabilities of 0.8 and 0.9. If w1 = 0.826294, w2 = 0.146973 and w3 = 0.026306,
the system reliability of the OWA node, POWA, is calculated as

POWA = (0.826494 × 0.9) + (0.146973 × 0.9 × 0.8) + (0.026306 × 0.9 × 0.8 × 0.7)

= 0.862743.

4.3. Procedure of the proposed approach

The procedure of the proposed approach is organized into seven steps.

Step 1 Construct the OWA tree diagram
Construct the OWA tree diagram by the AND node, OR node and OWA node, tracing
back the whole process from the main goal to the physical tasks (an example is illustrated
in Figure 6).

Step 2 Obtain the intuitionistic fuzzy membership degree of leaf nodes
Obtain the intuitionistic fuzzy membership degree of leaf nodes according to expert
knowledge and experience.

Step 3 Defuzzification
Use Equation (15) to obtain crisp values.

Figure 6. OWA tree of the aircraft propulsion system.
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916 K.-H. Chang et al.

Step 4 Calculate the OWA weights
From Section 2.2, use Equations (5)–(7) to calculate the OWA weights.

Step 5 Calculate the possible malfunction probability of the main goal
From Section 2.3, use the OWA tree diagram and IFS arithmetic operations to calculate
the possible malfunction probability of the main goal.

Step 6 Calculate the reliability of the main goal
The reliability of the main goal is equal to one minus the possible malfunction probability
of the main goal.

Step 7 Analyse the results and provide suggestions

5. Case study

A real case of an aircraft propulsion system, drawn from an aerospace company, is used to
demonstrate the proposed approach. First of all, an OWA tree is constructed that includes the
main goal (‘the malfunction of the aircraft propulsion system in mid-air’), the sub-goals (left
engine stops during flight, right engine stops during flight), the sub-tasks (left engine failure, no
fuel supply for left engine, right engine failure, no fuel supply for right engine), and the physical
tasks (left composite fuelling system unable to supply fuel, right composite fuelling system unable
to supply fuel, reserve composite fuelling system unable to supply fuel, cross-feed system failure).
As shown in Figure 6, the OWA tree integrates the main goal, the sub-goals, the sub-tasks, and the
physical tasks with theAND, OR and OWA nodes.After the OWA tree was constructed, this article
collected the failure possibility interval of leaf failure from expert knowledge and experience and
organized the data in Table 1.

5.1. Crisp failure possibility method (Kales 1988)

The conventional crisp failure possibility method (Kales 1988) is used to deal with heterogeneous
problems, and the probability can only show the success or failure events in random. This method
is constrained by its usage on the condition of a large amount of data samples, and all of the event
outcomes are certain. However, a lot of uncertainty factors may cause fuzziness in the procedure
of evaluating an aircraft propulsion system, such as statistical uncertainty, model uncertainty,
and data uncertainty. These uncertainty factors will limit the understanding of system component
failure. Another drawback of the conventional reliability method is the lack of the ability to make
statistical estimates. Therefore, use of the conventional crisp failure possibility method is hard to
calculate the malfunction possibility of a system and its components in a precise way because
of incomplete data. This research calculated the malfunction possibility of an aircraft propulsion

Table 1. The possible range of leaf node failure.

Failure possibility ai a′
i bi c′

i ci μA(U) 1 − νA(U)

L1 (left engine failure) 0.0004 0.0009 0.0012 0.0015 0.0020 0.9 0.8
L2 (left composite fuelling

system unable to supply fuel)
0.00009 0.0001 0.0004 0.0008 0.0009 1.0 0.9

L3 (cross feed system failure) 0.0002 0.0004 0.0007 0.0010 0.0013 0.9 0.9
L4 (right engine failure) 0.0004 0.0009 0.0012 0.0015 0.0020 0.9 0.8
L5 (right composite fuelling

system unable to supply fuel)
0.00009 0.0001 0.0004 0.0008 0.0009 1.0 0.9

L6 (reserve composite fuelling
system unable to supply fuel)

0.0003 0.0006 0.0009 0.0013 0.0015 0.9 0.8
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Engineering Optimization 917

system based on data of Table 1 (column bi) by the conventional probability reliability method
as follows.

If the composite fuelling system that is unable to supply fuel is serial, then

QRO1 = {1 − (1 − QL1)[1 − QL2 · (1 − (1 − QL6) · (1 − QL3) · (1 − QL5))]}
× {1 − (1 − QL4)[1 − QL5 · (1 − (1 − QL6) · (1 − QL3) · (1 − QL2))]}

= 0.0000014419

PRO1 = 1 − QRO1 = 0.9999985581

If the composite fuelling system that is unable to supply fuel is parallel, then

QRO1 = {1 − (1 − QL1)(1 − QL2 × QL6 × QL3 × QL5)}
× {1 − (1 − QL4)(1 − QL5 × QL6 × QL3 × QL2)}

= 0.0000014400

PRO1 = 1 − QRO1 = 0.9999985600

After the above calculation, the reliability of the ‘aircraft propulsion system’ is between
0.9999985581 and 0.9999985600.

5.2. Huang et al. method (2004)

When the failure probability of a system is extremely small or when essential statistical data are
scarce, the posbist fault-tree analysis proposed by Huang et al. (2004) could be applied to predict
and diagnose a system’s failures and evaluate its reliability and safety. Calculations of the failure
possibility of an ‘aircraft propulsion system malfunction’ based on the crisp failure possibilities
are listed in Table 1 (column b1), per the following:

If the composite fuelling system that is unable to supply fuel is serial, then

Poss(RO7) = min(Poss(L6), Poss(L3), Poss(L2)) = min(0.9991, 0.9993, 0.9996) = 0.9991

Poss(RO6) = min(Poss(L6), Poss(L3), Poss(L5)) = min(0.9991, 0.9993, 0.9996) = 0.9991

Poss(RO5) = max(Poss(L5), Poss(RO7)) = max(0.9996, 0.9991) = 0.9996

Poss(RO4) = max(Poss(L2), Poss(RO6)) = max(0.9996, 0.9991) = 0.9996

Poss(RO3) = min(Poss(L4), Poss(RO5)) = min(0.9988, 0.9996) = 0.9988

Poss(RO2) = min(Poss(L1), Poss(RO4)) = min(0.9988, 0.9996) = 0.9988

Poss(RO1) = max(Poss(RO2), Poss(RO3)) = max(0.9988, 0.9988) = 0.9988

If the composite fuelling system that is unable to supply fuel is parallel, then

Poss(RO7) = max(Poss(L6), Poss(L3), Poss(L2)) = max(0.9991, 0.9993, 0.9996) = 0.9996

Poss(RO6) = min(Poss(L6), Poss(L3), Poss(L5)) = max(0.9991, 0.9993, 0.9996) = 0.9996

Poss(RO5) = max(Poss(L5), Poss(RO7)) = max(0.9996, 0.9996) = 0.9996

Poss(RO4) = max(Poss(L2), Poss(RO6)) = max(0.9996, 0.9996) = 0.9996

Poss(RO3) = min(Poss(L4), Poss(RO5)) = min(0.9988, 0.9996) = 0.9988

Poss(RO2) = min(Poss(L1), Poss(RO4)) = min(0.9988, 0.9996) = 0.9988

Poss(RO1) = max(Poss(RO2), Poss(RO3)) = max(0.9988, 0.9988) = 0.9988
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918 K.-H. Chang et al.

Table 2. The optimal weighting vector under maximal
entropy (n = 3).

α w1 w2 w3

0.5 0.333333 0.333333 0.333333
0.6 0.438355 0.323242 0.238392
0.7 0.553955 0.291992 0.153999
0.8 0.681854 0.235840 0.081892
0.9 0.826294 0.146973 0.026306
1 1 0 0

After the above calculation, it is shown that the reliability of the ‘aircraft propulsion system’ is
0.9988.

5.3. Proposed method

Fuzzy logic provides a tool for directly working with the linguistic terms that are used in mak-
ing the reliability assessment. The analysis uses expert knowledge and experience to define the
intuitionistic fuzzy membership degree of the leaf nodes. These inputs are then ‘fuzzified’to deter-
mine the degree of membership in each input class. In the malfunction of the aircraft propulsion
system, the triangle IFS of each leaf node failure is defined by the expert’s experience, as shown
in Table 1. Sensitivity analysis enables the identification of the impact on system reliability by
different choices of the value of α. According to Equations (5)–(7), the optimal weighting vector
under the maximal entropy for n = 3 is calculated and organized in Table 2.

Based on the arithmetic operations of the AND, OR and OWA nodes, the reliability of the
‘aircraft propulsion system’ can be described as:

When n = 3 and α = 1, from Table 2, it is found that w1 = 1, w2 = 0 and w3 = 0. Therefore,

POWA(RO7) = 1 × (0.99955) + 0 × (0.99883) + 0 × (0.99791) = 0.99955

POWA(RO6) = 1 × (0.99955) + 0 × (0.99883) + 0 × (0.99791) = 0.99955

POWA(RO1) = 1 − {1 − PL1[1 − (1 − PL2)(1 − PRO6)]}
× {1 − PL4[1 − (1 − PL5)(1 − PRO7)]} = 0.9999985595

When n = 3 and α = 0.9, then from Table 2, it is found that w1 = 0.826294, w2 = 0.146973 and
w3 = 0.026306. It follows that

POWA(RO7) = 0.826294 × (0.99955) + 0.146973 × (0.99883) + 0.026306

× (0.99791) = 0.998974

POWA(RO6) = 0.826294 × (0.99955) + 0.146973 × (0.99883) + 0.026306

× (0.99791) = 0.998974

PAND(RO1) = 1 − {1 − PL1[1 − (1 − PL2)(1 − PRO6)]}
× {1 − PL4[1 − (1 − PL5)(1 − PRO7)]} = 0.9999985589
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When n = 3 and α = 0.8, then from Table 2, it is found that w1 = 0.681854, w2 = 0.235840 and
w3 = 0.081892. Therefore,

POWA(RO7) = 0.0681854 × (0.99955) + 0.0235840 × (0.99883) + 0.081892

× (0.99791) = 0.998832

POWA(RO6) = 0.0681854 × (0.99955) + 0.0235840 × (0.99883) + 0.081892

× (0.99791) = 0.998832

PAND(RO1) = 1 − {1 − PL1[1 − (1 − PL2)(1 − PRO6)]}
× {1 − PL4[1 − (1 − PL5)(1 − PRO7)]} = 0.9999985587

When n = 3 and α = 0.7, then from Table 2, it is found that w1 = 0.553955, w2 = 0.291992 and
w3 = 0.153999. Hence,

POWA(RO7) = 0.0553955 × (0.99955) + 0.0291992 × (0.99883) + 0.153999

× (0.99791) = 0.999033

POWA(RO6) = 0.0553955 × (0.99955) + 0.0291992 × (0.99883) + 0.153999

× (0.99791) = 0.999033

PAND(RO1) = 1 − {1 − PL1[1 − (1 − PL2)(1 − PRO6)]}
× {1 − PL4[1 − (1 − PL5)(1 − PRO7)]} = 0.9999985590

When n = 3 and α = 0.6, from Table 2, it is found that w1 = 0.438355, w2 = 0.323242 and
w3 = 0.238392. Therefore,

POWA(RO7) = 0.438355 × (0.99955) + 0.323242 × (0.99883) + 0.238392

× (0.99791) = 0.998915

POWA(RO6) = 0.438355 × (0.99955) + 0.323242 × (0.99883) + 0.238392

× (0.99791) = 0.998915

PAND(RO1) = 1 − {1 − PL1[1 − (1 − PL2)(1 − PRO6)]}
× {1 − PL4[1 − (1 − PL5)(1 − PRO7)]} = 0.9999985588

When n = 3 and α = 0.5, then from Table 2, it is found that w1 = 0.333333, w2 = 0.333333 and
w3 = 0.333333. Therefore,

POWA(RO7) = 0.333333 × (0.99955) + 0.333333 × (0.99883) + 0.333333

× (0.99791) = 0.998762

POWA(RO6) = 0.333333 × (0.99955) + 0.333333 × (0.99883) + 0.333333

× (0.99791) = 0.998762

PAND(RO1) = 1 − {1 − PL1[1 − (1 − PL2)(1 − PRO6)]}
× {1 − PL4[1 − (1 − PL5)(1 − PRO7)]} = 0.9999985587

After the above calculations, the reliability of the ‘aircraft propulsion system’ is between
0.9999985587 and 0.9999985595.
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920 K.-H. Chang et al.

Figure 7. The reliability of the main goal for the aircraft propulsion system.

5.4. Comparisons and discussion

In order to evaluate the proposed method, a case study verification compares the proposed approach
with other methods (crisp failure possibility method and the method of Huang et al. (2004)). The
input data of these methods are shown in Table 1. In comparing the results of the three methods,
the differences between the proposed method and the listing methods can be clearly seen in
Figure 7. From Figure 7, there are two findings: (1) the simulation results of the proposed method
correspond to the common aggregation operator’s definition (as illustrated in Figure 1); (2) in
posbist fault-tree analysis, the reliability of the ‘aircraft propulsion system’ is 0.9988, which falls
outside of the range of the [min, max] interval. This is because the Huang et al. method selects
the maximal failure probability of leaf nodes, which results in biased conclusions.

From the comparison, it is clear that the intuitionistic fuzzy OWA tree analysis technique out-
lined in this study provides the following advantages. Firstly, the failure information is described
by intuitionistic fuzzy variables; this results in a more realistic and flexible reflection of the real
situation. Secondly, the proposed method gives a more flexible structure in combining the AND,
OR and OWA nodes to an OWA tree of the aircraft propulsion system. Finally, the proposed
approach can indeed help to solve system reliability problems in a product’s design phase when
the available information is incomplete.

6. Conclusion

This article collects experts’knowledge and experience on the aircraft propulsion system problem
domain and builds the intuitionistic fuzzy number for representing possibilities of failure leaf nodes
of an aircraft propulsion system. A new approach has been proposed, which combines the IFS
and OWA tree approach, to evaluate the reliability of an aircraft propulsion system. This is useful
when evaluating system reliability using available information and expert knowledge, which are
often uncertain or vague in the design phase. The proposed approach provides a more flexible
structure for combining the AND, OR and OWA nodes to an OWA tree of the aircraft propulsion
system. This approach can help users solve reliability assessment problems under situations of
vague or incomplete information.

In order to further illustrate the proposed method and compare with other techniques of system
reliability analysis, an OWA tree for the aircraft propulsion system is adopted as a simula-
tion example. This research compares the simulation results with the crisp failure possibility
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Engineering Optimization 921

(Kales 1988) and the method proposed by Huang et al. (2004). The results show that the proposed
approach could provide a more accurate and reasonable reliable assessment, which can assist
designers in making correct decisions for a safer and more reliable product design. Furthermore,
the presented approach can be helpful for solving system reliability problems in product design
phase.
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