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Mode type quasi-range and its applications
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Taiwan; cDepartment of Management Science, National Chiao Tung University, Hsinchu, Taiwan

Building from the consideration of closeness, we propose the mode quasi-range as an alternative scale
parameter.Application of this scale parameter to formulate the population standard deviation is investigated
leading to an efficient sample estimator of standard deviation from the point of asymptotic variance. Monte
Carlo studies, in terms of finite sample efficiency and robustness of breakdown point, have been performed
for the sample mode quasi-range. This study reveals that this closeness consideration-based mode, quasi-
range, is satisfactory because these statistical procedures based on it are efficient and are less misleading
for drawing conclusion from the sample results.

Keywords: breakdown point; range; robustness; quasi-range; scale parameter

1. Introduction

Measuring the center and variability of a distribution for the random variable are two very impor-
tant topics in statistical inferences. Basically variability indicates how closely and widely the
values of variable X are spreading out. In statistics, it is often as important to study the variability
as the center of a random variable. For example, when products that fit together (such as pipes)
are manufactured, it is important to minimize the variations of the diameters of the products so
they will fit together properly.

Although there are numerous techniques proposed in the literature for measuring variability,
very few of them are designed with a clear explanation for their roles in individually measuring
either the wideness or the closeness for values of X being spreading out. One exceptional case
is that the variance can be explained as a measure of maximum dispersion from the mean. For
most other variability measuring techniques, it is not possible to classify their roles for measuring
either wideness or closeness. Let us consider an example for interpretation. Suppose a class of
students has taken an examination for a course and we obtain two interval estimates (10,85) and
(65,95) that predict, respectively, two population intervals which cover the students’ scores with
the same probability 0.9. Then two quasi-ranges, 75 and 28, are both estimates of variability, one
measuring the interval spreading out most widely, i.e. the longest population interval, and the other
measuring the interval spreading out most closely, i.e. the shortest population interval, both with

∗Corresponding author. Email: lachen@stat.netu.edu.tw

ISSN 0266-4763 print/ISSN 1360-0532 online
© 2008 Taylor & Francis
DOI: 10.1080/02664760802271082
http://www.informaworld.com

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 1

9:
13

 2
5 

A
pr

il 
20

14
 



1182 L.-A. Chen et al.

the same coverage probability. Classifying a measure of variability for its role in interpretation of
either wideness or closeness does make sense depending on the application. Our interest in this
study is the interval concerning the side of closeness.

Traditionally there are many applications relying on the statistical inferences for a coverage
interval (quantile interval), an interval with fixed proportion of underlying distribution such as
(F−1

θ (α/2), F−1
θ (1 − α/2)). Three examples are: its point estimator, which has been called a

reference interval in laboratory chemistry; Shewhart’s control chart in engineering quality control
(see [5]); and naive prediction interval (see [4]) in reliability theory. The confidence interval
is implicitly used as the tolerance interval (see [8]) in engineering statistics. Although the idea
of treating a coverage interval as an interval-like parameter and making inferences for it has
popularly been used in several statistics-related disciplines, their treatment with a general theory
of estimation and hypothesis testing has received only little attention. One exception is the study
by Huang et al. [2].

Considering the class of widths for the coverage intervals having a fixed coverage probability,
we define the minimum width as the mode quasi-range. We then show that this width is appropriate
to act as a scale parameter for measuring the closeness of the distribution. Several studies for this
scale parameter are conducted. First, we formulate a representation of the population standard
deviation based on this quasi-range and study its sample version in terms of asymptotic variances.
Second, a non-parametric simulation analysis of this quasi-range in terms of mean squares error
and breakdown point is also conducted. These studies of the new quasi-range indicate that the
classical quasi-range-based techniques are not efficient and robust, so the statistical inferences
based on them may be misleading.

2. Mode quasi-range

Traditionally we say that τ0, a non-negative function of a random variable X and percentage
γ, 0 < γ < 1, is a measure of dispersion if it satisfies: (a) τ0(X + b, γ ) = τ0(X, γ ) for b ∈ R,
and (b) τ0(aX, γ ) = |a|τ0(X, γ ) for a ∈ R. Intuitively the members in the following width family
of γ coverage intervals (F−1(α), F−1(γ + α)),

{F−1(γ + α) − F−1(α) : 0 < α < 1 − γ },

may serve as the quasi-range for the distribution function F . However not every member of the
family satisfies the requirements for a measure of dispersion. It is well known that the sym-
metric quantile difference τmed(1 − α) = F−1(1 − α/2) − F−1(α/2), 0 < α < 1, is a measure
of dispersion (see proof in [7]). We call τmed the median quasi-range because the symmetric
interval (F−1(α/2), F−1(1 − α/2)) shrinks to the median F−1(0.5) when α increases to 1. We
are interesting in a measure of dispersion that is a quantile combination solving a minimization
problem as

τ0(X, γ ) = inf
0<α<1−γ

{cF−1(α) + dF−1(γ + α)} (1)

with d > 0, c ∈ R.
The following theorem provides the condition that the minimization quantile combination in

Equation (1) is a measure of dispersion.

THEOREM 2.1 For given c ∈ R, d > 0, τ0 of Equation (1) is a measure of dispersion if c = −d.

Proof For convenience in this proof, we re-denote F−1(α) for random variable X by F−1(X, α).
We know that the population quantile F−1 satisfies F−1(X + b, α) = F−1(X, α) + b for b ∈ R
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Journal of Applied Statistics 1183

and F−1(aX, α) = aF−1(X, α) if a > 0 and aF−1(X, 1 − α) if a ≤ 0. Now,

τ0(X + b, γ ) = inf
0<α<1−γ

{cF−1(X + b, α) + dF−1(X + b, γ + α)}

= inf
0<α<1−γ

{cF−1(X, α) + dF−1(X, γ + α) + (c + d)b}

= τ0(X, γ ) + (x + d)b, for b ∈ R,

which is equal, for satisfying condition (a), to τ0(X, γ ) only if c + d = 0. Then, c = −d. It is
obvious that (b) holds for a > 0. To prove (b) for a ≤ 0, we say d = 1.

τ0(aX, γ ) = inf
0<α<1−γ

{F−1(aX, γ + α) − F−1(aX, α)}

= inf
0<α<1−γ

{aF−1(X, 1 − (γ + α)) − aF−1(X, 1 − α)}

= inf
γ<β<1

{aF−1(X, β − γ ) − aF−1(X, β)}

= −a inf
γ<β<1

{F−1(X, β) − F−1(X, β − γ )}

= |a| inf
0<β−γ<1−γ

{F−1(X, γ + (β − γ )) − F−1(X, β − γ )}

= |a|τ0(aX, γ ),

which finishes condition (b). �

Since τ0(X, γ ) is a measure of dispersion only if it is of the form d inf0<α<1−γ {F−1(γ + α) −
F−1(α)}, we may let d = 1. In this situation, the quantile difference in Equation (1) turns out to be
the width of the interval C(γ ) = (F−1(α∗), F−1(α∗ + γ )) with α∗ = argα inf0<α<1−γ {F−1(γ +
α) − F−1(α))}. We call C(γ ) the mode interval because it may been shown to converge to the
distribution mode as γ converges to zero. We then denote

τmod(γ ) = inf
0<α<1−γ

{F−1(γ + α) − F−1(α)}. (2)

By setting α∗ = argα inf0<α<1−γ {F−1(γ + α) − F−1(α)}, we have τmod(γ ) = F−1(γ + α∗) −
F−1(α∗). We now are ready to define this new quasi-range.

DEFINITION 2.2 For 0 < γ < 1, we call quantity τmod(γ ) of Equation (2) the mode quasi-range.

We next consider that the scale parameter τmod can interpret distribution closeness in some
sense. This is stated in the following theorem, which is a direct result from the mode interval
C(γ ) setting.

THEOREM 2.3 Suppose that F is the distribution function of a continuous distribution with density
function f and a unique mode. Then, with γ -level mode interval C(γ ), we have

f (x) ≥ f (x ′) for all x ∈ C(γ ), x ′ �∈ C(γ ).

When X has a continuous and unimodel distribution, the mode quasi-range represents the width
of most closest coverage interval since its corresponding coverage interval collects sample points
from the sample space with relatively higher densities.
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1184 L.-A. Chen et al.

One situation that the mode and median quasi-ranges are identical is stated in the following
theorem.

THEOREM 2.4 When the distribution function F has a symmetric continuous probability density
function f that is unimodal, then τmed(γ ) = τmod(γ ) for 0 < γ < 1.

Proof From Equation (2), 0 = (∂/∂α)(F−1(γ + α) − F−1(α)) = (1/f (F−1(γ + α))) −
(1/f (F−1(α))). The symetric property and unimodal of f implies γ + α = 1 − α, which results
in α = (1 − γ /2). Then τmod(γ ) = F−1(γ + 1 − γ /2) − F−1(1 − γ /2) = F−1(1 + γ /2) −
F−1(1 − γ /2) = τmed(γ ). �

We show that continuous type location scale distributions will have simpler form of mode
quasi-range that helps to make statistical inferences.

THEOREM 2.5 The family of continuous location scale distributions with probability density func-
tion of the form f (x, θ1, θ2) = 1/θ2f0((x − θ1)/θ2) with parameter space θ1 ∈ R and θ2 > 0 has

τmod(γ ) = θ2 inf
0<α<1−γ

(F−1
0 (α + γ ) − F−1

0 (α)), (3)

where F0 is the distribution function of probability density function f0.

Proof The result follows from the fact that F−1(α) = θ1 + θ2F
−1
0 (α). �

Suppose now that we have a random sample X1, . . . , Xn drawn from a distribution with proba-
bility density function f (x, θ) that follows a location scale distribution family. With the fact that
F0 in Equation (3) is free of parameters θ1 and θ2, the mode quasi-range is simply a linear function
of parameter θ2. Then the statistical inferences for the mode quasi-range τmod are straightforward
if the statistical inference techniques for scale parameter θ2 are available. This means that when
there is a statistical procedure for θ2 with some desirable property such as unbiasedness, uni-
formly minimum variance unbiased estimation or most powerful, etc.; then, there is a procedure
for τmod with the same desirable property. We then would not extend this any further and turn to
study some properties, efficiencies, and robustness of mode quasi-range procedure that involves
non-parametric estimation techniques.

3. Application of mode quasi-range to the representation of standard deviation

We often face situations where we need to formulate the population standard deviation of a
random variable in terms of its quasi-range. Let σF be the standard deviation of a random variable
X that has a distribution function F with probability density function f (x, θ) where the functional
form of f is known but it involves the unknown parameter θ . The classical quasi-range-based
formulation of σF is

σmed = dmedτmed(1 − α), (4)

where dmed is a constant chosen to meet the requirement that σmed is identical with σF . In the case
that X is a normal random variable, then constant dmed is equal to (2zα/2)

−1. With the formulation
of σF in Equation (4), the classical sample estimator of σmed replaces τmed by the difference of
empirical quantiles, i.e.

σ̂med = dmed

(
F−1

n

(
1 − α

2

)
− F−1

n

(α

2

))
, (5)

where Fn is the empirical distribution function.
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Journal of Applied Statistics 1185

The general interest for the median quasi-range formulation of σF is searching for α = αmed

that maximizes the asymptotic variance Var[σ̂med]. We then call

σ̂med = dmed(F
−1
n (1 − αmed/2) − F−1

n (αmed/2)) (6)

the median quasi-range estimator. When F is the normal distribution N(μ, σ 2), it has been noted
that when α = αmed = 0.14 the asymptotic variance Var[σ̂med] achieves a minimum (see [7]).

Next, consider a generalization of the quasi-range-based formulation of standard deviation σF

and we fix the coverage probability as γ ∈ (0, 1). For a given α ∈ (0, 1 − γ ), there is a constant
dF such that

dF (F−1(γ + α) − F−1(α)) (7)

is also identical to σF . Then Equation (7) provides a general quasi-range formulation of standard
deviation σF . We then need to choose an appropriate quasi-range formulation of σF . For this, we
propose a version based on mode quasi-range.

DEFINITION 3.1 Let X be a random vairable with distribution function F having a standard
deviation σF . Let dmod be a constant such that σmod = dmodτmod is identical with σF . We that call
σmod a mode quasi-range formulation of σF .

Before making statistical analysis of the sample mode quasi-range formulation of σF , we
introduce the median and mode quasi-ranges for the comparison of several distributions.

Mode quasi-range representation for some distributions. We say that X has a distribution that
is either exponential distribution Exp(θ), of gamma distribution Gamma(k/2, θ) or uniform
distribution U(0, θ), if it has probability density function either f (x, θ) = (1/θ)e−x/θ , x > 0,
or f (x, (k/2), θ) = (1/	(k/2)θk/2)xk/2−1e−x/θ , x > 0 or f (x, θ) = (1/θ), 0 < x < θ , respec-
tively. The standard deviations for Exp(θ), Gamma(k/2, θ), and U(0, θ) are θ,

√
k/2θ , and

θ/
√

12, respectively. Their corresonding mode and median quasi-range formulations of σF are
listed in Tables 1 and 2, respectively.

With a mode range formulation of the standard deviation σF , we may consistently apply
empirical distribution function Fn to estimate F that induces an estimator of σF as

σ̂mod = dmod(F
−1
n (γ + α∗) − F−1

n (α∗)). (8)

Table 1. Mode quasi-range formulation of σF .

Distribution τmod = F−1(α∗ + γ ) − F−1(α∗) σmod

Exp(θ) −θ ln(1 − γ )
F−1(γ )

− ln(1 − γ )

Gamma

(
k

2
, θ

)
θ

2
(G−1(γ + α∗) − G−1(α∗))

√
2k(F−1(γ + α∗) − F−1(α∗))
G−1(γ + α∗) − G−1(α∗)

U(0, θ) θγ
F−1(γ + α∗) − F−1(α∗)

γ
√

12
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1186 L.-A. Chen et al.

Table 2. Median quasi-range formulation of σF .

Distribution τmed = F−1(1 − α/2) − F−1(α/2) σmed

Exp(θ) θ ln
2 − α

α

F−1(1 − α/2) − F−1(α/2)

ln
2 − α

α

Gamma

(
k

2
, θ

)
θ

2
(G−1(1 − α/2) − G−1(α/2))

√
2k(F−1(1 − α/2) − F−1(α/2))

G−1(1 − α/2) − G−1(α/2)

U(0, θ) θ(1 − α)
F−1(1 − α/2) − F−1(α/2)√

12(1 − α)

We call σ̂mod the mode quasi-range estimator. These are two issues related to the quasi-range
estimators to be addressed which are as follows.

(a) There is no need to study σmod when the distribution is symmetric since, in this situation, the

median and mode quasi-ranges are identical. Then we need to search
( γmod
αmod

)
to maximize

the asymptotic variance Var(σ̂mod) when X has asymmetric distribution.
(b) We also should compare asymptotic variances for median and mode quasi-range

estimators.

With median and mode quasi-range estimators, σ̂med and σ̂mod, both for estimation of the
same parameter σF , to answer question (b) it is appropriate to compare the asymptotic vari-
ances of n1/2(σ̂mod − σF ) and n1/2(σ̂med − σF ). We will do this for X that follows the gamma
distribution Gamma

(
(k/2), θ

)
as an example. Its population quantile has the representation

F−1(α) = (θ/2)G−1(α) where G is the distribution function of χ2(k). The mode and median type
formulations of σF = √

(k/2)θ are with dmod = (
√

2k/G−1(γ + α∗) − G−1(α∗)) and dmed =
(
√

2k/G−1(1 − α/2) − G−1(α/2)), respectively. From the large sample theory of empirical
quantile F−1

n (see, e.g. [6]), we have representations

√
n(σ̂mod − σF ) = dmod(γ )[f −1(F−1(γ + α∗))n−1/2

n∑
i=1

(γ + α∗ − I (Xi ≤ F−1(γ + α∗)))

− f −1(F−1(α∗))n−1/2
n∑

i=1

(α∗ − I (Xi ≤ F−1(α∗)))] + op(1)

and

√
n(σ̂med − σF )

= dmed(1 − α)

[
f −1

(
F−1

(
1 − α

2

))
n−1/2

n∑
i=1

(
1 − α

2
− I

(
Xi ≤ F−1

(
1 − α

2

)))

− f −1
(
F−1

(α

2

))
n−1/2

n∑
i=1

(α

2
− I

(
Xi ≤ F−1

(α

2

)))]
+ op(1).
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Journal of Applied Statistics 1187

Then the asymptotic variances of
√

n(σ̂mod − σF ), denoted by Vmod(γ ), and
√

n(σ̂med − σF ),
denoted by Vmed(1 − α), are

Vmod(γ ) = kθ2

2(G−1(γ + α∗) − G−1(α∗))2
[(γ + α∗)(1 − (γ + α∗))g−2(G−1(γ + α∗))

+ α∗(1−α∗)g−2(G−1(α∗))−2α∗(1 − (γ + α∗))g−1(G−1(α∗))g−1(G−1(γ + α∗))]

and

Vmed(1 − α) = kθ2

2(G−1(1 − α/2) − G−1(α/2))2

[(
1 − α

2

) α

2

(
g−2

(
G−1

(
1 − α

2

))

− g−2
(
G−1

(α

2

)))
− α2

2
g−1

(
G−1

(
1 − α

2

))
g−1

(
G−1

(α

2

))]
.

Table 3. Representations of mode and median quasi-range formulations and their asymptotic
variances.

k αmodγmod Vmod 1 − αmed Vmed

2

(
0.0000
0.7970

)
1.5441 0.7432 1.8105

3

(
0.0029
0.7870

)
1.6104 0.7638 2.1620

4

(
0.0111
0.8110

)
1.8794 0.7794 2.5365

5

(
0.0164
0.8310

)
2.2150 0.7908 2.9181

6

(
0.0212
0.8370

)
2.5722 0.7996 3.3023

7

(
0.0257
0.8370

)
2.9392 0.8062 3.6875

8

(
0.0270
0.8470

)
3.3116 0.8116 4.0731

9

(
0.0299
0.8470

)
3.6863 0.8160 4.4587

10

(
0.0330
0.8450

)
4.0639 0.8198 4.8442

11

(
0.0345
0.8470

)
4.4421 0.8230 5.2296

12

(
0.0364
0.8470

)
4.8218 0.8256 5.6148

13

(
0.0374
0.8490

)
5.2018 0.8280 6.0000

14

(
0.0376
0.8530

)
5.5820 0.8300 6.3850

15

(
0.0382
0.8550

)
5.9636 0.8318 6.7698
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1188 L.-A. Chen et al.

By letting θ = 1 for simplication, we compute Vmod = min0<γ<1 Vmod(γ ) and Vmed =
min0<α<1 Vmed(1 − α). We also let

( αmod
γmod

)
and αmed be the values of

( α∗
γ

)
and α, respectively,

corresponding with Vmod and Vmed. We list these values for some gamma distributions in Table 3.
We can draw several conclusions from the results in Table 3 as follows.

(a) The asymptotic variances of the median and mode quasi-range estimators are both increasing
in k. This reveals that both quasi-range estimators perform similarly as the variance of a
gamma distribution.

(b) The asymptotic variances of the mode quasi-range estimator σ̂mod are smaller than those of the
median quasi-range estimator σ̂med. This shows that the mode quasi-range τmod is satisfactory
for constructing qausi-range formulation of standard deviation σF .

(c) When a gamma distribution serves an underlying distribution where constant k is known, this

table provides the optimal choice of percentage pair
( γ
α∗

)
and α for the mode and median

quasi-range formulations of σF . This is only an example and extension of this result to many
other distributions of interest is straightforward.

4. Non-parametric Estimation of Mode Quasi-Range

We now consider a non-parametric estimation technique for an unknown mode quasi-range.
Parametric methods of data analysis rely on distributional assumptions that presumably gave
rise to the observed data. Non-parametric methods however, are fully data-driven and hence are
particularly suited for less understood random experiments of high complexity.

Let X1, . . . , Xn be the order statistics of a random sample of size n drawn from a distribution F .
By letting h = [nγ ] + 1, we define the mode quasi-range estimator as the minimum width of the
h consecutive samples as

τ̂mod = argh,h+1,...,n min{X(h) − X(1), X(h+1) − X(2), . . . , X(n) − X(n−h+1).

For comparison, we also define the median quasi-range estimator as

τ̂med = X(n(1+γ )/2) − X(n(1−γ )/2).

Having introduced the mode quasi-range τmod and as an alternative for the traditional median
quasi-range τmed, we now examine their non-parametric estimators τ̂med and τ̂mod in two aspects.
First, the aim for using a quasi-range is essentially for robustness consideration. It is useful to see
if the mode quasi-range estimator τ̂mod is more efficient than the median quasi-range estimator
τ̂med. Second, most traditional statistical methods are efficient when the underlying distribution is
symmetric. It is then useful to see the results of these two quasi-range estimators for the sample
drawn from asymmetric distributions.

We answer these two questions through Monte Carlo studies, using replications m = 10,000.
In the first study, we choose sample sizes n = 50 and 100, and for number ith replication, we
compute two quasi-range estimates τ̂ i

med and τ̂ i
mod.

Then we define the mean square errors (MSE),

MSEmed = 1

m

m∑
i=1

(τ̂ i
med − τmed)

2 and MSEmod = 1

m

m∑
i=1

(τ̂ i
mod − τmod)

2,

where τmed and τmod are true quasi-ranges computed from the underlying distribution.
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Table 4. Mean square errors (MSEs) of the median and mode
quasi-range estimators under the exponential distribution.

n = 50 n = 100

γ MSEmod MSEmed MSEmod MSEmed

0.5 0.0208 0.0548 0.0096 0.0272
0.6 0.0321 0.0839 0.0149 0.0373
0.7 0.0469 0.1031 0.0234 0.0508
0.8 0.1010 0.1579 0.0433 0.0838
0.9 0.1503 0.2522 0.0819 0.1547
0.95 0.3507 0.5979 0.1503 0.3085

Table 5. Efficiencies (Eff) of two quasi-range estimators for
chi-square distribution.

k = 3 k = 10

γ Effmod Effmed Effmod Effmed

0.6 1 0.2702 1 0.4445
0.7 1 0.3387 1 0.5881
0.8 1 0.3821 1 0.6318
0.9 1 0.4910 1 0.7181
0.95 1 0.5449 1 0.6661

We then compare the MSEs of these two quasi-range estimators when the underlying distribution
is the exponential distribution with probability density function

f (x) = e−x, x > 0.

The results of the MSEs are displayed in Table 4.
It is interesting that the mode quasi-range estimator has MSEs all less than the corresponding

values of the median quasi-range estimator.
In the second study, we compute the efficiencies (Eff) of quasi-range estimators defined by

Effmed = min{MSEmed, MSEmod}
MSEmed

and Effmod
min{MSEmed, MSEmod}

MSEmod
,

where the underlying distribution is χ2(k) with sample size n = 50. The simulation results are
displayed in Table 5.

Table 5 provides the relative efficiencies of these two quasi-range estimators. The median
quasi-range estimator could have efficiencies as small as 0.27 and all less than 0.72. This further
supports the use of the mode quasi-range estimator when there is a chi-square distribution.

5. Breakdown point analysis for mode quasi-range

The classical statistical techniques are designed to be the best possible when stringent assumptions
apply. However, experience and further research have shown that classical techniques can behave
badly when the practical situation departs from the ideal described by such assumptions. The more
recently developed robust and exploratory methods are broadening the effectiveness of statistical
analyses. One aspect to evaluate the effectiveness is to compare the breakdown points for the
estimators.

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 1

9:
13

 2
5 

A
pr

il 
20

14
 



1190 L.-A. Chen et al.

The breakdown points for an estimator, loosely speaking, is the largest proportion of gross
errors that can never carry the estimator over all bounds. We design a simulation study to evaluate
the performance of the median and mode quasi-range estimators in terms of their breakdown
points. We will see that one property is very useful to be developed.

We consider that the sample is drawn from the following distribution model,

Xi =
{

Zi if outlier does not occur

Zi + vi if outlier does occur
,

where zi is independent and identically distributed drawn from an ideal distribution and vi is the
contaminated error with vi = 1000 + 10 ∗ i. If Xi = Zi + vi , then this x represents an extreme
point. In the simulation process, we will determine when Xi will be an extreme point.

In this simulation, the sample size is 1000 with replications m = 10,000. For j th replication
1 ≤ j ≤ m, we first generate a sample z1, . . . , zn. By denoting τ̂ as a quasi-range estimator, we
specify the formulation, based on z1, . . . , zn, of sample X1, . . . , Xn and the method of computing
the breakdown point of τ̂ at this replication.

Given random variablev1 and a random number i1 from {1, . . . , n}, letxi =
{

zi if i �= i1

zi + v1 if i = i1

and we compute |τ̂ i1(x1, . . . , xn) − τ |, denoting τ̂ i1 for τ̂ in this observation.
Given random variables v1, v2 and random numbers i1, i2 from {1, . . . , n}, let xi =⎧⎪⎨

⎪⎩
zi if i �= i1, i2

zi + v1 if i = i1

zi + v2 if i = i2

and we compute |τ̂ i1,i2(x1, . . . , xn) − τ |, denoting τ̂ i1,i2 for τ̂ in this

observation, and so on.
We say that τ̂ i1,...,ij (x1, . . . , xn) is the breakdown point if τ̂ i1,...,ij (x1, . . . , xn) − τ | ≥ a for some

specied constant a.
Then we define the breakdown numbers bd

j

med and bd
j

mod, respectively, for median quasi-range
τ̂med And mode quasi-range τ̂mod as

bd
j

med(z1, . . . , zn) = k

n
I (there is k, k is the smallest h, 1 ≤ h ≤ n, such that

|τ̂ i1,...,ih
med (x1, . . . , xn) − τmed| ≥ a),

bd
j

mod(z1, . . . , zn) = k

n
I (there is k, k is the smallest h, 1 ≤ h ≤ n, such that

|τ̂ i1,...,ih
mod (x1, . . . , xn) − τmed| ≥ a).

The average breakdown points, respectively for τ̂med and τ̂mod are then defined as

BDmed = 1

m

m∑
j=1

bd
j

med(z1, . . . , zn) and

BDmod = 1

m

m∑
j=1

bd
j

mod(z1, . . . , zn).

In Table 6, we present the average breakdown points of median and mode quasi-range estimators
in the case where the ideal distribution of sample z1, . . . , zn is standard normal distribution.

In the next simulation, we consider the gamma distribution with α = 0.25 and β = 2 as the
ideal distribution (Table 7).
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Table 6. Breakdown points under normal
distribution.

γ BDmod BDmed

0.95 0.051 0.027
0.9 0.101 0.052
0.8 0.2 0.101
0.7 0.301 0.152
0.6 0.4 0.201
0.5 0.5 0.251
0.4 0.6 0.301
0.3 0.7 0.351
0.2 0.8 0.401
0.1 0.9 0.451

Table 7. Breakdown points under gamma
distribution (Gamma(2.5, 2)).

γ BDmod BDmed

0.95 0.0502 0.0267
0.9 0.0992 0.0514
0.8 0.1957 0.0996
0.7 0.2938 0.1502
0.6 0.3891 0.1986
0.5 0.4968 0.2484
0.4 0.597 0.2984
0.3 0.6973 0.3485
0.2 0.7976 0.3987
0.1 0.8986 0.4497

From Tables 6 and 7, we may draw several conclusions.

(a) The breakdown points for the mode quasi-range esitmator are about twice the values of the
median quasi-range estimator. Those for mode quasi-range estimator are all about 1 − γ and
those for median quasi-range estimator are about a half of 1 − γ .

(b) The breakdown point for each type of quasi-range is increasing when γ decreases.
(c) Hampel et al. [1] claimed that the breakdown point for an estimator may not be larger than

0.5. However, the breakdown point of the mode quasi-range estimator available in this design
is not only greater than 0.5, but is close to 1. This significant result has not been observed in
the literature.

There are many situations where we use quasi-range estimators to construct statistical inference
techniques. Low breakdown point estimates may cause the statistical inferences based on them
to be misleading. In addition to using the quasi-range to formulate the standard deviation, the
interquartile range and the process capability index are other two examples.

The interquartile range classically is defined as the median quasi-range as

τmed(0.5) = F−1(0.75) − F−1(0.25),

and is estimated through the empirical quantile function as τ̂med(0.5) = F̂−1
n (0.75) − F̂−1

n (0.25).
Obviously, we may define an alternative interquartile range using the mode quasi-range as

τmod(0.5) = inf0<α<0.5{F−1(0.5 + α) − F−1(α)}.
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When the distribution function F is unknown, the mode quasi-range-based interquartile range may
be estimated through the non-parametric technique introduced in Section 4. From our studies, the
estimator of the mode quasi-range-based interquartile range does provide a satisfactory version
in consideration of MSE and breakdown point.

To understand what the process is actually doing and to see if the process meets the quality
requirements or the consumer’s expectations, a manufacturer often needs to provide an index for
process improvement as a certificate for customers. The general formulation of a capability index
is the following form:

USL − LSL

Process spreading limits
,

where LSL and USL represent, respectively, the lower and upper specification limits (see [3] for
detailed description). In practice, median quasi-range is generally used to represent the spreading
limit as

Cmed
p = USL − LSL

τmed(γ )
. (9)

We may then modify the classical Cp to the one based on mode quasi-range as

Cmod
p = USL − LSL

τmod(γ )
, (10)

which we may call as the mode type process capability index.
In a perfect world, all process data would be normally distributed, although that is not always

the case. Although the usual process capability analysis provides some very powerful tools to
describe the capability of processes, process data do not always follow a normal distribution. In
this situation, with our breakdown point analysis shown, the classically used Cmed

p may lead to
misleading conclusions, whereas the mode type process capability index Cmod

p may avoid this
deficit.
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