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Abstract. We consider the spectrum of birth and death chains on a n-path.
An iterative scheme is proposed to compute any eigenvalue with exponential

convergence rate independent of n. This allows one to determine the whole
spectrum in order n2 elementary operations. Using the same idea, we also
provide a lower bound on the spectral gap, which is of the correct order on

some classes of examples.

1. Introduction

Let G = (V,E) be the undirected finite path with vertex set V = {1, 2, ...n} and
edge set E = {{i, i + 1} : i = 1, 2, ..., n − 1}. Given two positive measures π, ν on
V,E with π(V ) = 1, the Dirichlet form and variance associated with ν and π are
defined by

Eν(f, g) :=
n−1∑
i=1

[f(i)− f(i+ 1)][g(i)− g(i+ 1)]ν(i, i+ 1)

and
Varπ(f) := π(f2)− π(f)2,

where f, g are functions on V . When convenient, we set ν(0, 1) = ν(n, n+ 1) = 0.
The spectral gap of G with respect to π, ν is defined as

λGπ,ν := min

{
Eν(f, f)
Varπ(f)

∣∣∣∣f is non-constant

}
.

Let MG
π,ν be a matrix given by MG

π,ν(i, j) = 0 for |i− j| > 1 and

MG
π,ν(i, j) = −ν(i, j)

π(i)
, ∀|i− j| = 1, MG

π,ν(i, i) =
ν(i− 1, i) + ν(i, i+ 1)

π(i)
.

Obviously, λGπ,ν is the smallest non-zero eigenvalue of MG
π,ν .

Undirected paths equipped with measures π, ν are closely related to birth and
death chains. A birth and death chain on {0, 1, 2, ..., n} with birth rate pi, death
rate qi and holding rate ri is a Markov chain with transition matrix K given by

(1.1) K(i, i+ 1) = pi, K(i, i− 1) = qi, K(i, i) = ri, ∀0 ≤ i ≤ n,

where pi + qi + ri = 1 and pn = q0 = 0. Under the assumption of irreducibility,
that is, piqi+1 > 0 for 0 ≤ i < n, K has a unique stationary distribution π
given by π(i) = c(p0 · · · pi−1)/(q1 · · · qi), where c is the positive constant such that
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i=0 π(i) = 1. The smallest non-zero eigenvalue of I −K is exactly the spectral

gap of the path on {0, 1, ..., n} with measures π, ν, where ν(i, i + 1) = π(i)pi =
π(i+ 1)qi+1 for 0 ≤ i < n.

Note that if 1 is the constant function of value 1 and ψ is a minimizer for λGπ,ν ,

then ψ − π(ψ)1 is an eigenvector of MG
π,ν . This implies that any minimizer ψ for

λGπ,ν satisfying π(ψ) = 0 satisfies the Euler-Lagrange equation,

(1.2) λGπ,νπ(i)ψ(i) = [ψ(i)− ψ(i− 1)]ν(i− 1, i) + [ψ(i)− ψ(i+ 1)]ν(i, i+ 1),

for all 1 ≤ i ≤ n. Assuming the connectedness of G (i.e., the superdiagonal and
subdiagonal entries ofMG

π,ν are positive), the rank ofMG
π,ν−λI is at least n−1. This

implies that all eigenvalues of MG
π,ν are simple. See Lemma A.3 for an illustration.

Observe that, by (1.2), any non-trivial eigenvector of MG
π,ν has mean 0 under π.

This implies that all minimizers for the spectral gap are of the form aψ+ b1, where
a, b are constants and ψ is a nontrivial solution of (1.2). In 2009, Miclo obtained
implicitly the following result.

Theorem 1.1. [15, Proposition 1] If ψ is a minimizer for λGπ,ν , then ψ must be
monotonic, that is, either ψ(i) ≤ ψ(i+ 1) for all 1 ≤ i < n or ψ(i) ≥ ψ(i+ 1) for
all 1 ≤ i < n.

One aim of this paper is to provide a scheme to compute the spectrum ofMG
π,ν , in

particular, the spectral gap. Based on Miclo’s observation, it is natural to consider
the following algorithm.

(A1)

Choose two positive reals λ0, a in advance and set, for k = 0, 1, ...,

1. ψk(1) = −a,

2. ψk(i+ 1) = ψk(i) +
{[ψk(i)− ψk(i− 1)]ν(i− 1, i)− λkπ(i)ψk(i)}+

ν(i, i+ 1)
,

for 1 ≤ i < n, where t+ = max{t, 0},

3. λk+1 =
Eν(ψk, ψk)

Varπ(ψk)
.

The following theorems discuss the behavior of λk.

Theorem 1.2 (Convergence to the exact value). Referring to (A1), if n = 2, then
λk = λGπ,ν for all k ≥ 1. If n ≥ 3, then the sequence (λk, ψk) satisfies

(1) If λ0 = λGπ,ν , then λk = λGπ,ν for all k ≥ 0.

(2) If λ0 ̸= λGπ,ν , then λk > λk+1 > λGπ,ν for k ≥ 1.

(3) Set (λ∗, ψ∗) = lim
k→∞

(λk, ψk). Then, λ∗ = Eν(ψ∗, ψ∗)/Varπ(ψ
∗) = λGπ,ν and

π(ψ∗) = 0.

Theorem 1.3 (Rate of convergence). Referring to Theorem 1.2, there is a constant
σ ∈ (0, 1) independent of the choice of (λ0, a) such that 0 ≤ λk −λGπ,ν ≤ σk−1λ1 for
all k ≥ 1.

By Theorem 1.3, we know that the sequence λk generated in (A1) converges to
the spectral gap exponentially but the rate (− log σ) is undetermined. The following
alternative scheme is based on using more information on the spectral gap and will
provide convergence at a constant rate.
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(A2)

Choose a > 0, L0 < λGπ,ν < U0 in advance and set, for k = 0, 1, ...,

1. ψk(1) = −a, λk = 1
2 (Lk + Uk)

2. ψk(i+ 1) = ψk(i) +
{[ψk(i)− ψk(i− 1)]ν(i− 1, i)− λkπ(i)ψk(i)}+

ν(i, i+ 1)
,

for 1 ≤ i < n, where t+ = max{t, 0},

3.


Lk+1 = Lk, Uk+1 = λk if π(ψk) > 0

Lk+1 = λk, Uk+1 = Uk if π(ψk) < 0

Lk+1 = Uk+1 = λk if π(ψk) = 0

.

Theorem 1.4 (Dichotomy method). Referring to (A2), it holds true that

0 ≤ max{Uk − λGπ,ν , λ
G
π,ν − Lk} ≤ (U0 − L0)2

−k, ∀k ≥ 0.

In Theorem 1.4, the convergence to the spectral gap is exponentially fast with
explicit rate, log 2. See Remark 2.2 for a discussion on the choice of L0 and U0. For
higher order spectra, Miclo has a detailed description of the shape of eigenvectors in
[14] and this will motivate the definition of similar algorithms for every eigenvalue
in spectrum. See (Di) and Theorem 3.4 for a generalization of (A2) and Theorem
3.14 for a localized version of Theorem 1.3.

The spectral gap is an important parameter in the quantitative analysis of
Markov chains. The cutoff phenomenon, a sharp phase transition phenomenon
for Markov chains, was introduced by Aldous and Diaconis in early 1980s. It is
of interest in many applications. A heuristic conjecture proposed by Peres in 2004
says that the cutoff exists if and only if the product of the spectral gap and the
mixing time tends to infinity. Assuming reversibility, this has been proved to hold
for Lp-convergence with 1 < p ≤ ∞ in [2]. For the L1-convergence, Ding et al.
[10] prove this conjecture for continuous time birth and death chains. In order to
use Peres’ conjecture in practice, the orders of the magnitudes of spectral gap and
mixing time are required. The second aspect of this paper is to derive a theoretical
lower bound on the spectral gap using only the birth and death rates. This lower
bound is obtained using the same idea used to analyze the above algorithm. For
estimates on the mixing time of birth and death chains, we refer the readers to
the recent work [4] by Chen and Saloff-Coste. For illustration, we consider several
examples of specific interest and show that the lower bound provided here is in fact
of the correct order in these examples.

This article is organized as follows. In Section 2, the algorithms in (A1)-(A2)
are explored and proofs for Theorems 1.2-1.4 are given. In Section 3, the spectrum
of MG

π,ν is discussed further and, based on Miclo’s work [14], Algorithm (A2) is

generalized to any specified eigenvalue of MG
π,ν . Our method is applicable for paths

of infinite length (one-sided) and this is described in Section 4. For illustration, we
consider some Metropolis chains and display numerical results of Algorithm (A2)
in Section 5. In Section 6, we focus on uniform measures with bottlenecks and
determine the correct order of the spectral gap using the theory in Sections 2-3. It
is worthwhile to remark that the assumptions in Section 6 can be relaxed using the
comparison technique in [7, 8]. As the work in this paper can also be regarded as
a stochastic counterpart of theory of finite Jacobi matrices, we would like to refer
the readers to [18, 19] for a complementary perspective.
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2. Convergence to the spectral gap

This section is devoted to proving Theorems 1.2-1.4. First, we prove Theorem
1.1 in the following form.

Lemma 2.1. Let λ > 0 and ψ be a non-constant function on V . Suppose (λ, ψ)
solves (1.2) and ψ is monotonic. Then, ψ is strictly monotonic, that is, either
ψ(i) < ψ(i+ 1) for 1 ≤ i < n or ψ(i) > ψ(i+ 1) for 1 ≤ i < n.

Proof. Obviously, (1.2) implies that π(ψ) = 0. Without loss of generality, it suffices
to consider the case when ψ(1) < 0 and ψ(n) > 0. Since ψ is non-constant and
λGπ,ν > 0, we have ψ(1) < ψ(2) and ψ(n − 1) < ψ(n). Note that if there are
1 < i < j < n such that ψ(i− 1) < ψ(i), ψ(j) < ψ(j + 1) and ψ(k) = ψ(i) = ψ(j)
for i ≤ k ≤ j, then (1.2) yields

λGπ,νπ(i)ψ(i) = [ψ(i)− ψ(i− 1)]ν(i− 1, i) + [ψ(i)− ψ(i+ 1)]ν(i, i+ 1) > 0

and

λGπ,νπ(j)ψ(j) = [ψ(j)− ψ(j − 1)]ν(j − 1, j) + [ψ(j)− ψ(j + 1)]ν(j, j + 1) < 0,

a contradiction. Thus, ψ is strictly increasing. �

We note the following corollary.

Corollary 2.2. Let (λ, ψ) be a pair satisfying (1.2). Then, λ = λGπ,ν if and only if
ψ is monotonic.

Proof. One direction is obvious from Theorem 1.1. For the other direction, assume
that ψ is monotonic and let ϕ be a minimizer for λGπ,ν with π(ϕ) = 0. Since (λ, ψ)

and (λGπ,ν , ϕ) are solutions to (1.2), one has

λπ(ψϕ) = Eν(ψ, ϕ) = λGπ,νπ(ϕψ).

By Lemma 2.1, ψ and ϕ are strictly monotonic and this implies Eν(ψ, ϕ) ̸= 0. As a
consequence of the above equations, we have λ = λGπ,ν . �

The following proposition is the key to Theorem 1.2.

Proposition 2.3. Suppose that (λ, ψ) satisfies λ > 0, ψ(1) < 0 and, for 1 ≤ i < n,

(2.1) ψ(i+ 1) = ψ(i) +
{[ψ(i)− ψ(i− 1)]ν(i− 1, i)− λπ(i)ψ(i)}+

ν(i, i+ 1)
,

where t+ = max{t, 0}. Then, the following are equivalent.

(1) Eν(ψ,ψ) = λVarπ(ψ).
(2) π(ψ) = 0.
(3) λ = λGπ,ν .

Furthermore, if n ≥ 3, then any of the above is equivalent to

(4) Eν(ψ,ψ) = λGπ,νVar(ψ)

Remark 2.1. For n = 2, it is an easy exercise to show that λGπ,ν = ν(1, 2)/(π(1)π(2)).
By following the formula in (2.1), one has ψ(2) = ψ(1)[1 − λπ(1)/ν(1, 2)], which
leads to Eν(ψ,ψ)/Varπ(ψ) = λGπ,ν .
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Proof of Proposition 2.3. Set B = {1 ≤ i ≤ n|ψ(i) = ψ(n)} and Bc = {1, 2, ..., i0}.
Since ψ(1) < 0 and λ > 0, ψ(1) < ψ(2) and Bc is nonempty. According to (2.1), ψ
is non-decreasing. Note that if ψ(i) = ψ(i+1), then ψ(i) ≥ 0 and ψ(i+2) = ψ(i+1).
This implies ψ is strictly increasing on {1, 2, ..., i0 + 1} and, for 1 ≤ i ≤ i0,

λπ(i)ψ(i) = [ψ(i)− ψ(i+ 1)]ν(i, i+ 1) + [ψ(i)− ψ(i− 1)]ν(i− 1, i).

Multiplying ψ(i) on both sides and summing over all i in Bc yields

λ

i0∑
i=1

ψ(i)2π(i) =

i0−1∑
i=1

[ψ(i)− ψ(i+ 1)]2ν(i, i+ 1)

+ ψ(i0)[ψ(i0)− ψ(i0 + 1)]ν(i0, i0 + 1)

= Eν(ψ,ψ) + ψ(i0 + 1)[ψ(i0)− ψ(i0 + 1)]ν(i0, i0 + 1)

= Eν(ψ,ψ) + λψ(n)

i0∑
i=1

ψ(i)π(i).

This is equivalent to

(2.2) Eν(ψ,ψ) = λVarπ(ψ) + λπ(ψ)[π(ψ)− ψ(n)],

which proves (1)⇔(2).
If λ = λGπ,ν , then ψ is an eigenvector for MG

π,ν associated to λGπ,ν . This proves
(3)⇒(2). For (2)⇒(3), assume that π(ψ) = 0. In this case, ψ must be strictly
increasing. Otherwise, ψ(i) = ψ(n) > 0 for i ∈ B and, according to (2.1), this
implies

λVarπ(ψ) > λ
n−1∑
i=1

π(i)ψ2(i) ≥
n−1∑
i=1

[ψ(i)− ψ(i+ 1)]2ν(i, i+ 1) = E(ψ,ψ),

which contradicts (1). As ψ is strictly increasing and π(ψ) = 0, (λ, ψ) solves (1.2).
By Corollary 2.2, λ = λGπ,ν .

To finish the proof, it remains to show (4)⇒(3) ((3)⇒(4) is obvious from the
equivalence among (1), (2) and (3)). Assume that Eν(ψ,ψ) = λGπ,νVarπ(ψ). By
Lemma 2.1, ψ is strictly monotonic and this implies, for 1 ≤ i < n,

λπ(i)ψ(i) = [ψ(i)− ψ(i+ 1)]ν(i, i+ 1) + [ψ(i)− ψ(i− 1)]ν(i− 1, i).

As ψ is a minimizer for λGπ,ν , one has, for 1 ≤ i ≤ n,

λGπ,νπ(i)[ψ(i)− π(ψ)] = [ψ(i)− ψ(i+ 1)]ν(i, i+ 1) + [ψ(i)− ψ(i− 1)]ν(i− 1, i).

If λ ̸= λGπ,ν , the comparison of both systems yields

ψ(i) =
λGπ,νπ(ψ)

λGπ,ν − λ
, ∀1 ≤ i < n.

As n ≥ 3, ψ(1) = ψ(2), a contradiction! This forces λ = λGπ,ν , as desired. �

The following is a simple corollary of Proposition 2.3, which plays an important
role in proving Theorem 1.4.

Corollary 2.4. Let n ≥ 3. For λ > 0, let ϕλ be the vector generated by (2.1) with
ϕ(1) < 0. Then, (λ− λGπ,ν)π(ϕλ) > 0 for λ > 0 and λ ̸= λGπ,ν .
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Proof. Without loss of generality, we fix ϕλ(1) = −1 for all λ > 0. Set T (λ) =
π(ϕλ). To prove this corollary, it suffices to show that

T (λ)

{
< 0 if λ < λGπ,ν
> 0 if λ > λGπ,ν

.

For λ > 0, define L(λ) := Eν(ϕλ, ϕλ)/Varπ(ϕλ). By (2.2), one has

(2.3) L(λ)− λ =
λT (λ)[π(ϕλ)− ϕλ(n)]

Varπ(ϕλ)
.

Since ϕλ is non-constant, π(ϕλ) < ϕλ(n). This implies T (λ) < 0 for λ ∈ (0, λGπ,ν).

For λ > λGπ,ν , set I = (λGπ,ν ,∞). By Proposition 2.3, T (λ) = 0 if and only if λ =

λGπ,ν . By the continuity of T , this implies either T (I) ⊂ (−∞, 0) or T (I) ⊂ (0,∞).
In the case T (I) ⊂ (−∞, 0), one has L(λ) > λ for λ ∈ I. As L(I) is bounded,

Lk(λ) is convergent with limit λ̃ > λGπ,ν and this yields

0 = lim
k→∞

[Lk+1(λ)− Lk(λ)] =
λ̃T (λ̃)[π(ϕλ̃)− ϕλ̃(n)]

Varπ(ϕλ̃)
> 0,

a contradiction. Hence, T (λ) > 0 for λ > λGπ,ν . �

Proof of Theorem 1.2. The proof for n = 2 is obvious from a direct computation
and we deal with the case n ≥ 3, here. By the equivalence of Proposition 2.3 (3)-
(4), if λ0 = λGπ,ν , then λk = λGπ,ν for all k ≥ 1. If λ0 ̸= λGπ,ν , then λk > λGπ,ν for
k ≥ 1. Note that (λk, ψk) solves the system in (2.1). By (2.2), this implies

λk+1 − λk =
λkπ(ψk)[π(ψk)− ψk(n)]

Varπ(ψk)
, ∀k ≥ 0.

The strict monotonicity of λk in (2) comes immediately from Corollary 2.4. In
(3), the continuity of (2.1) in λ implies that (λ∗, ψ∗) is a solution to (2.1) and
Eν(ψ∗, ψ∗) = λ∗Var(ψ∗). By Proposition 2.3, λ∗ = λGπ,ν and π(ψ∗) = 0, as desired.

�

Proof of Theorem 1.3. Recall the notation in the proof of Corollary 2.4: For λ > 0,
let ϕλ be the function defined by (2.1) and L(λ) = Eν(ϕλ, ϕλ)/Varπ(ϕλ). By (2.2)
and Corollary 2.4, L(λ) ∈ (λGπ,ν , λ) for λ > λGπ,ν . As L is bounded, Theorem 1.3
follows from Lemma A.1. �

Proof of theorem 1.4. Immediate from Corollary 2.4. �

In the end of this section, we use the following proposition to find how the shape
of the function ψ in (2.1) evolves with λ. In Proposition 2.5, we set ϕλ = ψ when
ψ is given by (2.1). It is easy to see from (2.1) that ϕλ is strictly increasing before
some constant, say i0 = i0(λ), and then stays constant equal to ϕλ(i0) after i0. The
proposition shows how the constant i0(λ) evolves.

Proposition 2.5. For λ > 0, let ϕλ be the function generated by (2.1) with ϕλ(1) =

−1 and, for 1 ≤ i ≤ n, set Ti(λ) =
∑i

j=1 ϕλ(i)π(i). For 1 ≤ i < n, let

ai(λ) = 1 + π(i+ 1)/π(i)− λπ(i+ 1)/ν(i, i+ 1),
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(2.4) Ai(λ) =



a1(λ) 1 0 0 · · · 0

π(3)
π(2) a2(λ) 1 0

...

0 π(4)
π(3) a3(λ)

. . .
. . .

...

0 0
. . .

. . .
. . . 0

...
. . .

. . . ai−1(λ) 1

0 · · · · · · 0 π(i+1)
π(i) ai(λ)


,

and let λ(i) be the smallest root of detAi(λ) = 0. Then,

(1) λGπ,ν = λ(n−1) < λ(n−2) < · · · < λ(1).

(2) ϕλ(i) < ϕλ(i+1) = ϕλ(i+2) for λ ∈ [λ(i), λ(i−1)) and 1 ≤ i ≤ n− 2, where
λ(0) := ∞.

(3) ϕλ(n− 1) < ϕλ(n) for λ ∈ (0, λ(n−2)).

In particular, Ti+1(λ) = −π(1) detAi(λ) for λ ∈ (0, λ(i−1)) and (λ−λ(i))Ti+1(λ) >
0 for λ ∈ (0, λ(i)) ∪ (λ(i),∞) with 1 ≤ i ≤ n− 1.

Proof. By Lemma A.2, λ(1) > λ(2) > · · · > λ(n−1) > 0 and, for 1 ≤ i ≤ n− 1,

(2.5) detAi(λ)

{
> 0 ∀λ ∈ (−∞, λ(i))

< 0 ∀λ ∈ (λ(i), λ(i−1))
,

where λ(0) = ∞. Note that if Ti(λ) < 0 for some 1 ≤ i ≤ n− 1, then

ϕλ(j + 1) = ϕλ(j) +
[ϕλ(j)− ϕλ(j − 1)]ν(j − 1, j)− λπ(j)ϕλ(j)

ν(j, j + 1)
, ∀1 ≤ j ≤ i.

This implies

(2.6) ϕλ(ℓ+ 1) = ϕλ(ℓ)−
λ

ν(ℓ, ℓ+ 1)

ℓ∑
j=1

π(j)ϕλ(j), ∀1 ≤ ℓ ≤ i.

Multiplying π(ℓ+ 1) and adding up Tℓ(λ) yields

Tℓ+1(λ) = aℓ(λ)Tℓ(λ)−
π(ℓ+ 1)

π(ℓ)
Tℓ−1(λ), ∀1 ≤ ℓ ≤ i.

From the above discussion, we conclude that if Ti(λ) < 0, then

(2.7) Tℓ+1(λ) = −π(1) detAℓ(λ), ∀1 ≤ ℓ ≤ i.

When ℓ = i − 1, (2.5) implies detAi−1(λ) > 0 for λ < λ(i−1). By the continuity
of Ti and detAi−1, if there is some λ < λ(i−1) such that Ti(λ) < 0, then Ti(λ) =
−π(1) detAi−1(λ) for λ < λ(i−1). As a consequence of (2.7) with ℓ = i, this
will imply Ti+1(λ) = −π(1) detAi(λ) for λ < λ(i−1). Hence, it remains to show
that Ti(λ) < 0 for some λ < λ(i−1). To see this, according to Corollary 2.4, one

can choose a constant λ̃ < min{λGπ,ν , λ(i−1)} such that Tn−1(λ̃) < 0. Since ϕλ(i)

is non-decreasing in i, we obtain Ti(λ̃) < 0, as desired. This proves Ti+1(λ) =
−π(1) detAi(λ) for λ < λ(i−1). In particular, Tn(λ) = −π(1) detAn−1(λ) for λ <
λ(n−2). By Corollary 2.4, we have λ(n−1) = λGπ,ν . This proves Proposition 2.5 (1).
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Next, observe that, for λ ∈ (λ(i), λ(i−1)),

i+1∑
j=1

π(j)ϕλ(j) = Ti+1(λ) > 0,
i∑

j=1

π(j)ϕλ(j) = Ti(λ) < 0.

By (2.6), it is easy to see that [ϕλ(i+ 1)− ϕλ(i)]ν(i, i+ 1) = −λTi(λ) > 0 and

[ϕλ(i+ 2)− ϕλ(i+ 1)]ν(i+ 1, i+ 2)

= {[ϕλ(i+ 1)− ϕλ(i)]ν(i, i+ 1)− λπ(i+ 1)ϕλ(i+ 1)}+

={−λTi+1(λ)}+ = 0.

This proves Proposition 2.5 (2). To prove Proposition 2.5 (3), we use (1) to derive

Tn−1(λ) = −π(1) detAn−2(λ) < 0, ∀λ ∈ (0, λ(n−2)).

Using (2.6), this implies ϕλ(n−1) < ϕλ(n). The last part of Proposition 2.5 follows
easily from (2.5) and the fact that

Ti(λ) ≥ 0 ⇒ Ti+1(λ) > 0 and Ti(λ) ≤ 0 ⇒ Ti−1(λ) < 0.

�

Remark 2.2. In Proposition 2.5, if λ > λ(1) = ν(1, 2)[π(1)−1+π(2)−1], then ϕλ(i) =
ϕλ(2) for i = 2, ..., n. Note that, for λ ≥ λ(1), ϕλ(2) = −1 + λπ(1)/ν(1, 2) and

π(ϕλ) = −1 +
λπ(1)(1− π(1))

ν(1, 2)
, Varπ(ϕλ) =

λ2π(1)3(1− π(1))

ν(1, 2)2
.

By (2.3), this leads to L(λ) = ν(1, 2)/[π(1)(1−π(1)] for λ ≥ λ(1). In the case n = 2,
it is clear that ν(1, 2)/[π(1)(1− π(1)] = ν(1, 2)[π(1)−1 + π(2)−1] = λGπ,ν .

3. Convergence to other eigenvalues

In this section, we generalize the algorithms (A1) and (A2) so that they can be
applied for the computation to any specified eigenvalue.

3.1. Basic setup and fundamental results. Recall that G is a graph with vertex
set V = {1, 2, ..., n} and edge set E = {{i, i + 1}|i = 1, 2, ..., n − 1}. Given two
positive measures π, ν on V,E with π(V ) = 1, let MG

π,ν be a n-by-n matrix defined
in the introduction and given by

(3.1) MG
π,ν(i, j) =


−ν(i, j)/π(i) if |i− j| = 1

[ν(i− 1, i) + ν(i, i+ 1)]/π(i) if j = i

0 if |i− j| > 1

.

Since ν is positive everywhere and MG
π,ν is tridiagonal, all eigenvalues of MG

π,ν have

algebraic multiplicity 1. Throughout this section, let {λG0 < λG1 < · · · < λGn−1}
denote the eigenvalues of MG

π,ν with associated L2(π)-normalized eigenvectors ζ0 =

1, ζ2, ..., ζn−1. Clearly, λ
G
0 = 0, λG1 = λGπ,ν and, for 1 ≤ k ≤ n,

(3.2) λGi ζi(k)π(k) = [ζi(k)− ζi(k − 1)]ν(k − 1, k) + [ζi(k)− ζi(k + 1)]ν(k, k + 1).

Let 1 ≤ i ≤ n − 1. As ζi is non-constant, it is clear that ζi(1) ̸= ζi(2) and
ζi(n − 1) ̸= ζi(n). Moreover, if ζi(k) = ζi(k + 1) for some 1 < k < n, then
ζi(k) ̸= ζi(k−1) and ζi(k+1) ̸= ζi(k+2). Gantmacher and Krein [13] showed that
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there are exactly i sign changes for ζi with 1 ≤ i ≤ n. Miclo [14] gives a detailed
description on the shape of ζi as follows.

Theorem 3.1. For 1 ≤ i ≤ n − 1, let ζi be an eigenvector associated to the ith
smallest non-zero eigenvalue of the matrix in (3.1) with ζi(1) < 0. Then, there are
1 = a1 < b1 ≤ a2 < b2 ≤ · · · ≤ ai < bi = n with aj+1 − bj ∈ {0, 1} such that ζi is
strictly increasing on [aj , bj ] for odd j and is strictly decreasing on [aj , bj ] for even
j, and ζi(aj+1) = ζi(bj) for 1 ≤ j < i.

In the following, we make some analysis related to the Euler-Lagrange equations
in (3.2).

Definition 3.1. Fix n ≥ 1 and let f be a function on {1, 2, ..., n}. For 1 ≤ i ≤ n−1,
f is called “Type i” if there are 1 = a1 < b1 ≤ a2 < b2 ≤ · · · ≤ ai < bi ≤ n satisfying
aj+1 − bj ∈ {0, 1} such that

(1) f is strictly monotonic on [aj , bj ] for 1 ≤ j ≤ i.
(2) [f(aj)− f(aj + 1)][f(aj+1)− f(aj+1 + 1)] < 0 for 1 ≤ j < i.
(3) f(aj+1) = f(bj), for 1 ≤ j < i, and f(k) = f(bi), for bi ≤ k ≤ n.

The points aj , bj will be called “peak-valley points” in this paper.

Remark 3.1. Note that the difference between Definition 3.1 and Theorem 3.1 is the
requirement bi ≤ n, instead of bi = n. By Theorem 3.1, any eigenvector associated
to the ith smallest non-zero eigenvalue of the matrix in (3.1) must be of type i with
bi = n.

Definition 3.2. Let π, ν be positive measures on V,E with π(V ) = 1. For λ ∈ R,
let ξλ be a function on {1, 2, ..., n} defined by ξλ(1) = −1 and, for 1 ≤ k < n,

ξλ(k + 1) = ξλ(k) +
[ξλ(k)− ξλ(k − 1)]ν(k − 1, k)− λπ(k)ξλ(k)

ν(k, k + 1)
.

Remark 3.2. Note that ξ0 = −1 and, for λ < 0, ξλ is strictly decreasing and of
type 1. For λ > 0, if ξλ(k− 1) < ξλ(k) = ξλ(k+1), then ξλ(k) > 0 and this implies
ξλ(k + 2) < ξλ(k + 1). Similarly, if ξλ(k − 1) > ξλ(k) = ξλ(k + 1), then ξλ(k) < 0
and ξλ(k + 2) > ξλ(k + 1). Thus, ξλ must be of type i for some 1 ≤ i ≤ n− 1.

Lemma 3.2. For λ > 0, let ξλ be the function in Definition 3.2. Suppose that ξλ
is of type i with 1 ≤ i ≤ n− 1.

(1) If ξλ(n − 1) ̸= ξλ(n), then there is ϵ > 0 such that ξλ+δ is of type i for
−ϵ < δ < ϵ.

(2) If ξλ(n− 1) = ξλ(n), then there is ϵ > 0 such that ξλ+δ is of type i+1 and
ξλ−δ is of type i for 0 < δ < ϵ.

Proof. Let aj , bj be the peak-valley points of ξλ. By the continuity of ξλ in λ and
Remark 3.2, one can choose ϵ > 0 such that, for δ ∈ (−ϵ, ϵ), ξλ+δ remains strictly
monotonic on [aj , bj ] for j = 1, ..., i and

[ξλ+δ(bj − 1)− ξλ+δ(bj)][ξλ+δ(aj+1 + 1)− ξλ+δ(aj+1)] > 0,

for 1 ≤ j < i. In (1), bi = n. Fix δ ∈ (−ϵ, ϵ) and set a′1 = a1 = 1, b′i = bi = n. For
1 < j < i, set

b′j = a′j+1 = bj if [ξλ+δ(bj − 1)− ξλ+δ(bj)][ξλ+δ(bj)− ξλ+δ(aj+1)] < 0

b′j = a′j+1 = aj+1 if [ξλ+δ(bj − 1)− ξλ+δ(bj)][ξλ+δ(bj)− ξλ+δ(aj+1)] > 0

b′j = bj , a
′
j+1 = aj+1 if [ξλ+δ(bj − 1)− ξλ+δ(bj)][ξλ+δ(bj)− ξλ+δ(aj+1)] = 0

.
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Clearly, ξλ+δ is of type i with peak-valley points a′j , b
′
j . This proves Lemma 3.2 (1).

For part (2), we consider i ≤ n − 2 and bi = n − 1. By similar argument as
before, one can choose ϵ > 0 such that the restriction of ξλ+δ to {1, 2, ..., n− 1} is
of type i for δ ∈ (−ϵ, ϵ). To finish the proof, it remains to compare ξλ+δ(n− 1) and

ξλ+δ(n). Recall that Tj(λ) =
∑j

k=1 ξλ(k)π(k) as in the proof for Proposition 2.5.
Using a similar reasoning as for (2.7), one shows that Ti+1(λ) = −π(1) detAi(λ)
for 1 ≤ i < n, where Ai(λ) is the matrix in (2.4). This implies that the non-
zero eigenvalues of MG

π,ν , say λ
G
1 , ..., λ

G
n−1, are the roots of detAn−1(λ) = 0. As a

consequence of Lemma A.2, detAn−2(λ) = 0 has exactly n − 2 distinct roots, say
α1 < α2 < · · · < αn−1, and they satisfy the interlacing property λGj < αj < λGj+1 for
1 ≤ j ≤ n−2. Note that detAn−2(λ) and detAn−1(λ) tend to infinity as −λ tends
to infinity. This leads to the fact that if detAn−2(λ) = 0 and detAn−1(λ) < 0,
then detAn−2(·) is strictly decreasing in a neighborhood of λ. If detAn−2(λ) = 0
and detAn−1(λ) > 0, then detAn−2(·) is strictly increasing in a neighborhood of
λ.

Back to the proof of (2). Suppose that ξλ(n− 2) < ξλ(n− 1). By Remark 3.2, it
is easy to check that Tn−1(λ) = 0 and Tn(λ) > 0 or, equivalently, detAn−2(λ) = 0
and detAn−1(λ) < 0. According to the conclusion in the previous paragraph, we
can find ϵ > 0 such that detAn−2(·) is strictly decreasing on (λ − ϵ, λ + ϵ), which
yields

ξλ+δ(n) = ξλ+δ(n− 1)− (λ+ δ)Tn−1(λ+ δ)

ν(n− 1, n)

{
< ξλ+δ(n− 1) if 0 < δ < ϵ

> ξλ+δ(n− 1) if − ϵ < δ < 0
.

This gives the desired property in Lemma 3.2 (2). The other case, ξλ(n − 2) >
ξλ(n− 1), can be proved in the same way and we omit the details. �

The following proposition characterizes the shape of ξλ for λ > 0.

Proposition 3.3. For λ > 0, let ξλ be the function in Definition 3.2. Let λG1 <
· · · < λGn−1 be non-zero eigenvalues of MG

π,ν in (3.1) and α1 < · · · < αn−2 be zeros
of detAn−2(λ), where An−2(·) is the matrix in (2.4). Then,

(1) λGj < αj < λGj+1, for 1 ≤ j ≤ n− 2.
(2) ξλ is of type j for λ ∈ (αj−1, αj ] and 1 ≤ j ≤ n − 1, where α0 := 0 and

αn−1 := ∞.

Proof. (1) is immediate from Lemma A.2. For (2), note that αi is an eigenvalue
of the submatix of MG

π,ν obtained by removing the nth row and column. This
implies ξαi(n− 1) = ξαi(n) for i = 1, ..., n− 2 and ξλ(n− 1) ̸= ξλ(n) for λ > 0 and
λ /∈ {α1, ..., αn−2}. By Lemma 3.2, ξλ is of type i for αi−1 < λ ≤ αi. �

Given λ > 0, the above proposition provides a simple criterion to determine to
which of the intervals (αj , αj+1] λ belongs to, that is, the type of ξλ. However,
knowing the type of ξλ is not sufficient to determine whether λ is bigger or smaller
than λGi . We need the following remark.

Remark 3.3. Using the same argument as the proof of Proposition 2.5, one can show
that π(ξλ) = −π(1) detAn−1(λ), where An−1(λ) is the matrix in (2.4). Clearly,
π(ξλ) has zeros λ

G
1 , ..., λ

G
n−1 and tends to minus infinity as λ tends to minus infinity.

This implies that π(ξλ) < 0, for λ < λG1 , and

π(ξλ) > 0 ∀λ ∈ (λG2i−1, λ
G
2i), π(ξλ) < 0 ∀λ ∈ (λG2i, λ

G
2i+1),
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for i ≥ 1, where λGn := ∞.

As a consequence of Proposition 3.3 and Remark 3.3, we obtain the following
dichotomy algorithm, which is a generalization of (A2). Let 1 ≤ i ≤ n− 1.

(Di)

Choose positive reals L0 < λGi < U0 and set, for ℓ = 0, 1, ...,

1. ξλℓ
be the function generated by λℓ = (Lℓ + Uℓ)/2 in Definition 3.2,

2.According to Definition 3.1, set

Lℓ+1 = Lℓ, Uℓ+1 = λℓ if ξλℓ
is of type j with j > i,

or if ξλℓ
is of type i and (−1)i−1π(ξλℓ

) > 0

Uℓ+1 = Uℓ, Lℓ+1 = λℓ if ξλℓ
is of type j with j < i,

or if ξλℓ
is of type i and (−1)i−1π(ξλℓ

) < 0

Lℓ+1 = Uℓ+1 = λℓ if ξλℓ
is of type i and π(ξλℓ

) > 0

.

Theorem 3.4. Referring to (Di),

0 ≤ max{Uℓ − λGi , λ
G
i − Lℓ} ≤ (U0 − L0)2

−ℓ, ∀ℓ ≥ 0.

Proof. Immediate from Proposition 3.3 and Remark 3.3. �

Proposition 3.3 (2) bounds the eigenvalues using the shape of ξλ generated from
one end point. We now introduce some other criteria to bound eigenvalues using
the shape of ξλ from either boundary point. Those results will be used to prove
Theorem 6.1.

Proposition 3.5. For λ > 0, let ξλ be the function in Definition 3.2 and ξ̃λ be a
function given by

ξ̃λ(k − 1) = ξ̃λ(k) +
[ξ̃λ(k)− ξ̃λ(k + 1)]ν(k, k + 1)− λπ(k)ξ̃λ(k)

ν(k − 1, k)
,

for k = n, n−1, ..., 2 with ξ̃λ(n) = −1. Let λG0 < · · · < λGn−1 be eigenvalues of MG
π,ν

in (3.1) and let f |B be the restriction of f to a subset B of V . Suppose 1 ≤ k0 ≤ n.

(1) If ξλ|{1,...,k0} is of type i with (−1)iξλ(k0) > 0 and ξ̃λ|{k0,...,n} is of type j

with (−1)j ξ̃λ(k0) > 0, then λGi+j−2 < λ < λGi+j−1.

(2) If ξλ|{1,...,k0} is of type i with (−1)iξλ(k0) < 0 and ξ̃λ|{k0,...,n} is of type j

with (−1)j ξ̃λ(k0) < 0, then λGi+j−1 < λ < λGi+j+1.

(3) If ξλ|{1,...,k0} is of type i with (−1)iξλ(k0) > 0 and ξ̃λ|{k0,...,n} is of type j

with (−1)j ξ̃λ(k0) < 0, then λGi+j−2 < λ < λGi+j.

Proof. By Proposition 3.3, ξλ(n) is a polynomial of degree n− 1 satisfying

(−1)i+1ξλG
i
(n) > 0, ∀0 ≤ i < n, (−1)i+1ξβi(n) > 0, ∀1 ≤ i < n− 1.

This implies that there are wi ∈ (βi, λ
G
i+1), 0 ≤ i ≤ n−2, such that (−1)i+1ξλ(n) >

0 for λ ∈ (wi−1, wi) and 0 ≤ i ≤ n− 1 with w−1 = −∞ and wn−1 = ∞.
The proofs for (1)-(3) in Proposition 3.5 are similar and we deal with (1) only.

By the Euler-Lagrange equations in (3.2), it is easy to see that, for 1 ≤ l < n, ξλG
l

and ξ̃λG
l
are eigenvectors of MG

π,ν in (3.1) associated with λGl , which implies ξλG
l
=

−ξλG
l
(n)ξ̃λG

l
. First, assume that λ ≤ λGi+j−2. By Proposition 3.3, ξλG

i+j−2
|{1,...,k0}
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is of type at least i and ξ̃λG
i+j−2

|{k0,...,n} is of type at least j. This implies that

the patching of ξλG
i+j−2

|{1,...,k0} and −ξλG
i+j−2

(n)ξ̃λG
i+j−2

|{k0,...,n}, which equals to

ξλG
i+j−2

, is of type at least i+ j − 1. This is a contradiction.

Next, assume that λ ≥ λGi+j−1. By Proposition 3.3, we may choose a1 < λ (resp.

a2 < λ) such that ξλ|{1,...,k0} (resp. ξ̃λ|{k0,...,n}) changes the type at a1 (resp. a2).

If λGi+j−1 ≤ min{a1, a2}, then a similar reasoning as before implies that ξλG
i+j−1

is

of type at most i+ j − 2, a contradiction. If min{a1, a2} < λGi+j−1 < max{a1, a2},
then exactly one of ξλG

i+j−1
|{1,...,k0} and ξ̃λG

i+j−1
|{k0,...,n} does not change its type.

This implies that the gluing point k0 can not be a local extremum and, thus, the
patching function is of type at most i+ j − 2, another contradiction! According to
the discussion in the first paragraph of this proof, if λGi+j−1 ≥ max{a1, a2}, then
none of ξλG

i+j−1
|{1,...,k0} and ξ̃λG

i+j−1
|{k0,...,n} changes type nor, of course, the sign at

k0. Consequently, we obtain (−1)i+jξλG
i+j−1

(k0)ξ̃λG
i+j−1

(k0) > 0, which contradicts

the fact ξλG
i+j−1

= −ξλG
i+j−1

(n)ξ̃λG
i+j−1

. �

Proposition 3.6. For λ > 0 and 1 ≤ k ≤ n−1, let sk(λ) be the kth sign change of
ξλ defined by s0 := 0 and sk+1(λ) := inf{l > sk(λ)|ξλ(l)ξλ(l− 1) < 0 or ξλ(l) = 0},
where inf ∅ := n+1. Then, for 0 < λ1 < λ2, sk(λ1) ≥ sk(λ2) for all 1 ≤ k ≤ n− 1.

Proof. Let 1 ≤ k ≤ n− 1. If sk(λ1) = n+ 1, then it is clear that sk(λ1) ≥ sk(λ2).
Suppose that sk(λ1) = ℓ ≤ n. Obviously, ξλ1 |{1,...,ℓ} is of type k. Referring to

(2.4), let λℓ1, ..., λ
ℓ
ℓ−1 be the roots of detAℓ−1(λ) = 0 and αℓ

1, ..., α
ℓ
ℓ−2 be roots of

detAℓ−2(λ) = 0. According to the first paragraph of the proof for Proposition
3.5, there are wℓ

i ∈ (αℓ
i−1, λ

ℓ
i) with 1 ≤ i ≤ ℓ − 1 such that (−1)i+1ξλ(ℓ) > 0 for

λ ∈ (wℓ
i , w

ℓ
i+1) and 1 ≤ i ≤ ℓ − 1, where αℓ

0 := 0. Since ξλ1(ℓ)ξλℓ
k
(ℓ) ≥ 0, one has

wℓ
k ≤ λ1 < αℓ

k. As it is assumed that λ2 > λ1, if λ2 > αℓ
k, then ξλ2 |{1,...,ℓ} is of type

at least k + 1 and, consequently, sk(λ2) < ℓ = sk(λ1). If λ1 < αℓ
k, then ξλ2 |{1,...,ℓ}

is type k and ξλ2(ℓ) < 0. This implies sk(λ2) ≤ ℓ = sk(λ1), as desired. �

3.2. Bounding eigenvalues from below. Motivated by Theorem 3.1, we intro-
duce another scheme generalizing (2.1) to bound the other eigenvalues ofMG

π,ν from
below.

Definition 3.3. For λ > 0, let ξλ be a function in Definition 3.2. If ξλ is of type i,
1 ≤ i ≤ n− 1, with peak-valley points 1 = a1 < b1 ≤ a2 < b2 ≤ · · · ≤ ai < bi ≤ n,
then define

ξ
(j)
λ (k) =

{
ξλ(k) for k ≤ bj

ξλ(k) = ξλ(bj) for k > bj
, ∀1 ≤ j < i

and set ξ
(j)
λ = ξλ for i ≤ j ≤ n− 1.
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Remark 3.4. For λ > 0, if ξλ is of type i, then ξ
(j)
λ is of type j for j < i. Moreover,

for k < bj ,

ξ
(j)
λ (k + 1) = ξ

(j)
λ (k) +

[ξ
(j)
λ (k)− ξ

(j)
λ (k − 1)]ν(k − 1, k)− λπ(k)ξ

(j)
λ (k)

ν(k, k + 1)

= ξ
(j)
λ (k)−

λ[π(1)ξ
(j)
λ (1) + · · ·+ π(k)ξ

(j)
λ (k)]

ν(k, k + 1)
,

and, for bj ≤ k < n,

ξ
(j)
λ (k + 1) = ξ

(j)
λ (k) +

Fj([ξ
(j)
λ (k)− ξ

(j)
λ (k − 1)]ν(k − 1, k)− λπ(k)ξ

(j)
λ (k))

ν(k, k + 1)
,

where Fj(t) = max{t, 0} if j is odd, and Fj(t) = min{t, 0} if j is even. Note that

ξ
(1)
λ is exactly ϕλ in Proposition 2.5.

Thereafter, let L and L(i) be functions on (0,∞) defined by

(3.3) L(λ) = Eν(ξλ, ξλ)
Varπ(ξλ)

, L(i)(λ) =
Eν(ξ(i)λ , ξ

(i)
λ )

Varπ(ξ
(i)
λ )

, ∀1 ≤ i ≤ n− 1,

where ξλ and ξ
(i)
λ are functions in Definitions 3.2-3.3.

Remark 3.5. Note that L = L(n−1). By a similar reasoning as in the proof for (2.2),
one can show that, for λ > 0,

L(λ) = λ+
λπ(ξλ)[π(ξλ)− ξλ(n)]

Varπ(ξλ)
, L(i)(λ) = λ+

λπ(ξ
(i)
λ )[π(ξ

(i)
λ )− ξ

(i)
λ (n)]

Varπ(ξ
(i)
λ )

.

From Proposition 3.3, it followss immediately that L(λ) = L(i)(λ) for λ ∈ (0, αi].

To explore further L and L(i), we need more information of π(ξλ), π(ξ
(i)
λ ), π(ξλ)−

ξλ(n) and π(ξ
(i)
λ )− ξ

(i)
λ (n).

Lemma 3.7. Let ξλ be the function in Definition 3.2 and λGi , αi be constants in
Proposition 3.3. Then, π(ξλ) − ξλ(n) = 0 has n − 1 distinct roots, say β0 < β1 <
· · · < βn−2, which satisfy β0 = 0 and αi < βi < λGi+1 for 1 ≤ i ≤ n−2. Furthermore,
π(ξλ) − ξλ(n) > 0 for λ ∈ (β2i−1, β2i) and π(ξλ) − ξλ(n) < 0 for λ ∈ (β2i, β2i+1),
with β−1 = −∞ and βn−1 = ∞.

Proof. Set u(λ) := π(ξλ)− ξλ(n). According to Definition 3.2, u(λ) is a polynomial
of degree n−1 and satisfies u(0) = 0. Note that π(ξλ) = 0 for λ ∈ {λG1 , ..., λGn−1}. If
i is odd, then ξλG

i
(n−1) < ξλG

i
(n). This implies ξλG

i
(n) > 0 and, hence, u(λGi ) < 0.

Similarly, if i is even, then u(λGi ) > 0.
By Lemma 3.2 and Proposition 3.3, if λ = αi with odd i, then ξαi is of type i

with ξαi(n− 1) = ξαi(n). This implies ξαi(n) > 0 and π(ξαi) = π(n)ξαi(n), which
yields u(αi) < 0. Similarly, one can show that u(αi) > 0 if i is even. �

Remark 3.6. We consider the sign of π(ξ
(i)
λ ) and π(ξ

(i)
λ ) − ξ

(i)
λ (n) in this remark.

By Proposition 3.3, ξ
(i)
λ = ξλ for λ ≤ αi. If λ > αi with 1 ≤ i ≤ n − 2,

then ξλ is of type j with j > i. Fix 1 ≤ i ≤ n − 2 and set k0 = k0(λ) =

min{k|ξ(i)λ (j) = ξ
(i)
λ (n), ∀k ≤ j ≤ n}. Clearly, k0(λ) ≤ n − 1 for λ > αi. Ob-

serve that, for λ > αi with odd i, ξλ(k0 − 1) < ξλ(k0) ≥ ξλ(k0 + 1), which implies
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k=1 π(k)ξλ(k) < 0 and

∑k0

k=1 π(k)ξλ(k) ≥ 0. A similar reasoning for the case

of even i gives
∑k0−1

k=1 π(k)ξλ(k) > 0 and
∑k0

k=1 π(k)ξλ(k) ≤ 0. Consequently, we
obtain

(3.4) (−1)i−1π(ξ
(i)
λ ) > 0, (−1)i[π(ξ

(i)
λ )− ξ

(i)
λ (n)] > 0,

for λ > αi and 1 ≤ i ≤ n−2. Note that, by Proposition 3.3, ξ
(i)
λ = ξλ for λ ≤ αi. In

addition with Remark 3.3, Lemma 3.7 and the continuity of ξ
(i)
λ , the first inequality

of (3.4) holds for λ > λGi and the second inequalities of (3.4) hold for λ > βi−1.

According to Lemma 3.7 and Remark 3.6, we derive a generalized version of
Proposition 2.3 in the following.

Proposition 3.8. Let n ≥ 3 and 1 ≤ i ≤ n − 1. For λ > 0, let ξλ, ξ
(i)
λ be the

functions in Definition 3.2 and βi be the constants in Lemma 3.7.

(1) For λ > βi−1, the following are equivalent.

(1-1) Eν(ξ(i)λ , ξ
(i)
λ ) = λVarπ(ξ

(i)
λ ).

(1-2) π(ξ
(i)
λ ) = 0.

(1-3) λ = λGi .
(2) For βi−1 < λ < βi, the following are equivalent.

(2-1) Eν(ξλ, ξλ) = λVarπ(ξλ).
(2-2) π(ξλ) = 0.
(2-3) λ = λGi .

Proof. The proof for Proposition 3.8 (2) is similar to the proof for Proposition 3.8
(1) and we deal only with the latter. By Lemma 3.7 and Remark 3.6, one has

π(ξ
(i)
λ )[π(ξ

(i)
λ )− ξ

(i)
λ (n)]

{
< 0 for λ > λGi
> 0 for βi−1 < λ < λGi

.

This proves the equivalence of (1-1) and (1-2). Under the assumption of (1-2) and

using Remark 3.3, one has λ ≤ αi. This implies ξ
(i)
λ = ξλ is an eigenvector forMG

π,ν

with associated eigenvalue λ. As λ ∈ (βi−1, αi], it must be the case λ = λGi . This
gives (1-3), while (1-3)⇒(1-2) is obvious and omitted. �

Remark 3.7. It is worthwhile to note that if (1-1) and (2-1) of Proposition 3.8 are
removed, then the equivalence in (1) holds for λ > λGi−1 and the equivalence in (2)

holds for λ ∈ (λGi−1, λ
G
i+1). Once λGi−1 is known, we can determine λGi using the

sign of π(ξ
(i)
λ ). See Theorem 3.9 for details.

Remark 3.8. Note that condition (4) of Proposition 2.3 is not included in Propo-
sition 3.8. In fact, the equivalence may fail, that is, there may exist some λ ∈
(βi−1, βi) \ {λGi } such that Eν(ξλ, ξλ)/Varπ(ξλ) = λGi . See Example 3.2 for a coun-
terexample.

As Proposition 3.8 focuses on the characterization of zeros of L(λ) − λ, the
following theorem concerns the sign of L(λ)− λ.

Theorem 3.9. Let λGi , αi, βi be the constants in Proposition 3.3 and Lemma 3.7,
and L be the function in (3.3). Then, λG1 , ..., λ

G
n−1, β1, ..., βn−2 are fixed points of

L and, for 1 ≤ i ≤ n− 2,

(1) L(λ) < λ for λ ∈ (λGi , βi).
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(2) L(λ) > λ for λ ∈ (βi, λ
G
i+1).

(3) L(i)(λ) < λ for λ ∈ (λGi ,∞).

Proof. Immediate from Lemma 3.7 and Remarks 3.5-3.6. �
By Theorem 3.9, we obtain a lower bound on any specified eigenvalue of MG

π,ν .

Corollary 3.10. Let 1 ≤ i ≤ n − 1 and λ0 > λGi . Consider the sequence λℓ+1 =
L(i)(λℓ) with ℓ ≥ 0 and set

λ∗ =

{
limℓ→∞ λℓ if λℓ converges

supℓ∈I λℓ if λℓ diverges
,

where I = {ℓ|λℓ−1 > λℓ < λℓ+1}. Then, λ∗ ≤ λGi .

It is not clear yet whether the sequence λℓ in Corollary 3.10 is convergent, even
locally. This subject will be discussed in the next subsection. Now, we establish

some relations between the roots of detAi(λ) = 0 and the shape of ξ
(i)
λ . This is a

generalization of Proposition 2.5.

Proposition 3.11. For 1 ≤ i ≤ n − 1, let Ai(λ) be the matrix in (2.4), θ
(i)
1 <

· · · < θ
(i)
i be zeros of detAi(λ) = 0 and set θ

(i−1)
i := ∞. Referring to the notation

in Proposition 3.3, it holds true that, for 1 ≤ i ≤ n− 1,

(1) λGi = θ
(n−1)
i < αi = θ

(n−2)
i < · · · < θ

(i)
i .

(2) ξ
(i)
λ (j) ̸= ξ

(i)
λ (j + 1) = · · · = ξ

(i)
λ (n) for λ ∈ [θ

(j)
i , θ

(j−1)
i ) and i ≤ j ≤ n− 2.

(3) ξ
(i)
λ (n− 1) ̸= ξ

(i)
λ (n) for λ ∈ (θ

(n−2)
i−1 , θ

(n−2)
i ) and i ≤ n− 1.

Proof. The order in (1) is a simple application of Lemma A.3. For (2), fix 1 ≤
i ≤ n − 1 and set γ(λ) = min{j|ξ(i)λ (k) = ξ

(i)
λ (n), ∀j ≤ k ≤ n} and B(λ) =

{1, 2, ..., γ(λ)}, B+(λ) = B(λ) ∪ {γ(λ) + 1}. Clearly, i+ 1 ≤ γ(λ) ≤ n. We use the
notation ξλ|C to denote the restriction of ξλ to a set C. Suppose that i is odd. By

Remark 3.4, ξ
(i)
λ = ξλ on B(λ) and ξλ|B(λ) is of type i with

ξλ(γ(λ)− 1) < ξλ(γ(λ)) ≥ ξλ(γ(λ) + 1).

By Lemma 3.2(1), if ξλ(γ(λ) + 1) < ξλ(γ(λ)), then there is ϵ > 0 such that, for
|δ| < ϵ, ξλ+δ|B(λ) is of type i and

ξλ+δ(γ(λ)− 1) < ξλ+δ(γ(λ)) > ξλ+δ(γ(λ) + 1).

This implies γ(λ + δ) = γ(λ) for δ ∈ (−ϵ, ϵ). By Lemma 3.2(2), if ξλ(γ(λ) + 1) =
ξλ(γ(λ)), then there is ϵ > 0 such that, for δ ∈ (−ϵ, 0), ξλ+δ|B+(λ) is of type i with

ξλ+δ(γ(λ)− 1) < ξλ+δ(γ(λ)) < ξλ+δ(γ(λ) + 1),

and, for δ ∈ (0, ϵ), ξλ+δ|B+(λ) is of type i+ 1 with

ξλ+δ(γ(λ)− 1) < ξλ+δ(γ(λ)) > ξλ+δ(γ(λ) + 1).

This yields γ(λ + δ) = γ(λ) for δ ∈ (0, ϵ) and γ(λ + δ) = γ(λ) + 1 for δ ∈ (−ϵ, 0).
The proof for the case of even i is similar and we conclude from the above that
γ(λ) is a non-increasing and right-continuous function taking values on {i+1, ..., n}.
Let ci+1 > · · · > cn−1 be the discontinuous points of γ(λ) such that γ(cj) = j for
i + 1 ≤ j ≤ n − 1. As a consequence of the above discussion, ξcj |{1,...,j} is of type

i with ξcj (j) = ξcj (j + 1) and this implies
∑j

k=1 π(k)ξcj (k) = 0. That means cj
is a root of detAj−1(λ) = 0 for j = i + 1, ..., n − 1. By Proposition 3.3 and the



16 G.-Y. CHEN AND L. SALOFF-COSTE

second equality in (1), γ(λ) = n for θ
(n−2)
i−1 < λ < θ

(n−2)
i and, thus, cj ≥ θ

(n−2)
i for

j ≥ i + 1. As a consequence of the interlacing relationship θ
(ℓ)
i < θ

(ℓ−1)
i < θ

(ℓ)
i+1, it

must be cj = θ
(j+1)
i for i+ 1 ≤ j ≤ n− 1. This finishes the proof. �

Remark 3.9. For 1 ≤ i ≤ n − 1, θ
(i)
1 , ..., θ

(i)
i are also non-zero eigenvalues of the

(i+ 1)× (i+ 1) principal submatrix of (3.1) indexed by 1, ..., i+ 1.

Remark 3.10. In fact, by Proposition 2.5, ξ
(1)
λ (n− 1) ̸= ξ

(1)
λ (n) for λ ∈ (0, θ

(n−2)
1 ),

which is better than Proposition 3.11(3).

3.3. Local convergence of L. This subsection is dedicated to the local conver-
gence of L in (3.3). Let αi, βi, λ

G
i be the constants in Proposition 3.3 and Lemma

3.7. As before, let ζ0 = 1, ..., ζn−1 denote the L
2(π)-normalized eigenvectors ofMG

π,ν

associated with λG0 , ..., λ
G
n−1. Clearly, ξλG

i
= −ζi/ζi(1) and ξλ =

∑n−1
i=0 ρi(λ)ζi,

where ρi(λ) = π(ξλζi) for 0 ≤ i ≤ n− 1. Note that ρi(λ) is a polynomial of degree
n− 1 and satisfies ρi(λj) = −δi(j)/ζi(1) for i, j ∈ {0, 1, ..., n− 1}. This implies

(3.5) ρ0(λ) = −
n−1∏
j=1

λGj − λ

λGj
, ρi(λ) = − λ

ζi(1)λGi

n−1∏
j=1,j ̸=i

λGj − λ

λGj − λGi
,

for all 1 ≤ i ≤ n − 1. Moreover, by multiplying (3.2) with ξλ(k) and summing
up k, we obtain Eν(ξλ, ζi) = λGi ρi(λ). In the same spirit, one can show that
Eν(ξλ, ζi) = λ[ρi(λ) − ζi(n)ρ0(λ)] using Definition 3.2. Putting both equations
together yields

(3.6) ρi(λ) =
λζi(n)

λ− λGi
ρ0(λ), ∀0 ≤ i ≤ n− 1.

As a consequence of Remark 3.5, this gives

(3.7) L(λ) =
∑n−1

i=1 λ
G
i ρ

2
i (λ)∑n−1

i=1 ρ
2
i (λ)

= λ+

∑n−1
i=1 (λ

G
i − λ)−1ζ2i (n)∑n−1

i=1 (λ
G
i − λ)−2ζ2i (n)

,

for λ /∈ {λG0 , ..., λGn−1}. The next proposition follows immediately from the second
equation in (3.5) and (3.6).

Proposition 3.12. Let λG1 , ..., λ
G
n−1 be the non-zero eigenvalues of MG

π,ν in (3.1)

and ζ1, ..., ζn−1 be the corresponding L2(π)-normalized eigenvectors. Then,

ζi(1)ζi(n) = −
n−1∏

j=1,j ̸=i

λGj
λGj − λGi

, ∀1 ≤ i ≤ n− 1.

Set u(λ) =
∑n−1

j=1 (λ
G
j − λ)−1ζ2j (n). By Theorem 3.9, β1, ..., βn−2 are zeros of

u(λ)
∏n−1

j=1 (λ
G
j − λ), which is a polynomial of degree n− 2. This implies

u(λ) = C

n−1∏
j=1

1

λGj − λ

n−2∏
j=1

(βj − λ)

 ,

where C = λ1···λn−1

β1···βn−2

∑n−1
j=1 ζ

2
j (n)/λ

G
j . Putting this back to L yields

(3.8)
1

L(λ)− λ
=
u′(λ)

u(λ)
=

n−1∑
j=1

1

λGj − λ
−

n−2∑
j=1

1

βj − λ
,
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for λ /∈ {λG0 , ..., λGn−1, β1, ..., βn−2}.

Proposition 3.13. Let L be the function in (3.3), λGi be the eigenvalue ofMG
π,ν and

βi be the constant in Lemma 3.7. Let Di =
∑n−2

j=1 (βj−λGi )−1−
∑n−1

j=1,j ̸=i(λ
G
j −λGi )−1

with 1 ≤ i ≤ n− 1. Then, for 2 ≤ i ≤ n− 2,

(1) If Di < 0, then there is τ ∈ (λGi , βi) such that L is strictly increasing on
(βi−1, λ

G
i ) ∪ (τ, βi) and strictly decreasing on (λGi , τ).

(2) If Di > 0, then there is η ∈ (βi−1, λ
G
i ) such that L is strictly increasing on

(βi−1, η) ∪ (λGi , βi) and strictly increasing on (η, λGi ).
(3) If Di = 0, then L is strictly increasing on (βi−1, βi).

Proof. Using (3.7) and (3.8), one can show that L′(λGi ) = 0 and

(3.9) L′′(λGi ) =

n−1∑
j=1,j ̸=i

ζ2i (n)

λGj − λGi
= 2

n−2∑
j=1

1

βj − λGi
−

n−1∑
j=1,j ̸=i

1

λGj − λGi

 = 2Di.

To prove (1) and (2), it suffices to show that if L′(τ) = 0 for some τ ∈ (λGi , βi),
then τ is a local minimum of L, and if L′(η) = 0 for some η ∈ (βi−1, λ

G
i ), then η is

a local maximum of L. We discuss the first case, whereas the second case is similar
and is omitted. Recall that u(λ) =

∑n−1
j=1 (λ

G
j − λ)−1ζ2j (n). As τ is a critical point

for L, one has 2(u′(τ))2 = u(τ)u′′(τ). This implies

L′′(τ) =
u(τ)[3(u′′(τ))2 − 2u′(τ)u′′′(τ)]

2(u′(τ))3
> 0,

where the last inequality uses the fact that u(λ) < 0, for λ ∈ (λGi , βi), and

3(u′′(λ))2 − 2u′(λ)u′′′(λ) = −12
∑

1≤i<j≤n−1

[
(λGi − λGj )ζi(n)ζj(n)

(λGi − λ)2(λGj − λ)2

]2
< 0.

This proves (1) and (2).
To see (3), we assume that Di = 0. Computations show that

L(λ)− λGi
L(λ)− λ

= (λ− λGi )

 n−1∑
j=1,j ̸=i

1

λGj − λ
−

n−2∑
j=1

1

βj − λ


=(λ− λGi )

2

 n−1∑
j=1,j ̸=i

1

(λGj − λ)(λGj − λGi )
−

n−1∑
j=1

1

(βj − λ)(βj − λGi )

 < 0,

for λ ∈ (βi−1, λ
G
i ) ∪ (λGi , βi), where the last inequality uses the fact that (λGj −

λ)(λGj − λGi ) > (βj − λ)(βj − λGi ) for j < i and (λGj − λ)(λGj − λGi ) > (βj−1 −
λ)(βj−1 − λGi ) for j > i. By Theorem 3.9, this implies L(λ) > λGi for λ ∈ (λGi , βi)
and L(λ) < λGi for λ ∈ (βi−1, λ

G
i ). The desired property comes immediate from

the discussion in the previous paragraph. �

Remark 3.11. Note that D1 > 0 and Dn−1 < 0. Using the same proof as above,
this implies that L(λ) is strictly increasing on (λG1 , β1) ∪ (βn−2, λ

G
n−1). Moreover,

by (3.7), one may compute

(u′(λ))2L′(λ) = −2
∑
i<j

(λGi − λGj )
2

(λGi − λ)3(λGj − λ)3
< 0, ∀λ ∈ (0, λG1 ) ∪ (λGn−1,∞).
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This implies L(λ) is strictly decreasing on (0, λG1 ) ∪ (λGn−1,∞) and

lim
λ→0

L(λ) =
∑n−1

i=1 ζ
2
i (n)/λ

G
i∑n−1

i=1 ζ
2
i (n)/(λ

G
i )

2
, lim

λ→∞
L(λ) =

(
1

π(n)
− 1

) n−1∑
i=1

λGi ζ
2
i (n).

The following local convergence is a simple corollary of Theorem 3.9 and Propo-
sition 3.13.

Theorem 3.14 (Local convergence). Let λ0 > 0 and set λℓ+1 = L(λℓ) for ℓ ≥ 0.
Then, there is ϵ > 0 such that the sequence (λℓ)

∞
ℓ=1 is monotonic and converges to

λGi for λ0 ∈ (λGi − ϵ, λGi + ϵ) and 1 ≤ i ≤ n− 1.

We use the following examples to illustrate the different cases in Proposition
3.13.

Example 3.1 (Simple random walks). Let n > 1. A simple random walk on
{1, 2, ..., n} with reflecting probability 1/2 at the boundary is a birth and death
chain with transition matrix given by K(i, j) = K(1, 1) = K(n, n) = 1/2 for
|i − j| = 1. It is easy to see that the uniform probability is the stationary distri-
bution of K. In the setting of graph, we have ν(i, i+ 1) = 1/(2n) and π(i) = 1/n.
One may apply the method in [11] to obtain the following spectral information.

λGj = 1− cos
jπ

n
, ζj(k) =

1√
λGj

(
sin

jkπ

n
− sin

j(k − 1)π

n

)
, ∀1 ≤ j < n.

See, e.g., [3, Section 7]. By (3.9), we get

Di =
1

2

n−1∑
j=1,j ̸=i

sin2(jπ/n)

λGj (λ
G
j − λGi )

=

n−1∑
j=1,j ̸=i

1 + cos(jπ/n)

cos(iπ/n)− cos(jπ/n)
.

Clearly, D1 > 0 and Dn−1 < 0. If n is even, then Dn/2 < 0.

Example 3.2 (Ehrenfest chains). An Ehrenfest chain on V = {0, 1, ..., n} is a Markov
chain with transition matrix K given by K(i, i + 1) = 1 − i/n and K(i + 1, i) =
(i+1)/n for i = 0, ..., n− 1. The associated stationary distribution is the unbiased
binomial distribution on V , that is, π(i) =

(
n
i

)
2−n for i ∈ V . To the Ehrenfest

chain, the measure ν is defined by ν(i, i+ 1) =
(
n−1
i

)
2−n for i = 0, ..., n− 1. Using

the group representation for the binary group {0, 1}n, one may compute

λj =
2j

n
, ζj(k) =

(
n

j

)−1/2 j∑
ℓ=0

(−1)ℓ
(
k

ℓ

)(
n− k

j − ℓ

)
, ∀1 ≤ j ≤ n.

Plugging this back into (3.9) yields

Di =
n

4

n∑
j=1,j ̸=i

(
n
j

)
j − i


> 0 for i < n/2

= 0 for i = n/2

< 0 for i > n/2.

.

This example points out the possibility of different signs in {Di|i = 1, ..., n − 1}
including 0.
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3.4. A remark on the separation for birth and death chains. In this subsec-
tion, we give a new proof of a result, Theorem 3.15, which deals with convergence in
separation distance for birth and death chains. Let (Xm)∞m=0 be a birth and death
chain with transition matrix K given by (1.1). In the continuous time setting, we
consider the process Yt = XNt , where Nt is a Poisson process with parameter 1
independent of Xm. Given the initial distribution µ, which is the distribution of
X0, the distributions of Xm and Yt are respectively µKm and µe−t(I−K), where
eA :=

∑∞
l=0A

l/l!. Briefly, we write Ht = e−t(I−K). It is well-known that if K is
irreducible, then µHt converges to π as t → ∞. If K is irreducible and ri > 0 for
some i, then µKm converges to π as m → ∞. Concerning the convergence, we
consider the separations of Xm, Yt with respect to π, which are defined by

dsep(µ,m) = max
0≤x≤n

{
1− µKm(x)

π(x)

}
, dcsep(µ, t) = max

0≤x≤n

{
1− µHt(x)

π(x)

}
.

The following theorem is from [9].

Theorem 3.15. Let K be an irreducible birth and death chain on {0, 1, ..., n} with
eigenvalues λ0 = 0 < λ1 < · · · < λn.

(1) For the discrete time chain, if pi + qi+1 ≤ 1 for all 0 ≤ i < n, then

dsep(0,m) = dsep(n,m) =
n∑

j=1

 n∏
i=1,i̸=j

λi
λi − λj

 (1− λj)
m.

(2) For the continuous time chain, it holds true that

dcsep(0, t) = dcsep(n, t) =
n∑

j=1

 n∏
i=1,i ̸=j

λi
λi − λj

 e−λjt.

Diaconis and Fill [6, 12] introduce the concept of dual chain to express the
separations in Theorem 3.15 as the probability of the first passage time. Brown
and Shao [1] characterize the first passage time using the eigenvalues of K for a
special class of continuous time Markov chains including birth and death chains.
The idea in [1] is also applicable for discrete time chains and this leads to the
formula above. See [9] for further discussions. Here, we use Proposition 3.12 and
Lemma 3.16 to prove this result directly.

Lemma 3.16. Let K be the transition matrix in (1.1) with stationary distribution
π. Suppose that µ is a probability distribution satisfying µ(i)/π(i) ≤ µ(i+1)/π(i+1)
for all 0 ≤ i ≤ n− 1.

(1) For the discrete time chain, if pi + qi+1 ≤ 1 for all 0 ≤ i < n, then
µKm(i)/π(i) ≤ µKm(i+ 1)/π(i+ 1) for all 0 ≤ i < n and m ≥ 0.

(2) For the continuous time chain, µHt(i)/π(i) ≤ µHt(i + 1)/π(i + 1) for all
0 ≤ i < n and t ≥ 0.

Proof. Note that (2) follows from (1) if we write Ht = exp{−2t(I− I+K
2 )}. For the

proof of (1), observe that

µKm+1(i)

π(i)
=
µKm(i− 1)

π(i− 1)
qi +

µKm(i)

π(i)
ri +

µKm(i+ 1)

π(i+ 1)
pi, ∀i.
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By induction, if µKm(i)/π(i) ≤ µKm(i+ 1)/π(i+ 1) for 0 ≤ i < n, then

µKm+1(i+ 1)

π(i+ 1)
=
µKm(i)

π(i)
qi+1 +

µKm(i+ 1)

π(i+ 1)
ri+1 +

µKm(i+ 2)

π(i+ 2)
pi+1

≥ µKm(i)

π(i)
qi+1 +

µKm(i+ 1)

π(i+ 1)
(1− qi+1)

≥ µKm(i)

π(i)
(1− pi) +

µKm(i+ 1)

π(i+ 1)
pi ≥

µKm+1(i)

π(i)
.

�
Remark 3.12. Lemma 3.16 is also developed in [10] in which it is shown that, for
any non-negative function f , Kmf is non-decreasing if f is non-decreasing for all
m ≥ 0. Consider the adjoint chain K∗ of K in L2(π). As birth and death chains
are reversible, one has K∗ = K. Using the identity µK/π = K∗(µ/π), it is easy to
see that the above proof is consistent with the proof in [10].

Proof of Theorem 3.15. Assume that K is irreducible and let λ0 = 0 < λ1 < · · · <
λn be the eigenvalues of I − K with L2(π)-normalized eigenvector ζ0 = 1, ..., ζn.
By Lemma 3.16, if µ satisfies µ(i)/π(i) ≥ µ(i+ 1)/π(i+ 1) for 0 ≤ i < n, then

dcsep(µ, t) = 1− µHt(n)

π(n)
=

n∑
j=1

µ(ζj)ζj(n)e
−λjt,

where µ(ζj) =
∑n

i=0 ζj(i)µ(i). If K satisfies pi + qi+1 ≤ 1 for all 0 ≤ i < n, then

dsep(µ,m) = 1− µKm(n)

π(n)
=

n∑
j=1

µ(ζj)ζj(n)(1− λj)
m.

By Proposition 3.12, setting µ to be one of the dirac measure δ0, δn leads to the
desired identities. �

4. Paths of infinite length

In this section, the graph G = (V,E) under consideration is infinite with V =
{1, 2, ...} and E = {{i, i + 1}|i = 1, 2, ...}. As before, let π, ν be positive measures
on V,E satisfying π(V ) = 1. The Dirichlet form and the variance are defined in a
similar way as in the introduction and the spectral gap of G with respect to π, ν is
given by

λGπ,ν = inf

{
Eν(f, f)
Varπ(f)

∣∣∣∣f is non-constant and π(f2) <∞
}
.

For n ≥ 2, let Gn = (Vn, En) be the subgraph of G with Vn = {1, 2, ..., n}, En =
{{i, i + 1}|1 ≤ i < n} and let πn, νn be normalized restrictions of π, ν to Vn, En.
That is, πn(i) = cnπ(i), νn(i, i+ 1) = cnν(i, i+ 1) with cn = 1/[π(1) + · · ·+ π(n)].
As before, let MG

π,ν be an infinite matrix indexed by V and defined by

(4.1) MG
π,ν(i, j) = −ν(i, j)

π(i)
, ∀|i− j| = 1, MG

π,ν(i, i) =
ν(i− 1, i) + ν(i, i+ 1)

π(i)
.

Clearly, MGn
πn,νn

is the principal submatrix of MG
π,ν indexed by Vn × Vn.

Lemma 4.1. Referring to the above setting, λ
Gn+1
πn+1,νn+1 < λGn

πn,νn
for n > 1 and

λGπ,ν = limn→∞ λGn
πn,νn

.
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Proof. Briefly, we write λ for λGπ,ν and λn for λGn
πn,νn

. Note that λn is the smallest

non-zero eigenvalue of the principal submatrix of MG
π,ν indexed by Vn × Vn. As

a consequence of Proposition 3.11(1) and Remark 3.9, λn+1 < λn. For n > 1,
let ϕn be a minimizer for λn and define ψn(i) = 1Vn(i)ϕn(i) for i ≥ 1. Clearly,
one has Eνn(ϕn, ϕn) = cnEν(ψn, ψn) and Varπn(ϕn) = cnVarπ(ψn). This implies
λ ≤ λn for n ≥ 2. Let λ∗ = limn→∞ λn. Note that it remains to show λ∗ = λ.
For ϵ > 0, choose a function f on V such that Eν(f, f) < (λ + ϵ/2)Varπ(f) with
π(f2) < ∞. For δ > 0, we choose N > 0 such that VarπN

(g) > (1 − δ)Varπ(f)
and EνN (g, g) < (1 + δ)Eν(f, f), where g = f |VN , the restriction of f to VN . This
implies

λ∗ ≤ λN ≤ EνN (g, g)

VarπN
(g)

≤ (1 + δ)Eν(f, f)
(1− δ)Varπ(f)

.

Letting δ → 0 and then ϵ→ 0 yields λ∗ ≤ λ, as desired. �
Remark 4.1. Silver [17] contains a discussion of the (weak*) convergence of the
spectral measure for Gn to the spectral measure for G in a very general setting.
Lemma 4.1 can also be proved using Theorem 4.3.4 in [17].

Proposition 4.2. For λ > 0, let ϕλ(1) = −1 and

ϕλ(i+ 1) = ϕλ(i) +
{[ϕλ(i)− ϕλ(i− 1)]ν(i− 1, i)− λπ(i)ϕλ(i)}+

ν(i, i+ 1)
, ∀i ≥ 1.

Set λ1 = ∞ and λn = λGn
πn,νn

for n ≥ 2.

(1) For i ≥ 2 and λ ∈ [λi, λi−1), ϕλ(i− 1) < ϕλ(i) = ϕλ(i+ 1).
(2) For λ ∈ (0, λGπ,ν ], ϕλ(i) < ϕλ(i+ 1) for all i ≥ 1.

Proof. Immediate from Proposition 3.11 and Remarks 3.9-3.10. �
Remark 4.2. By Proposition 4.2, one may generate a dichotomy algorithm for λGπ,ν
using the shape of ϕλ. See (Di).

The following theorem extends Theorem 1.1 to infinite paths.

Theorem 4.3. If λGπ,ν > 0 and Eν(ψ,ψ)/Varπ(ψ) = λGπ,ν for some function ψ on
V with π(ψ) = 0, then ψ is strictly monotonic and satisfies

λGπ,νπ(i)ψ(i) = [ψ(i)− ψ(i+ 1)]ν(i, i+ 1) + [ψ(i)− ψ(i− 1)]ν(i− 1, i), ∀i ≥ 1.

Theorem 4.4. For λ > 0, let ϕλ be the function in Proposition 4.2 and set L(λ) =
Eπ(ϕλ, ϕλ)/Varπ(ϕλ). Then,

(1) λGπ,ν < L(λ) < λ for λ ∈ (λGπ,ν ,∞).

(2) Ln(λ) → λGπ,ν as n→ ∞ for λ ∈ (λGπ,ν ,∞).

Proof. Let λ > λGπ,ν . By Lemma 4.1, λi ≤ λ < λi−1 for some i ≥ 2. By Proposition
4.2 (1), one has ϕλ(i− 1) < ϕλ(i) = ϕλ(i+ 1). As in (2.2), we obtain

L(λ) = λ+ λ
π(ϕλ)[π(ϕλ)− ϕλ(i)]

Varπ(ϕλ)
,

i∑
j=1

ϕλ(j)π(j) ≥ 0.

This leads to π(ϕλ) > 0 and π(ϕλ) < ϕλ(i), which implies L(λ) < λ. That means
L has no fixed point on (λGπ,ν ,∞). The lower bound of (1) follows immediately

from Theorem 4.3. For (2), set λ∗ = limn→∞ Ln(λ) ≥ λGπ,ν . As a consequence of

(1), L is continuous on (λGπ,ν ,∞). If λ∗ > λGπ,ν , then λ∗ is a fixed point of L, a

contradiction! Hence, λ∗ = λGπ,ν . �
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5. A numerical experiment

In this section, we illustrate the algorithm (A2) on a specific Metropolis chain.
The Metropolis algorithm introduced by Metropolis et al. in 1953 is a widely used
construction that produces a Markov chain with a given stationary distribution π.
Let π be a positive probability measure on V and K be an irreducible Markov
transition matrix on V . For simplicity, we assume that K(x, y) = K(y, x) for all
x, y ∈ V . The Metropolis chain evolves in the following way. Given the initial
state x, select a state, say y, according to K(x, ·) and compute the ratio A(x, y) =
π(y)/π(x). If A(x, y) ≥ 1, then move to y. If A(x, y) < 1, then flip a coin with
probability A(x, y) on heads and move to y if the head appears. If the coin lands
on tails, stay at x. Accordingly, if M is the transition matrix of the Metropolis
chain, then

M(x, y) =


K(x, y) if A(x, y) ≥ 1, x ̸= y

K(x, y)A(x, y) if A(x, y) < 1

K(x, x) +
∑

z:A(x,z)<1

K(x, z)(1−A(x, z)) if x = y
.

It is easy to check π(x)M(x, y) = π(y)M(y, x). AsK is irreducible,M is irreducible.
Moreover, if π is not uniform, then M(x, x) > 0 for some x ∈ V . This implies that
M is aperiodic and, consequently, M t(x, y) → π(y) and e−t(I−M)(x, y) → π(y) as
t → ∞. For further information on Metropolis chains, see [5] and the references
therein.

For n ≥ 1, let Gn = (Vn, En) be a graph with Vn = {0,±1, ...,±n} and En =
{{i, i+1} : i = −n, ..., n−1}. Suppose thatKn is the transition matrix of the simple
random walk on Vn, that is, Kn(−n,−n) = Kn(n, n) = 1/2 and Kn(i, i + 1) =
Kn(i + 1, i) = 1/2 for all −n ≤ i < n. For a > 0, let π̌n,a, π̂n,a be probabilities on
Vn = {0,±1, ...,±n} given by

π̌n,a(i) = čn,a(|i|+ 1)a, π̂n,a(i) = ĉn,a(n− |i|+ 1)a,

where čn,a and ĉn,a are normalizing constants. It is easy to compute that

(5.1) cn,a/2 ≤ 1/ĉn,a < 1/čn,a ≤ 2cn,a,

where

cn,a =
(n+ 1)a+1

a+ 1
+ (n+ 1)a.

The Metropolis chains, Ǩn,a and K̂n,a, for π̌n,a and π̂n,a based on the simple random
walk Kn have transition matrices given by

Ǩn,a(i, j) = Ǩn,a(−i,−j), K̂n,a(i, j) = K̂n,a(−i,−j)

and

Ǩn,a(i, j) =


1
2 if j = i+ 1, i ∈ [0, n− 1]

ia

2(i+1)a if j = i− 1, i ∈ [1, n]
(i+1)a−ia

2(i+1)a if j = i, i /∈ {0, n}
1− na

2(n+1)a if i = j = n
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and

K̂n,a(i, j) =


1
2 if j = i− 1, i ∈ [1, n]

(n−i)a

2(n−i+1)a if j = i+ 1, i ∈ [0, n− 1]
(n−i+1)a−(n−i)a

2(n−i+1)a if j = i ̸= 0

1− na

(n+1)a if i = j = 0

.

Saloff-Coste [16] discussed the above chains and obtained the correct order of

the spectral gaps. Let λ̌n,a, λ̂n,a denote the spectral gaps of Ǩn,a, K̂n,a. Referring
to the recent work in [4], one has

1/(4C) ≤ λ ≤ 1/C,

where (λ,C) is any of (λ̌n,a, Čn(a)) and (λ̂n,a, Ĉn(a)), and

Čn(a) = 2 max
1≤i≤n

i−1∑
j=0

(j + 1)−a

 n∑
j=i

(j + 1)a

 ,

and

Ĉn(a) = 2 max
1≤i≤n

i−1∑
j=0

(j + 1)a

 n−1∑
j=i−1

(j + 1)−a

 .

Theorem 5.1. Let λ̌n,a, λ̂n,a be spectral gaps for Ǩn,a, K̂n,a. Then,

1

8η−a(1, n)ηa(2, n+ 1)
≤ λ̌n,a ≤ 2

η−a(1, n)ηa(2, n+ 1)
,

and

1

64ηa(1, ⌈n/2⌉)η−a(⌈n/2⌉, n)
≤ λ̂n,a ≤ 1

2ηa(1, ⌈n/2⌉)η−a(⌈n/2⌉, n)
.

where ηa(k, l) =
∑l

i=k i
a.

Proof of Theorem 5.1. The bound for λ̌n,a follows immediately from the fact

η−a(1, n)ηa(2, n+ 1)

2
≤ Čn(a) ≤ 2η−a(1, n)ηa(2, n+ 1).

For λ̂n,a, note that

Ĉn(a) = 2 max
n/2≤i≤n

i−1∑
j=0

(j + 1)a

 n−1∑
j=i−1

(j + 1)−a

 .

Taking i = ⌈n/2⌉ yields the upper bound. For the lower bound, we write

Ĉn(a) = 2 max
n/2≤i≤n

i−1∑
j=0

(
1− j

i

)a
n−i∑

j=0

(
1− j

i+ j

)a
 .

For i ≥ n/2, it is clear that

i−1∑
j=0

(
1− j

i

)a

≥
i−1∑
j=0

(
1− 2j

n

)a

≥ 1

2

n−1∑
j=0

(
1− j

n

)a

.
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Observe that, for a > 0,

(5.2)
C ′

i,n(a)

2
≤

n−i∑
j=0

(
1− j

i+ j

)a

≤ C ′
i,n(a),

where

C ′
i,n(a) = 1 +

{
i (i/n)

a−1−1
1−a if a ̸= 1

i log n
i if a = 1

.

It is clear that, for i ≥ n/2, C ′
i,n(a) ≤ 2C ′

⌈n/2⌉,n(a) and this leads to

n−i∑
j=0

(
1− j

i+ j

)a

≤ 4

n−⌈n/2⌉∑
j=0

(
1− j

⌈n/2⌉+ j

)a

.

Summarizing all above gives the desired lower bound. �

0 5 10 15 20 25 30 35 40 45 50
0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

Figure 1. These curves display the mapping m 7→
λ̌100m,aη−a(1, 100m)ηa(2, 100m + 1) in Theorem 5.1 in order
from the top a = 0.8, 0.9, 1.0, 1.1 and 1.2. The right most point
corresponds to a path of length n = 5000.

Table 1. These numbers denote λ̌n,aη−a(1, n)ηa(2, n+1) in The-
orem 5.1.

n 10000 20000 30000 40000 50000
a=0.8 0.5983 0.5960 0.5948 0.5941 0.5935
a=0.9 0.5652 0.5625 0.5610 0.5601 0.5594
a=1.0 0.5405 0.5377 0.5362 0.5353 0.5345
a=1.1 0.5235 0.5210 0.5197 0.5189 0.5183
a=1.2 0.5128 0.5109 0.5099 0.5093 0.5088
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Remark 5.1. Comparing with [16, Theorem 9.5], the bounds for λ̌n,a given in The-
orem 5.1 have a similar lower bound and an improved upper bound by a multiple

of about 1/4. For λ̂n,a, observe that

C ′′
i (a)

2
≤

i−1∑
j=0

(
1− j

i

)a

≤ C ′′
i (a),

where

C ′′
i (a) = 1 +

i− i−a

1 + a
.

Recall the constant C ′
i,n(a) in the proof of Theorem 5.1. Note that

n+ a

2(1 + a)
≤ C ′′

⌈n/2⌉(a) ≤
2(n+ a)

(1 + a)
,

and, for a > 0, a ̸= 1 and n ≥ 3,

C ′
⌈n/2⌉,n(a) ≤ 1 +

n+ 1

2(1 + a)
sup

a>0,a ̸=1

(21−a − 1)(1 + a)

1− a
≤ 3(n+ a)

1 + a
,

where the last inequality is obtained by considering the subcases a < 2 and a ≥ 2.
The above computation also applies for a = 1 and n ∈ {1, 2}. In the same spirit,
one can show that C ′

⌈n/2⌉,n(a) ≥
n+a

6(1+a) . This yields

(5.3)
(n+ a)2

6(1 + a)2
≤ Ĉn,a ≤ 12(n+ a)2

(1 + a)2
, ∀n ≥ 1.

Hence, we have λ̂n,a ≍ (1 + a)2/(n + a)2. As a consequence of (5.1) and (5.2), we
obtain that, uniformly for a > 0,

1/λ̌n,a ≍ na
((

1 +
1

n

)a

+
n

1 + a

)
(1 + v(n, a)) as n→ ∞,

where v(n, 1) = log n and v(n, a) = (n1−a − 1)/(1− a) for a ̸= 1.

Remark 5.2. Note that the lower bound in Theorem 6.1 provides the correct order
of the spectral gap for the chain Ǩn,a uniformly in a but not for K̂n,a. For instance,

if a grows with n, say a = n, then Theorem 6.1 implies 1/λ̂n,n = O(n), while (5.3)

gives 1/λ̂n,n ≍ 1.

Remark 5.3. Consider the chain in Theorem 5.1. A numerical experiment of Algo-
rithm (A2) is implemented and the data is collected in Figure 1 and Table 1. One
may conjecture that λ̌n,aη−a(1, n)ηa(2, n + 1) → c(a) as n → ∞, where c(a) is a
constant depending on a.

6. Spectral gaps for uniform measures with bottlenecks

In this section, we discuss some examples of special interests and show how the
theory developed in the previous sections can be used to bound the spectral gap. In
the first subsection, we develop a lower bound on the spectral gap in a very general
setting using the theory in Section 3. In the second subsection, we focuses on the
case of one bottleneck, where a precise estimation on the spectral gap is presented.
Those computations are based on the theoretical work in Section 2. In the third
subsection, we consider the case of multiple bottlenecks in which the exact order of
the spectral gap is determined for some special classes of chains.
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In what follows, we will use the notation π(A) to represent the summation∑
i∈A π(i) for any measure π on V and any set A ⊂ V . Given two sequences

of positive reals an, bn, we write an = O(bn) if an/bn is bounded. If an = O(bn)
and bn = O(an), we write an ≍ bn. If an/bn → 1, we write an ∼ bn.

6.1. A lower bound on the spectral gap. In this subsection, we give a lower
bound on the spectral gap in the general case.

Theorem 6.1. Let G = (V,E) be a graph with vertex set V = {0, 1, ..., n} and
edge set E = {{i, i+1}|i = 0, ..., n− 1}. Let π, ν be positive measures on V,E with
π(V ) = 1. Then,

λGπ,ν ≥ max
0≤i≤n


i−1∑

j=0

π([0, j])

ν(j, j + 1)

−1

∧

 n∑
j=i+1

π([j, n])

ν(j − 1, j)

−1
 ,

where a ∧ b := min{a, b}.

Remark 6.1. Let C be the lower of the spectral gap in Theorem 6.1. Note that, for
any positive reals, (a+ b)/2 ≤ max{a, b} ≤ a+ b. Using this fact, it is easy to see
that C ′ ≤ C ≤ 2C ′, where

C ′ = max
0≤i≤n

i−1∑
j=0

π([0, j])

ν(j, j + 1)
+

n∑
j=i+1

π([j, n])

ν(j − 1, j)

−1

.

In particular, if i0 is the median of π, that is, π([0, i0]) ≥ 1/2 and π([i0, n]) ≥ 1/2,
then

C ′ =

i0−1∑
j=0

π([0, j])

ν(j, j + 1)
+

n∑
j=i0+1

π([j, n])

ν(j − 1, j)

−1

.

Remark 6.2. Let (Xm)∞m=0 be an irreducible birth and death chain on {0, 1, ..., n}
with birth rate pi, death rate qi and holding rate ri as in (1.1). For 0 ≤ i ≤ n,
set τi = min{m ≥ 0|Xm = i} as the first passage time to state i. By the strong
Markov property, the expected hitting time to i started at 0 can be expressed as

E0τi =
i−1∑
j=0

π([0, j])

pjπ(j)
, Enτi =

n∑
j=i+1

π([j, n])

qjπ(j)
,

where π is the stationary distribution of (Xm)∞m=0. Let λ be the spectral gap for
(Xm)∞m=0. Then, λ = λGπ,ν , where G is the path with vertex set {0, ..., n} and
ν(i, i + 1) = piπ(i) = qi+1π(i + 1) for 0 ≤ i < n. The conclusion of Theorem 6.1
can be written as 1/λ ≤ min0≤i≤n{E0τi ∨ Enτi}.

Remark 6.3. The lower bound in Theorem 6.1 is not necessary the right order of
the spectral gap. See Remark 5.2.

Proof of Theorem 6.1. For λ > 0, let ξλ be the function in Definition 3.2. That is,
ξλ(0) = −1 and, for i ≥ 0,

[ξλ(i+ 1)− ξλ(i)]ν(i, i+ 1) = [ξλ(i)− ξλ(i− 1)]ν(i− 1, i)− λπ(i)ξλ(i).
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Inductively, one can show that if 1/λ >
∑ℓ−1

j=0[π([0, j])/ν(j, j + 1)], then{
0 < ξλ(i+ 1)− ξλ(i) ≤ λπ([0, i])/ν(i, i+ 1),

−1 ≤ ξλ(i+ 1) ≤ −1 + λ
∑i

j=1[π([0, j])/ν(j, j + 1)] < 0,

for 0 ≤ i ≤ ℓ−1. One may do a similar computation from the other end point and,
by Proposition 3.5, this implies

1/λGn
πn,νn

≤ max


ℓ−1∑
j=0

π([0, j])

ν(j, j + 1)
,
n−ℓ∑
j=1

π([n− j + 1, n])

ν(n− j, n− j + 1)

 .

Taking the minimum over 1 ≤ ℓ ≤ n gives the desired inequality. �

6.2. One bottleneck. For n ≥ 1, let Gn = (Vn, En) be the path on {0, 1, ..., n}
and set πn ≡ 1/(n + 1) and νn ≡ 1/(n + 1) with C > 0. Using Feller’s method in
[11, Chapter XVI.3], one can show that the eigenvalues ofMGn

πn,νn
are 2(1−cos iπ

n+1 )
for 0 ≤ i ≤ n.

Theorem 6.2. For n ≥ 1, let ϵn > 0, 1 ≤ xn ≤ ⌈n/2⌉ and set πn ≡ 1/(n+ 1),

(6.1) νxn
n (xn − 1, xn) =

ϵn
n+ 1

, νxn
n (i− 1, i) =

1

n+ 1
, ∀i ̸= xn.

Then, the spectral gap are bounded by

1

n2/4 + xn/ϵn
≤ λGπn,ν

xn
n

≤ min

{
2

(
1− cos

π

n− xn + 1

)
,
ϵn
xn

}
.

In particular, λGn

πn,ν
xn
n

≍ min{1/n2, ϵn/xn}.

Proof of Theorem 6.2. The lower bound is immediate from Theorem 6.1 by choos-
ing i = ⌈n/2⌉ in the computation of the maximum. For the upper bound, we set
λn = 1− cos π

n+1 and let fn be the function on Vn−xn defined by fn(0) = −1 and,
for 0 ≤ i ≤ n− xn − 1,

fn(i+ 1) = fn(i) +
[fn(i)− fn(i− 1)]νn−xn(i− 1, i)− 2λn−xnπn−xn(i)fn(i)

νn−xn(i, i+ 1)
.

By Proposition 2.3, Eνn−xn
(fn, fn) = 2λn−xn

Varπn−xn
(fn) and πn−xn

(fn) = 0. Let
gn be the function on Vn defined by gn(n − i) = fn(i) for 0 ≤ i ≤ n − xn and
gn(i) = fn(n− xn) for 0 ≤ i < xn. A direct computation shows that

(n+ 1)Eνxn
n

(gn, gn) = (n− xn + 1)Eνn−xn
(fn, fn)

and

(n+ 1)Varπn
(gn, gn) = (n− xn + 1)Varπn−xn

(fn) +
xn(n− xn + 1)

n+ 1
f2n(n− xn).

This implies λGn

πn,ν
xn
n

≤ 2λn−xn . On the other hand, using the test function,

hn(i) = n − xn + 1 for 0 ≤ i < xn and hn(i) = −xn for xn ≤ i ≤ n, one has
Eνxn

n
(hn, hn)/Varπn(hn) = ϵn(n + 1)/[xn(n − xn + 1)] ≤ ϵn/xn. This finishes the

proof. �

The next theorem has a detailed description on the coefficient of the spectral
gap. The proof is based on Section 3, particularly Proposition 3.11 and Remark
3.10, and is given in the appendix.



28 G.-Y. CHEN AND L. SALOFF-COSTE

Theorem 6.3. For n ≥ 1, let xn, ϵn, πn, ν
xn
n be as in Theorem 6.2. Suppose

xn/(ϵnn
2) → a ∈ [0,∞] and xn/n→ b ∈ [0, 1/2].

(1) If a <∞ and b = 0, then λGn

πn,ν
xn
n

∼ min{π2, a−2}n−2.

(2) If a < ∞ and b ∈ (0, 1/2], then λGn

πn,ν
xn
n

∼ Cn−2, where C is the unique

positive solution of the following equation.

1 + 4 log 2− π2

6
− π2aC

1− b
− bC

∞∑
i=1

(1− b)i2 − bC

(i2 − C)[(1− b)2i2 − b2C]
= 0.

(3) If a = ∞, then λGn

πn,ν
xn
n

∼ ϵn/xn.

6.3. Multiple bottlenecks. In this subsection, we consider paths with multiple
bottlenecks. As before, Gn = (Vn, En) with Vn = {0, 1, ..., n} and En = {{i, i +
1}|i = 0, ..., n − 1}. Let k be a positive integer and xn = (xn,1, ..., xn,k) be a k-
vector satisfying xn,i ∈ Vn and xn,1 ≥ 1 and xn,i < xn,i+1 for 1 ≤ i < k. Let
ϵn = (ϵn,1, ..., ϵn,k) be a vector with positive entries and νxn

n be the measure on En

given by

(6.2) νxn
n (i− 1, i) =

{
1/(n+ 1) if i /∈ {xn,1, ..., xn,k}
ϵn,j/(n+ 1) if i = xn,j , 1 ≤ j ≤ k

.

Theorem 6.4. Let Gn = (Vn, En) be the path on {0, ..., n}. For 0 ≤ k ≤ n, let
πn be the uniform probability on Vn and νxn

n be the measure on En given by (6.2).
Then,

min{1/(4n2), Cn,1/2} ≤ λGn

πn,ν
xn
n

≤ min

{
2

(
1− cos

π

n− k + 1

)
, Cn,2

}
,

where

Cn,1 =

(
n2

4
+

k∑
i=1

min{xn,i, n− xn,i + 1}
(

1

ϵn,i
− 1

))−1

and

Cn,2 = min
0≤m1≤m2≤n


(n+ 1)

m2∑
i=m1

1/ϵn,i∑
m1≤i≤j≤m2

xn,i(n− xn,j + 1)/(ϵn,iϵn,j)

 .

Remark 6.4. Observe that, in Theorem 6.4, 1− cos 2π
n−k+1 ≍ n−2 and

Cn,2 ≤ min
1≤j≤k

{
ϵn,j

min{xn,j , n− xn,j + 1}

}
= min

{
min

j:xn,j≤n
2

ϵn,j
xn,j

, min
j:xn,j>

n
2

ϵn,j
n− xn,j + 1

}
.

Proof of Theorem 6.4. We first prove the upper bound. Let f1 be a function on
{0, 1, ..., n} satisfying f(xn,j − 1) = f(xn,j) for 1 ≤ i ≤ k and f2 be a function on
{0, ..., n − k} obtained by identifying points xn,i − 1 and xn,i for 1 ≤ i ≤ k. By
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setting f2 as a minimizer for λ
Gn−k
πn−k,νn−k with πn(f1) = 0, we obtain

2

(
1− cos

2π

n− k + 1

)
=

Eνn−k
(f2, f2)

Varπn−k
(f2)

≥
Eνn−k

(f2, f2)

πn−k(f22 )

≥ Eνn(f1, f1)

πn(f21 )
=

Eνn(f1, f1)

Varπn(f1)
.

To see the other upper bound, let fj be the function on Vn satisfying gj(i) = −(n−
xn,j +1) for 0 ≤ i ≤ xn,j −1 and gj(i) = xn,j for xn,j ≤ i ≤ n. Computations show
that πn(gj) = 0, πn(gigj) = xn,i(n−xn,j+1) for i ≤ j, and Eνn(gj , gj) = ϵn,j(n+1).

Set g =
∑k

j=1 ajgj . As a consequence of the above discussion, we obtain

Eνn(g, g)

Varπn(g)
=

(n+ 1)
∑k

i=1 a
2
i ϵn,i

2
∑

i<j aiajxn,i(n− xn,j + 1) +
∑k

i=1 a
2
ixn,i(n− xn,i + 1)

.

Taking ai = 1/ϵn,i for m1 ≤ i ≤ m2 and ai = 0 otherwise gives the bound Cn,2.
The lower bound is immediate from Theorem 6.1 and Remark 6.1. �

Finally, we discuss some special cases illustrating Theorem 6.4.

Figure 2. The dashed lines denote the weak edges of ν in Theo-
rem 6.5.

r r r r r r r rp p p pr r r r r r r r r rp p p p
� -aJn

� -aJn� -Jn/a
� -Jn/a

�
��

A
AU

Most weak edges

Theorem 6.5. For n ≥ 1, let πn ≡ 1/(n+ 1) and νn be the measure in (6.2) with
kn bottlenecks satisfying n− kn ≍ n. Suppose there are In ⊂ {1, ..., kn}, a ∈ (0, 1)
and Jn > 0 such that |In| is bounded and, for i /∈ In, aJn ≤ min{xn,i, n−xn,i+1} ≤
Jn/a. Then,

λGn
πn,νn

≍ min

 1

n2
,min
i∈In

ϵn,i
min{xn,i, n− xn,i + 1}

,

(∑kn

i=1,i/∈In
1/ϵn,i

)−1

Jn

 .

Proof. It is easy to get the lower bound from Theorem 6.4, while the upper bound
is the minimum of Cn,2 over all connected components of {1, ..., ℓ} \ In and {ℓ +
1, ..., kn} \ In. �

See Figure 2 for a reference on the bottlenecks. The following are immediate
corollaries of Theorems 6.4-6.5.

Corollary 6.6 (Finitely many bottlenecks). Referring to Theorem 6.5, if kn is
bounded, then

λGn
πn,νn

≍ min

{
1

n2
, min
1≤i≤kn

ϵn,i
min{xn,i, n− xn,i + i}

}
.
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Corollary 6.7 (Bottlenecks far away the boundary). Referring to Theorem 6.5, if
n−kn ≍ n and there are a ∈ (0, 1) and Jn > 0 such that aJn < min{xn,i, n−xn,i+
1} < Jn/a for 1 ≤ i ≤ kn, then

λGn
πn,νn

≍ min

 1

n2
,

(∑kn

j=1 1/ϵn,i

)−1

Jn

 .

Corollary 6.8 (Uniformly distributed bottlenecks). Referring to Theorem 6.5, if
mini ϵn,i ≍ maxi ϵn,i and xn,i = ⌊in/kn⌋ with kn ≤ n/2, then

λGn
πn,νn

≍ min

{
1

n2
,
ϵn,1
nkn

}
.

Remark 6.5. Note that the assumption of the uniformity of π and ν, except at the
bottlenecks, can be relaxed by using a comparison argument.

Appendix A. Techniques and proofs

We start with an elementary lemma.

Lemma A.1. Let a > 0 and f : [a,∞) → R be a continuous function satisfying
f(a) = a and f(x) ∈ [a, x) for x > a. For b > a, set Cb = supa≤x≤b{(f(x) −
a)/(x− a)}. Then, Cb < 1 and a ≤ fn(b) ≤ a+ Cn

b (b− a) for n ≥ 0. Moreover, if
f is bounded on [a,∞), then a ≤ fn(x) ≤ a+ Cn(x− a) for n ≥ 0 and x ≥ a with
C = supa≤t<∞{(f(t)− a)/(t− a)} < 1.

Lemma A.2. Let (ai, bi, ci)
∞
i=1 be sequences of reals with bi > 0 and ci > 0. For

n ≥ 1 and t ∈ R, let

Mn(t) =



a1 − c1t 1 0 0 · · · 0

b1 a2 − c2t 1 0
...

0 b2
. . .

. . .
. . .

...

0 0
. . .

. . .
. . . 0

...
. . .

. . . an−1 − cn−1t 1
0 · · · · · · 0 bn−1 an − cnt


.

Then, there are n distinct real roots for detMn(t) = 0, say t
(n)
1 < · · · < t

(n)
n , and

t
(n+1)
j < t

(n)
j < t

(n+1)
j+1 , ∀1 ≤ j ≤ n, n ≥ 1.

Furthermore, if a1 ≥ 1 and ai+1 ≥ 1 + bi, then t
(n)
1 > 0 for all n ≥ 1.

To prove Lemma A.2, we need the following statement.
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Lemma A.3. Fix n > 0 and, for i ≤ 1 ≤ n, let ai, bi, di be reals with bi > 0 and
di ̸= 0. Consider the following matrix

(A.1) M =



a1 d1 0 0 · · · 0

d−1
1 b1 a2 d2 0

...

0 d−1
2 b2 a3

. . .
. . .

...

0 0
. . .

. . .
. . . 0

...
. . .

. . . an−1 dn−1

0 · · · · · · 0 d−1
n−1bn−1 an


.

Then, the eigenvalues of M are distinct reals and independent of d1, ..., dn−1. Fur-
thermore, if a1 ≥ 1 and ai+1 ≥ 1 + bi, then all eigenvalues of M are positive.

Proof of Lemma A.3. Let X,Y be diagonal matrices with X11 = Y11 = 1, Xii =
d1d1 · · · di−1 and Yii = (b1b2 · · · bi−1)

−1/2(d1d2 · · · di−1) for i > 1. One can show
that

XMX−1 =



a1 1 0 0 · · · 0

b1 a2 1 0
...

0 b2 a3
. . .

. . .
...

0 0
. . .

. . .
. . . 0

...
. . .

. . . an−1 1
0 · · · · · · 0 bn−1 an


.

Since XMX−1 is independent of the choice of d1, ..., dn−1, the eigenvalues of M
are independent of d1, ..., dn−1. Note that YMY −1 is Hermitian. This implies that
the eigenvalues of M are all real. As M is tridiagonal with non-zero entries in
the superdiagonal, the rank of M − λI is either n − 1 or n. This implies that the
eigenvalues of M are all distinct.

Next, assume that a1 ≥ 1 and ai+1 ≥ 1+ bi. Let (YMY −1)i be the leading i× i
principal matrices of YMY −1. By induction, one can prove that det(YMY −1)i =∏i

j=1 ℓj , where ℓ1 = a1 and ℓj+1 = aj+1 − bj/ℓj for 1 ≤ j < n. By the assumption

at the beginning of this paragraph, ℓj ≥ 1 for all 1 ≤ j < n and det(YMY −1)i > 0
for all 1 ≤ i ≤ n. As the leading principal matrices have positive determinants,
(YMY −1) is positive definite. This proves that all eigenvalues of M are positive.

�

Proof of Lemma A.2. We prove this lemma by induction. For n = 1, it is clear that

t
(1)
1 = a1/c1 is the root for detM1(t). For n = 2, note that detM2(t) is a quadratic

function that tends to infinity as |t| → ∞. Since detM2(t
(1)
1 ) = −b1 < 0, the

polynomial, detM2(t), has two real roots, say t
(2)
1 < t

(2)
2 , satisfying t

(2)
1 < t

(1)
1 < t

(2)
2 .

Now, we assume that, for some n ≥ 1, detMn(t) and detMn+1(t) have reals roots

(t
(n)
i )ni=1 and (t

(n+1)
i )n+1

i=1 satisfying t
(n+1)
i < t

(n)
i < t

(n+1)
i+1 for 1 ≤ i ≤ n. Clearly,

detMn(t) → ∞ as t→ −∞. This implies

detMn(t
(n+1)
2k+2 ) < 0 < detMn(t

(n+1)
2k+1 ), ∀k ≥ 0.
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Observe that detMn+2(t) = (an+2−cn+2t) detMn+1(t)−bn+1 detMn(t). Replacing

t with t
(n+1)
i yields

detMn+2(t
(n+1)
2k+2 ) > 0 > detMn+2(t

(n+1)
2k+1 ), ∀k ≥ 0.

This proves that detMn+2(t) has (n+ 2) distinct real roots with the desired inter-
lacing property.

For the second part, assume that a1 ≥ 1 and ai+1 ≥ 1 + bi for all i ≥ 1. For

n = 1, it is obvious that t
(1)
1 > 0. Suppose t

(n)
1 > 0. According to the first part, we

have t
(n+1)
2 > t

(n)
1 > 0. By Lemma A.3, detMn+1(0) > 0, which implies t

(n+1)
1 ̸= 0.

As it is known that detMn+1(t) < 0 for t ∈ (t
(n+1)
1 , t

(n+1)
2 ), it must be the case

t
(n+1)
1 > 0. Otherwise, there will be another root for detMn+1(t) between t

(n+1)
1

and 0, which is a contradiction. �

Proof of Theorem 6.3. For convenience, we set λmn = 1−cos mπ
n+1 for 1 ≤ m ≤ n and

let Ai(λ) be the i-by-i tridiagonal matrix with entries (Ai(λ))kl = 1 for |k − l| = 1

and (Ai(λ))kk = 2− λ. For 1 ≤ j ≤ i, let Bj
i (λ) be the matrix equal to Ai except

the (j, j)-entry, which is defined by (Bj
i (λ, ϵ))jj = 2−λ/ϵ. By Remark 3.9, λGn

πn,ν
xn
n

is the smallest root of detBxn
n (λ, ϵn) = 0 and (λn,m)nm=1 are roots of detAn(λ) = 0.

Note that, for 1 ≤ j ≤ n,

detBj
n(λ, ϵ)

detAj−1(λ) detAn−j(λ)
= ∆j

n(λ, ϵ) = 2− λ/ϵ−Rj−1(λ)−Rn−j(λ),

where detA0(λ) := 1, detA−1(λ) := 0 and

Rj(λ) =
detAj−1(λ)

detAj(λ)
=

∏j−1
i=1 (2λ

i
j−1 − λ)∏j

i=1(2λ
i
j − λ)

.

To prove this theorem, one has to determine the sign of ∆j
n(λ, ϵ).

Let ℓn = δn/n
2 with δn → 0. As n→ ∞,

log
2λin − ℓn

2λin
= − δn

2λinn
2
(1 + o(1)),

where o(1) is uniform for 1 ≤ i ≤ n. Note that
∏j

i=1(2λ
i
j) = detAj(0) = j + 1.

This implies

logRn(ℓn) = log
n

n+ 1
+

(
n∑

i=1

1

λinn
2
−

n−1∑
i=1

1

λin−1(n− 1)2

)
δn(1 + o(1))

2

= log
n

n+ 1
+O

(
δn
n

)
.

By a similar reasoning, one can prove that logRj(ℓn) = log j
j+1 + O(δn/n) for

bounded j. This shows that, for jn ∈ {1, ..., n} and ℓn = o(j−2
n ),

(A.2) Rjn(ℓn) = 1− 1

jn + 1
+O(jnℓn), as n→ ∞.
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Next, we compute Rjn(2Cnλ
1
jn
) with Cn → C ∈ (0, 1) and jn → ∞. Note that, for

n large enough,

(A.3)

logRjn(2Cnλ
1
jn) =

jn−1∑
i=1

λijn−1 − λijn
λijn

− 1

2

jn−1∑
i=1

(
λijn−1 − λijn

λijn

)2

+ Cn

jn−1∑
i=1

λ1jn(λ
i
jn−1 − λijn)

(λijn − Cnλ1jn)λ
i
jn

− log 4 +O(j−2
n ).

Calculus shows that

jn−1∑
i=1

(
λijn−1 − λijn

λijn

)2

=
1

πjn

∫ π

0

θ2 sin2 θ

(1− cos θ)2
dθ +O(j−2

n )

=
8 log 2− π2/3

jn
+O(j−2

n )

and
jn−1∑
i=1

λ1jn(λ
i
jn−1 − λijn)

(λijn − Cλ1jn)λ
i
jn

=
2

jn

∞∑
i=1

1

i2 − C
+O(j−2

n ).

Observe that, as n→ ∞,

log
jn

jn + 1
= logRjn(0) =

jn−1∑
i=1

λijn−1 − λijn
λ1jn

− log 4 +O(j−2
n ).

Putting this back into (A.3) implies

(A.4) Rjn(2Cnλ
1
jn) = 1 +

(
−1− 4 log 2 +

π2

6
+ Cn

∞∑
i=1

1

i2 − Cn

)
1

jn
+O(j−2

n ).

We consider the following two cases.
Case 1: xn = O(ϵnn

2). In this case, Theorem 6.2 implies that λGn

πn,ν
xn
n

≍ n−2. We

assume further that xn/(ϵnn
2) → a and xn/n→ b with a ∈ [0,∞) and b ∈ [0, 1/2].

Let Cn → C ∈ (0, 1). Replacing jn with xn − 1 in (A.2) and with n− xn in (A.4)
yields that, for b = 0,

∆xn
n (2Cnλ

1
n−xn

, ϵn) =
(1− π2aC)(1 + o(1))

xn

and, for b ∈ (0, 1/2],

∆xn
n (2Cnλ

1
n−xn

, ϵn) =

(
1 + 4 log 2− π2

6
− π2aC

1− b
− bCκb(C)

)
(1 + o(1))

b(1− b)n
,

where κt(c) =
∑∞

i=1
(1−t)i2−tc

(i2−c)[(1−t)2i2−t2c] . This proves (1) and (2).

Case 2: ϵn2 = o(xn). This is exactly (3) and the result is immediate from Theorem
6.2. �
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logarithmic Sobolev type. In Séminaire de Probabilités XLII, volume 1979 of Lecture Notes
in Math., pages 103–130. Springer, Berlin, 2009.

[16] L. Saloff-Coste. Simple examples of the use of Nash inequalities for finite Markov chains. In
Stochastic geometry (Toulouse, 1996), volume 80 of Monogr. Statist. Appl. Probab., pages
365–400. Chapman & Hall/CRC, Boca Raton, FL, 1999.

[17] Jeffrey Scott Silver. Weighted Poincare and exhaustive approximation techniques for scaled

Metropolis-Hastings algorithms and spectral total variation convergence bounds in infinite
commutable Markov chain theory. ProQuest LLC, Ann Arbor, MI, 1996. Thesis (Ph.D.)–
Harvard University.

[18] Gerald Teschl. Oscillation theory and renormalized oscillation theory for Jacobi operators. J.

Differential Equations, 129(2):532–558, 1996.
[19] Gerald Teschl. Jacobi operators and completely integrable nonlinear lattices, volume 72 of

Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI,

2000.

1Department of Applied Mathematics, National Chiao Tung University, Hsinchu 300,
Taiwan

E-mail address: gychen@math.nctu.edu.tw

2Malott Hall, Department of Mathematics, Cornell University, Ithaca, NY 14853-
4201

E-mail address: lsc@math.cornell.edu



ON THE MIXING TIME AND SPECTRAL GAP FOR BIRTH

AND DEATH CHAINS

GUAN-YU CHEN1 AND LAURENT SALOFF-COSTE2

Abstract. For birth and death chains, we derive bounds on the spectral gap
and mixing time in terms of birth and death rates. Together with the results

of Ding et al. in [15], this provides a criterion for the existence of a cutoff
in terms of the birth and death rates. A variety of illustrative examples are
treated.

1. Introduction

Let Ω be a countable set and (Ω,K, π) be an irreducible Markov chain on Ω with
transition matrix K and stationary distribution π. Let I be the identity matrix
indexed by Ω and

Ht = e−t(I−K) =
∞∑
i=0

e−ttiKi/i!

be the associated semigroup which describes the corresponding natural continuous
time process on Ω. For δ ∈ (0, 1), set

(1.1) Kδ = δI + (1− δ)K.

Clearly, Kδ is similar to K but with an additional holding probability depending
of δ. We call Kδ the δ-lazy walk or δ-lazy chain of K. It is well-known that if K is
irreducible with stationary distribution π, then

lim
m→∞

Km
δ (x, y) = lim

t→∞
Ht(x, y) = π(y), ∀x, y ∈ Ω, δ ∈ (0, 1).

In this paper, we consider convergence in total variation. The total variation
between two probabilities µ, ν on Ω is defined by ∥µ−ν∥TV = sup{µ(A)−ν(A)|A ⊂
Ω}. For any irreducible K with stationary distribution π, the (maximum) total
variation distance is defined by

(1.2) dTV(m) = sup
x∈Ω

∥Km(x, ·)− π∥TV,

and the corresponding mixing time is given by

(1.3) TTV(ϵ) = inf{m ≥ 0|dTV(m) ≤ ϵ}, ∀ϵ ∈ (0, 1).

We write d
(c)
TV, T

(c)
TV for the total variation distance and mixing time for the contin-

uous semigroup and d
(δ)
TV, T

(δ)
TV for the δ-lazy walk.

2000 Mathematics Subject Classification. 60J10,60J27.
Key words and phrases. Birth and death chains, Cutoff phenomenon.
1Partially supported by NSC grant NSC100-2115-M-009-003-MY2.
2Partially supported by NSF grant DMS-1004771.
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A birth and death chain on {0, 1, ..., n} with birth rate pi, death rate qi and
holding rate ri is a Markov chain with transition matrix K given by

K(i, i+ 1) = pi, K(i, i− 1) = qi, K(i, i) = ri, ∀0 ≤ i ≤ n,

where pi + qi + ri = 1 and pn = q0 = 0. It is obvious that K is irreducible if
and only if piqi+1 > 0 for 0 ≤ i < n. Under the assumption of irreducibility, the
unique stationary distribution π of K is given by π(i) = c(p0 · · · pi−1)/(q1 · · · qi),
where c is a positive constant such that

∑n
i=0 π(i) = 1. The following theorem

provides a bound on the mixing time using the birth and death rates and is treated
in Theorems 3.1 and 3.5.

Theorem 1.1. Let K be an irreducible birth and death chain on {0, 1, ..., n} with
birth, death and holding rates pi, qi, ri. Let i0 be a state satisfying π([0, i0]) ≥ 1/2
and π([i0, n]) ≥ 1/2, where π(A) =

∑
i∈A π(i), and set

t = max

{
i0−1∑
k=0

π([0, k])

π(k)pk
,

n∑
k=i0+1

π([k, n])

π(k)qk

}
.

Then, for any δ ∈ [1/2, 1),

min
{
T

(c)
TV(1/10), T

(δ)
TV (1/20)

}
≥ t

6
,

and

max
{
T

(c)
TV(ϵ), T

(δ)
TV (ϵ)

}
≤ 18t

ϵ2
, ∀ϵ ∈ (0, 1).

The authors of [15] derive a similar upper bound. Note that if (Xm)∞m=0 is a
Markov chain on Ωn with transition matrix K and τi := min{m ≥ 0|Xm = i}, then
t = max{E0τi0 ,Enτi0}, where Ei denotes the conditional expectation given X0 = i.
See Lemma 3.2 for details.

A sharp transition phenomenon, known as cutoff, was observed by Aldous and
Diaconis in early 1980s. See e.g. [10, 5] for an introduction and a general review of
cutoffs. In total variation, a family of irreducible Markov chains (Ωn,Kn, πn)

∞
n=1 is

said to present a cutoff if

(1.4) lim
n→∞

Tn,TV(ϵ)

Tn,TV(η)
= 1, ∀0 < ϵ < η < 1.

The family is said to present a (tn, bn) cutoff if bn = o(tn) and

|Tn,TV(ϵ)− tn| = O(bn), ∀0 < ϵ < 1.

The cutoff for the associated continuous semigroups is defined in a similar way.
Given a family F of irreducible Markov chains, we write Fc and Fδ for the families
of corresponding continuous time chain and δ-lazy discrete time chains.

Let F = {(Ωn,Kn, πn)|n = 1, 2, ...} be a family of birth and death chains, where
Ωn = {0, 1, ..., n} and Kn has birth rate pn,i, death rate qn,i and holding rate rn,i.
Suppose that Kn is irreducible with stationary distribution πn. For the family
{(Ωn,Kn, πn)|n = 1, 2, ...}, Ding et al. [15] showed that, in the discrete time case
and assuming infi,n rn,i > 0, the cutoff in total variation exists if and only if the
product of the total variation mixing time and the spectral gap, i.e. the smallest
non-zero eigenvalue of I −K, tends to infinity. There is also a similar version for
the continuous time case. In [6], we use the results of [13, 15] to provide another
criterion on the cutoff using the eigenvalues of Kn. In both cases, the spectral gap
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is needed to determine if there is a cutoff. The following theorem provides a bound
on the spectral gap using the birth and death rates.

Theorem 1.2. Consider an irreducible birth and death chain K on {0, 1, ..., n} with
birth, death and holding rates, pi, qi, ri. Let π and λ be the stationary distribution
and spectral gap of K and set

ℓ = max

max
j:j<i0

i0−1∑
k=j

π([0, j])

π(k)pk
, max
j:j>i0

j∑
k=i0+1

π([j, n])

π(k)qk

 ,

where i0 is a state such that π([0, i0]) ≥ 1/2 and π([i0, n]) ≥ 1/2. Then,

1

4ℓ
≤ λ ≤ 2

ℓ
.

The above theorem is motivated by [16], where the author considers the spectral
gap of birth and death chains on Z. We refer the reader to [16] and the references
therein for more information. Note that if t, ℓ are the constants in Theorem 1.1-1.2,
then t ≥ ℓ. Based on the results in [15], we obtain a theorem regarding cutoffs for
birth and death chains.

Theorem 1.3. Consider a family of irreducible birth and death chains

F = {(Ωn,Kn, πn)|n = 1, 2, ...},
where Ωn = {0, 1, ..., n} and Kn has birth, death and holding rates, pn,i, qn,i, rn,i.
For n ≥ 1, let in ∈ {0, ..., n} be a state satisfying πn([0, in]) ≥ 1/2 and πn([in +
1, n]) ≥ 1/2 and set

tn = max

{
in−1∑
k=0

πn([0, k])

πn(k)pn,k
,

n∑
k=in+1

πn([k, n])

πn(k)qn,k

}
.

and

ℓn = max

 max
j:j<in

in−1∑
k=j

πn([0, j])

πn(k)pn,k
, max
j:j>in

j∑
k=in+1

πn([j, n])

πn(k)qn,k

 ,

Then, for any ϵ ∈ (0, 1/2) and δ ∈ (0, 1), there is a constant C = C(ϵ, δ) > 1 such
that

C−1tn ≤ min{T (c)
n,TV(ϵ), T

(δ)
n,TV(ϵ)} ≤ max{T (c)

n,TV(ϵ), T
(δ)
n,TV(ϵ)} ≤ Ctn,

for n large enough. Moreover, the following are equivalent.

(1) Fc has a total variation cutoff.
(2) For δ ∈ (0, 1), Fδ has a total variation cutoff.
(3) tnℓn → ∞.

The above theorem is immediate from Theorems 1.1, 1.2, 2.2 and 2.3. The
selection of in can be relaxed. See Theorem 3.6 for a precise statement. By the
results in [6], Theorem 1.3 also holds when tn is replaced by the following constant

sn =
1

λn,1
+ · · ·+ 1

λn,n
,

where λn,1, ..., λn,n are nonzero eigenvalues of I −Kn. Furthermore, Theorem 1.3
also holds in separation with δ ∈ [1/2, 1). We will use Theorem 1.3 to study the
cutoff of several examples including the following theorem which concerns random
walks with bottlenecks. It is a special case of Theorem 4.8.



4 G.-Y. CHEN AND L. SALOFF-COSTE

Theorem 1.4. For n ≥ 1, let Ωn = {0, 1, ..., n}, πn ≡ 1/(n + 1) and Kn be an
irreducible birth and death chain on Ωn satisfying

Kn(i− 1, i) = Kn(i, i− 1) =

{
1/2 for i /∈ {xn,1, ..., xn,kn

}
ϵn for i = xn,j , 1 ≤ j ≤ kn

,

where 0 ≤ kn ≤ n, ϵn ∈ (0, 1/2], xn,1, ..., xn,kn ∈ Ωn are distinct and the holding
rate at i is adjusted accordingly. Set tn = n2 + an/ϵn, where

an =

kn∑
i=1

min{xn,i, n+ 1− xn,i},

and set

bn = max
j:j≤n/2

{(j + 1)× |{1 ≤ i ≤ kn : j < xn,i ≤ n− j}|}.

Then, for any ϵ ∈ (0, 1/2) and δ ∈ (0, 1), there is C = C(ϵ, δ) > 1 such that

C−1tn ≤ min{T (c)
n,TV(ϵ), T

(δ)
n,TV(ϵ)} ≤ max{T (c)

n,TV(ϵ), T
(δ)
n,TV(ϵ)} ≤ Ctn,

for n large enough.
Moreover, the following are equivalent.

(1) Fc has a total variation cutoff.
(2) For δ ∈ (0, 1), Fδ has a total variation cutoff.
(3) an/(n

2ϵn) → ∞ and an/bn → ∞.

The remaining of this article is organized as follows. In Section 2, the concepts
of cutoffs and mixing times and fundamental results are reviewed. In Section 3,
we give a proof for Theorems 1.1 and 1.2. For illustration, we consider several
nontrivial examples in Section 4, where the mixing time and cutoff are determined.
Note that the assumption regarding birth and death rates in Sections 3 and 4 can
be relaxed using the comparison technique in [11, 12].

2. Backgrounds

Throughout this paper, for any two sequences sn, tn of positive numbers, we
write sn = O(tn) if there are C > 0, N > 0 such that |sn| ≤ C|tn| for n ≥ N . If
sn = O(tn) and tn = O(sn), we write sn ≍ tn. If tn/sn → 1 as n → ∞, we write
tn ∼ sn.

2.1. Cutoffs and mixing time. Consider the following definitions.

Definition 2.1. Referring to the notation in (1.2), a family F = {(Ωn,Kn, πn)|n =
1, 2, ...} is said to present a total variation

(1) precutoff if there is a sequence tn and B > A > 0 such that

lim
n→∞

dn,TV(⌈Btn⌉) = 0, lim inf
n→∞

dn,TV(⌊Atn⌋) > 0.

(2) cutoff if there is a sequence tn such that, for all ϵ > 0,

lim
n→∞

dn,TV(⌈(1 + ϵ)tn⌉) = 0, lim
n→∞

dn,TV(⌊(1− ϵ)tn⌋) = 1.

In definition 2.1(2), tn is called a cutoff time. The definition of a cutoff for
continuous semigroups is similar with ⌈·⌉ and ⌊·⌋ deleted.



ON THE MIXING TIME AND SPECTRAL GAP FOR BIRTH AND DEATH CHAINS 5

Remark 2.1. In Definition 2.1, if tn → ∞ (or equivalently Tn,TV(ϵ) → ∞ for some
ϵ ∈ (0, 1)), then the cutoff is consistent with (1.4). This is also true for cutoffs
in continuous semigroups without the assumption tn → ∞. See [4, 5] for further
discussions on cutoffs.

It is well-known that the mixing time can be bounded below by the reciprocal
of the spectral gap up to a multiple constant. We cite the bound in [6] as follows.

Lemma 2.1. Let K be an irreducible transition matrix on a finite set Ω with
stationary distribution π. For δ ∈ (0, 1), let Kδ be the δ-lazy walk given by (1.1).
Suppose (π,K) is reversible, that is, π(x)K(x, y) = π(y)K(y, x) for all x, y ∈ Ω
and let λ be the smallest non-zero eigenvalue of I −K. Then, for ϵ ∈ (0, 1/2),

T
(c)
TV(ϵ) ≥

− log(2ϵ)

λ
, T

(δ)
TV (ϵ) ≥

⌊
− log(2ϵ)

2max{1− δ, log(2/δ)}λ

⌋
,

where the second inequality requires |Ω| ≥ 2/δ.

2.2. Cutoffs for birth and death chains. Consider a family of irreducible birth
and death chains

F = {(Ωn,Kn, πn)|n = 1, 2, ...},
where Ωn = {0, 1, ..., n} and Kn has birth rate pn,i, death rate qn,i and holding rate
rn,i. We write Fc,Fδ as families of the corresponding continuous time chains and
δ-lazy discrete time chains in F . A criterion on total variation cutoffs for families
of birth and death chains was introduced in [15], which say that, for δ ∈ (0, 1),
Fc,Fδ have total variation cutoffs if and only if the product of the mixing time and
the spectral gap tends to infinity. As the total variation distance is comparable
with the separation distance, the authors of [15] identify cutoffs in total variation
and separation, where a criterion on separation cutoffs was proposed in [13]. In the
recent work [6], the cutoffs for Fc and Fδ are proved to be equivalent and this leads
to the following theorems.

Theorem 2.2. [6, Section 4] Let F = {(Ωn,Kn, πn)|n = 1, 2, ...} be a family of
irreducible birth and death chain with Ωn = {0, 1, ..., n}. For n ≥ 1, let λn,1, ..., λn,n
be nonzero eigenvalues of I −Kn and set

λn = min
1≤i≤n

λn,i, sn =
1

λn,1
+ · · ·+ 1

λn,n
.

Then, the following are equivalent.

(1) Fc has a total variation cutoff.
(2) Fδ has a total variation cutoff.
(3) Fc has a total variation precutoff.
(4) Fδ has a total variation precutoff.

(5) T
(c)
n,TV(ϵ)λn → ∞ for some ϵ ∈ (0, 1).

(6) T
(δ)
n,TV(ϵ)λn → ∞ for some ϵ ∈ (0, 1).

(7) snλn → ∞.

Theorem 2.3. [6, Section 4] Referring to Theorem 2.2, it holds true that, for
ϵ, η ∈ (0, 1/2) and δ ∈ (0, 1),

T
(c)
n,TV(ϵ) ≍ T

(δ)
n,TV(η).
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Further, if there is ϵ0 ∈ (0, 1/2) such that T
(c)
n,TV(ϵ0)λn or T

(δ)
n,TV(ϵ0)λn is bounded,

then, for any ϵ ∈ (0, 1/2) and δ ∈ (0, 1),

T
(c)
n,TV(ϵ) ≍ T

(δ)
n,TV(ϵ) ≍ λ−1

n .

2.3. A remark on the precutoff. Note that if there is no cutoff in total variation,
the approximation in Theorem 2.3 may fail for ϵ ∈ (1/2, 1). This means that, for

0 < ϵ < 1/2 < η < 1, the orders of T
(c)
n,TV(ϵ) and T

(c)
n,TV(η) can be different. Consider

the following example. For n ≥ 3, let Ωn = {0, 1, ..., n}, Mn = ⌊n/2⌋ and

(2.1)


Kn(i, i+ 1) = Kn(i+ 1, i) = 1/2 for 0 ≤ i < n, i ̸=Mn

Kn(Mn,Mn + 1) = Kn(Mn + 1,Mn) = ϵn

Kn(0, 0) = Kn(n, n) = 1/2

Kn(Mn,Mn) = Kn(Mn + 1,Mn + 1) = 1/2− ϵn

,

with ϵn ≤ 1/2. Assume that ϵn = o(n−2). By Theorem 1.4, we have

T
(c)
n,TV(ϵ) ≍ T

(δ)
n,TV(ϵ) ≍ n/ϵn, ∀ϵ ∈ (0, 1/2), δ ∈ (0, 1).

Next, we consider the δ-lazy discrete time case with δ = 1/2. Let Kn,1/2 =
(I +Kn)/2 and K ′

n be the 1/2-lazy simple random walk on {0, 1, ...,Mn}, that is,
K ′

n(i, i+ 1) = K ′
n(i+ 1, i) = 1/4, ∀0 ≤ i < Mn

K ′
n(i, i) = 1/2, ∀0 < i < Mn

K ′
n(0, 0) = K ′

n(Mn,Mn) = 3/4

.

For n ≥ 3, set

cn = min
0≤i,j≤Mn

Kmn

n,1/2(i, j)

(K ′
n)

mn(i, j)
, Cn = max

0≤i,j≤Mn

Kmn

n,1/2(i, j)

(K ′
n)

mn(i, j)
.

Proposition 2.4. If mn ≍ n2, then

cn → 1, Cn → 1, as n→ ∞.

Proof. For ℓ ≥ 1, let (i0, i1, ..., iℓ) be a path in {0, 1, ...,Mn}. Note that

ℓ∏
k=1

Kn,1/2(ik−1, ik) ≥
(
3/4− ϵn/2

3/4

)ℓ ℓ∏
k=1

K ′
n(ik−1, ik).

This implies cn ≥ (1− 2ϵn/3)
mn ∼ 1 as n→ ∞. To see an upper bound of Cn, one

may use Lemma 4.4 in [15] to conclude that, for 0 ≤ i ≤ n and ℓ ≥ 0,{
Kℓ

n,1/2(i, j) ≥ Kℓ
n,1/2(i, j − 1) ∀1 ≤ j ≤ 0

Kℓ
n,1/2(i, j) ≥ Kℓ

n,1/2(i, j + 1) ∀i ≤ j < n
,

and, for 0 ≤ i ≤Mn and ℓ ≥ 0,{
(K ′

n)
ℓ(i, j) ≥ (K ′

n)
ℓ(i, j − 1) ∀1 ≤ j ≤ i

(K ′
n)

ℓ(i, j) ≥ (K ′
n)

ℓ(i, j + 1) ∀i ≤ j < Mn

.

By the induction, the above observation implies that, for any probabilities µ, ν on
{0, ..., n}, {0, ...,Mn} satisfying µ(i) = ν(i) for 0 ≤ i ≤Mn,

µKℓ
n,1/2(j) ≤ ν(K ′

n)
ℓ(j), ∀0 ≤ j ≤Mn, ℓ ≥ 0.

This yields Cn ≤ 1 for all n ≥ 3. �
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For ϵ ∈ (0, 1), let T ′
n,TV(ϵ) be the total variation mixing time for K ′

n. It is well-

known that, for ϵ ∈ (0, 1), T ′
n,TV(ϵ) ≍ n2. Let d

(1/2)
n,TV , d

′
n,TV be the total variation

distance for Kn,1/2,K
′
n. As a consequence of the above discussion, we obtain, for

ϵ ∈ (0, 1),

lim sup
n→∞

d
(1/2)
n,TV(T

′
n,TV(ϵ)) ≤

1

2

(
1 + lim sup

n→∞
d′n,TV(T

′
n,TV(ϵ)

)
≤ 1 + ϵ

2
.

Thus, for ϵ ∈ (1/2, 1), T
(1/2)
n,TV (ϵ) = O(n2). Note that, for mn = o(n2),

lim
n→∞

∑
i≤an

Kmn

n,1/2(0, i) = 1, ∀a > 0.

This yields n2 = O(T
(1/2)
n,TV (ϵ)) for ϵ > 0. The above discussion is also valid for the

continuous time case and any δ-lazy discrete time case. We summarizes the results
in the following theorem.

Theorem 2.5. Let F = {(Ωn,Kn, πn)|n = 1, 2, ...} be the family of birth and death
chains in (2.1) and δ ∈ (0, 1). Suppose that ϵn = o(n−2). Then, there is no total
variation cutoff for Fc and Fδ. Furthermore, for ϵ ∈ (0, 1/2),

T
(c)
n,TV(ϵ) ≍ T

(δ)
n,TV(ϵ) ≍ n/ϵn,

and, for ϵ ∈ (1/2, 1),

T
(c)
n,TV(ϵ) ≍ T

(δ)
n,TV(ϵ) ≍ n2.

Remark 2.2. Figure 1 displays the total variaton distances of the birth and death
chains on {1, 2, ..., 100} with transition matrices K1 and K2 given by

K1(i, i) = 1/2, for i /∈ {1, 50, 51, 100}
K1(i, i+ 1) = K1(i+ 1, i) = 1/4, for i < 50 or i > 51

K1(i, i) = 3/4 for k ∈ {1, 100}
K1(i, i+ 1) = K1(i+ 1, i) = 10−3 for k = 50

K1(i, i) = K1(i, i) = 3/4− 10−3 for i ∈ {50, 51}
K1(i, j) = 0 otherwise

and 
K2(i, i+ 1) = K2(i+ 1, i) = 10−2 for i = 25

K2(i, i) = 3/4− 10−2 for i ∈ {25, 26}
K2(i, j) = K1(i, j) otherwise

.

Note that each curve has only one sharp transition for dTV(t) ≤ 1/2. This is
consistent with Theorem 1.3. These examples show that multiple sharp transitions
may occur for dTV(t) > 1/2. Note also that the flat part of the curves occupy very
large time regions. For instance, the left most curve stays near the value 1/2 for t
between 103 and 106.

3. Bounds for mixing time and spectral gap

This section is dedicated to proving Theorems 1.1 and 1.2. In the first two
subsections, we treat respectively the upper and lower bounds of the total variation
mixing time. This leads to Theorem 1.1. In the third subsection, we provide a
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Figure 1. The curves display the total variation distance of the
chains in Remark 2.2, where the left most curve is for K1 and
the right most curve is for K2. The curve consists of the points
(m, dTV(100

⌊0.1×m⌋)) with m = 1, 2, ..., 50. The right most point
of each curve corresponds to dTV(t) with t = 1010.

relaxation of the choice of in in Theorem 1.3. In the last subsection, we introduce
a bound on the spectral gap which includes Theorem 1.2.

3.1. An upper bound of the mixing time. Let (Ω,K, π) be an irreducible
birth and death chain, where Ω = {0, 1, ..., n} and K has birth rate pi, death
rate qi and holding rate ri. Let (Xm)∞m=0 be a realization of the discrete time
chain. Obviously, if Nt is a Poisson process with parameter 1 and independent
of (Xm)∞m=0, then (XNt)t≥0 is a realization of the continuous time chain. For

δ ∈ [0, 1), if (B
(δ)
m )∞m=1 is a sequence of independent Bernoulli(1 − δ) trials which

are independent of (Xm)∞m=0, then Y
(δ)
m = X

B
(δ)
1 +···+B

(δ)
m

is a realization of the

δ-lazy chain. For 0 ≤ i ≤ n, we define the first passage time to i by

(3.1) τ̃i := inf{t ≥ 0|XNt = i}, τ
(δ)
i := min{m ≥ 0|Ym = i},

and simply put τi := τ
(0)
i = min{m ≥ 0|Xm = i}. Briefly, we write Pi(·) for

P(·|X0 = i) and write Ei,Vari as the expectation and variance under Pi. The main
result of this subsection is as follows.

Theorem 3.1 (Upper bound). Let (Ω,K, π) be an irreducible birth and death chain

with Ω = {0, 1, ..., n}. Let τi = τ
(0)
i be the first passage time to i defined in (3.1).

For ϵ ∈ (0, 1) and δ ∈ [1/2, 1),

(3.2) max
{
T

(c)
TV(ϵ), (1− δ)T

(δ)
TV (ϵ)

}
≤ 9(E0τi0 + Enτi0)

ϵ2
,

where i0 ∈ {0, ..., n} satisfies π([0, i0 − 1]) ≤ 1/2 and π([i0 + 1, n]) ≤ 1/2.

Remark 3.1. The authors of [6] obtain a slightly improved upper bound similar to
(3.2), which says that

max
{
T

(c)
TV(ϵ), (1− δ)T

(δ)
TV (ϵ)

}
≤ (

√
ϵ+

√
1− ϵ)(E0τi0 + Enτi0)√

ϵ
.

Comparing with (3.2), the above inequality has an improved dependence on ϵ.

To understand the right side of (3.2), we introduce the following lemma.
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Lemma 3.2. Referring to the setting in (3.1), it holds true that, for i < j,

Ei(τ
(δ)
j ) = Ei(τj)/(1− δ) and Ei(τj) = Ei(τ̃j) =

∑j−1
k=i π([0, k])/(pkπ(k)).

Proof. The proof is based on the strong Markov property. See [2, Proposition 2]
for a reference on the discrete time case, whereas the continuous time case is an
immediate result of the fact {τ̃i > t} = {τi > Nt}. �
Remark 3.2. By Theorem 3.1 and Lemma 3.2, the total variation mixing time for
the continuous time and the δ-lazy, with δ ≥ 1/2, discrete time birth and death
chain on {0, 1, ..., n} are bounded above by the following term up to a multiple
constant.

i0−1∑
k=0

π([0, k])

pkπ(k)
+

n∑
k=i0+1

π([k, n])

qkπ(k)
,

where i0 ∈ {0, ..., n} satisfies π([0, i0 − 1]) ≤ 1/2 and π([i0 + 1, n]) ≤ 1/2.

Remark 3.3. In Theorem 3.1, i0 is unique if π([0, i]) ̸= 1/2 for all 0 ≤ i ≤ n. If
π([0, j]) = 1/2, then i0 can be j or j + 1, but the right side of (3.2) is the same in
either case using Lemma 3.2.

Remark 3.4. Let K be an irreducible birth and death chain with birth, death and
holding rates pi, qi, ri and stationary distribution π. Let λ be the spectral gap of
K. As a consequence of Lemma 2.1 and theorem 3.1, we obtain, for ϵ ∈ (0, 1/2),

λ ≥ ϵ2 log(1/(2ϵ))

9

(
i0−1∑
k=0

π([0, k])

pkπ(k)
+

n∑
k=i0+1

π([k, n])

qkπ(k)

)−1

,

where i0 is such that π([0, i0− 1]) ≤ 1/2 and π([i0+1, n]) ≤ 1/2. The maximum of
ϵ2 log(1/(2ϵ)) on (0, 1/2) is attained at ϵ = 1/(2

√
e) and equal to 1/(8e). A similar

lower bound of the spectral gap is also derived in [7] with improved constant.

As a simple application of Lemma 3.2, we have

Corollary 3.3. Referring to Lemma 3.2, for i ≤ j,

Eiτj ≤
(

1

π([j, n])
− 1

)
Enτi.

Proof. By Lemma 3.2, one has

Eiτj =

j−1∑
k=i

π([0, k])

pkπ(k)
, En(τi) =

n−1∑
k=i

π([k + 1, n])

qk+1π(k + 1)
=

n−1∑
k=i

π([k + 1, n])

pkπ(k)
.

The inequality is then given by the fact π([0, k])/π([k+1, n]) = 1/π([k+1, n])−1 ≤
1/π([j, n])− 1 for k < j. �

The following proposition is the main technique used to prove Theorem 3.1.

Proposition 3.4. Referring to the setting in (3.1), it holds true that, for j < k,

d
(c)
TV(i, t) ≤ Pi(max{τ̃j , τ̃k} > t) + 1− π([j, k]),

and
d
(1/2)
TV (i, t) ≤ Pi(max{τ (1/2)j , τ

(1/2)
k } > t) + 1− π([j, k]),

In particular,

d
(c)
TV(t) ≤

E0τ̃k + Enτ̃j
t

+ 1− π([j, k])
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and

d
(1/2)
TV (t) ≤

2(E0τ
(1/2)
k + Enτ

(1/2)
j )

t
+ 1− π([j, k]).

In the above proposition, the discrete time case is discussed in Lemma 2.3 in
[15]. Our method to prove this proposition is to construct a no-crossing coupling.
We give the proof of the continuous time case for completeness and refer to [15]
for the discrete time case, where a heuristic idea on the construction of no-crossing
coupling is proposed.

Proof of Proposition 3.4. Let (Yt)t≥0 be another process corresponding to Ht with

Y0
d
= π. Set T := inf{t ≥ 0|Xt = Yt} and Zt := Yt1{t≤T} + Xt1{t>T}. Clearly,

(Xt, Zt)t≥0 is a coupling for the semigroup Ht and must be no-crossing according
to the continuous time setting. Note that T = inf{t ≥ 0|Xt = Zt} is the coupling
time of Xt and Zt. The classical coupling statement implies that

(3.3) d
(c)
TV(i, t) ≤ Pi(T > t).

See e.g. [1] for a reference. Note that Xτj = j, Xτk = k and

Pi(Xτ̃j ≤ Yτ̃j ) = π([j, n]), Pi(Xτ̃k ≥ Yτ̃k) = π([0, k]).

As Xt, Yt can not cross each other without coalescing in advance, this implies

Pi(T ≤ max{τ̃j , τ̃k}) ≥ Pi(min{τ̃j , τ̃k} ≤ T ≤ max{τ̃j , τ̃k})
≥ Pi(Xτ̃j ≤ Yτ̃j , Xτ̃k ≥ Yτ̃k) ≥ π([j, k]).

Putting this back to (3.3) gives the desired result.
For the last part, note that if i ≤ j, then τ̃j < τ̃k and, by Markov’s inequality,

this implies

Pi(max{τ̃j , τ̃k} > t) ≤ P0(τ̃k > t) ≤ E0τ̃k/t.

Similarly, for i ≥ k, one can show that

Pi(max{τ̃j , τ̃k} > t) ≤ Pn(τ̃j > t) ≤ Enτ̃j/t.

For j < i < k, we have

Pi(max{τ̃j , τ̃k} > t) ≤ Pi(τ̃j > t) + Pi(τ̃k > t) ≤ Enτ̃j + E0τ̃k
t

.

�

Proof of Theorem 3.1. Set jϵ = min{i ≥ 0|π([0, i]) ≥ ϵ/3} and kϵ = min{i ≥
0|π([0, i]) ≥ 1− ϵ/3}. By Proposition 3.4 and Lemma 3.2, the choice of j = jϵ and
k = kϵ implies that

T
(c)
TV(ϵ) ≤

3(E0τkϵ + Enτjϵ)

ϵ
.

By Corollary 3.3, one has

E0τkϵ = E0τi0 + Ei0τkϵ ≤ E0τi0 +

(
3

ϵ
− 1

)
Enτi0

and

Enτjϵ = Enτi0 + Ei0τjϵ ≤ Enτi0 +

(
3

ϵ
− 1

)
E0τi0 .

Adding up both terms gives the upper bound in continuous time case. The proof
for the (1/2)-lazy discrete time case is similar and, by Proposition 3.4, we obtain
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T
(1/2)
TV (ϵ) ≤ 18(E0τi0 + Enτi0)/ϵ

2. For δ ∈ (1/2, 1), note that Kδ = (K2δ−1)1/2.
Since the birth and death rates of K2δ−1 are 2(1 − δ)pi and 2(1 − δ)qi, the above

result and Lemma 3.2 lead to T
(δ)
TV (ϵ) ≤ 9(E0τi0 + Enτi0)/((1− δ)ϵ2). �

3.2. A lower bound of the mixing time. The goal of this subsection is to estab-
lish a lower bound on the total variation mixing time for birth and death chains.
Recall the notations in the previous subsection. Let (Xm)∞m=0 be an irreducible
birth and death chain with transition matrix K and stationary distribution π. Let
Nt be a Poisson process of parameter 1 that is independent of Xm. For 0 ≤ i ≤ n,
let τi = min{m ≥ 0|Xm = i} and τ̃i = inf{t ≥ 0|XNt = i}. Then, the total
variation mixing time satisfies

(3.4) dTV(0, t) ≥ Kt(0, [0, i− 1])− π([0, i− 1]) ≥ P0(τi > t)− π([0, i− 1])

and

(3.5) d
(c)
TV(0, t) ≥ Ht(0, [0, i− 1])− π([0, i− 1]) ≥ P0(τ̃i > t)− π([0, i− 1]).

Brown and Shao discuss the distribution of τ̃i in [3], of which proof also works for
the discrete time case. In detail, if −1 < β1 < · · · < βi < 1 are the eigenvalues of
the submatrix of K indexed by {0, ..., i− 1} and λj = 1− βj , then

(3.6) P0(τi > t) =

i∑
j=1

∏
k ̸=j

λk
λk − λj

 (1− λj)
t

and

(3.7) P0(τ̃i > t) =

i∑
j=1

∏
k ̸=j

λk
λk − λj

 e−tλj .

Note that, under P0, τ̃i is the sum of independent exponential random variables
with parameters λ1, ..., λi. If β1 > 0, then τ is the sum of independent geometric
random variables with parameters λ1, ..., λi. In discrete time case, the requirement
β1 > 0 holds automatically for the δ-lazy chain with δ ≥ 1/2. The above formula
leads to the following theorem.

Theorem 3.5 (Lower bound). Let K be the transition matrix of an irreducible

birth and death chain on {0, 1, ..., n}. Let τi = τ
(0)
i be the first passage time to i

defined in (3.1). For δ ∈ [1/2, 1),

min{T (c)
TV(1/10), 2(1− δ)T

(δ)
TV (1/20)} ≥ max{E0τi0 ,Enτi0}

6
,

where i0 ∈ {0, ..., n} satisfies π([0, i0 − 1]) ≤ 1/2 and π([i0 + 1, n]) ≤ 1/2.

Proof of Theorem 3.5. First, we consider the continuous time case. Let λ1, ..., λi
be eigenvalues of the submatrix of I −K indexed by 0, ..., i − 1 and τ̃i,1, ..., τ̃i,i be
independent exponential random variables with parameters λ1, ..., λi. By (3.7), τ̃i
and τ̃i,1 + · · ·+ τ̃i,i are identically distributed under P0 and, by (3.5), this implies

d
(c)
TV(0, t) ≥ P(τ̃i,1 + · · ·+ τ̃i,i > t)− π([0, i− 1]).

It is easy to see that

E0τ̃i =
1

λ1
+ · · ·+ 1

λi
, Var0(τ̃i) =

1

λ21
+ · · ·+ 1

λ2i
.
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Let a ∈ (0, 1) and consider the following two cases. If 1/λj > aE0τ̃i for some
1 ≤ j ≤ i, then

P0(τ̃i > t) ≥ P(τ̃i,j > t) > e−t/(aE0τ̃i).

If 1/λj ≤ aE0τ̃i for all 1 ≤ j ≤ i, then Var0(τ̃i) ≤ a(E0τ̃i)
2 and, by the one-sided

Chebyshev inequality, we have

P0(τ̃i > t) ≥ (t− E0τ̃i)
2

Var0(τ̃i) + (t− E0τ̃i)2
≥ (t− E0τ̃i)

2

a(E0τ̃i)2 + (t− E0τ̃i)2
=

(1− b)2

a+ (1− b)2
,

for t = bE0τ̃i with b ∈ (0, 1). Combining both cases and setting i = i0 in (3.5)
yields that, for a, b ∈ (0, 1),

(3.8) d
(c)
TV(0, bE0τ̃i0) ≥ min

{
e−b/a,

(1− b)2

a+ (1− b)2

}
− 1

2
.

Putting a = 1/3 and b = 1/6 gives T
(c)
TV(0, 1/10) ≥ E0τ̃i0/6.

For the discrete time case, note that the eigenvalues of the submatrix of I −
K1/2 = 1

2 (I − K) indexed by 0, ..., i − 1 are λ1/2, ..., λi/2. Let τi,1, ..., τi,i be
independent geometric random variables with success probabilities λ1/2, ..., λi/2.
Replacing K with K1/2 in (3.4), we obtain

d
(1/2)
TV (0, t) ≥ P0(τi,1 + · · ·+ τi,i > t)− π([0, i− 1]).

Note that, under P0, τ
(1/2)
i has the same distribution as τi,1 + · · · + τi,i and this

implies

E0τ
(1/2)
i =

2

λ1
+ · · ·+ 2

λi
, Var0(τ

(1/2)
i ) =

i∑
j=1

4(1− λj/2)

λ2j
≤

i∑
j=1

4

λ2j
.

Using the same analysis as before, one may derive, for 1/E0τ
(1/2)
i < a < 1 and

t < E0τ
(1/2)
i ,

P0(τ
(1/2)
i > t) ≥ min


(
1− 1

aE0τ
(1/2)
i

)t

,

(
t− E0τ

(1/2)
i

)2
a
(
E0τ

(1/2)
i

)2
+
(
t− E0τ

(1/2)
i

)2
 .

By Lemma 3.2, E0τ
(1/2)
i ≥ 2i. Obviously, if i0 = 0, then T

(1/2)
TV (0, 1/20) ≥ 0 =

E0τ
(1/2)
i0

. For i0 ≥ 1, E0τ
(1/2)
i0

≥ 2 and the setting, a = 2/3 and t =
⌊
E0τ

(1/2)
i0

/12
⌋
,

implies

d
(1/2)
TV

(
0,
⌊
E0τ

(1/2)
i0

/12
⌋)

≥ min

{
2−1/3,

(11/12)2

2/3 + (11/12)2

}
− 1

2
>

1

20
,

where the first inequality use the fact that s log(1− 3/(2s)) is increasing on [2,∞).

Hence, we have T
(1/2)
TV (0, 1/20) ≥ E0τ

(1/2)
i0

/12 = E0τi0/6. For δ > 1/2, the com-
bination of the above result and the observation Kδ = (K2δ−1)1/2 implies that

T
(δ)
TV (0, 1/20) ≥ E0τi0/(12(1− δ)).
The analysis from the other end point gives the other lower bound. This finishes

the proof. �
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3.3. Relaxation of the median condition. In some cases, it is not easy to
determine the value of in in Theorem 1.3. Let tn be the constants in Theorem 3.1.
For c ∈ (0, 1), let in(c) ∈ {0, ..., n} be the state such that πn([0, in(c) − 1]) ≤ c,
πn([in(c) + 1, n]) ≤ 1− c and let tn(c) be the following constant

tn(c) =

in(c)−1∑
k=0

πn([0, k])

πn(k)pn,k
+

n∑
k=in(c)+1

πn([k, n])

πn(k)qn,k
.

Assume that c ≥ 1/2. In this case, if in is the smallest median, then in ≤ in(c) and

in(c)−1∑
k=in

π([0, k])

πn(k)pn,k
=

in(c)∑
k=in+1

πn([0, k − 1])

πn(k)qn,k
.

Note that, for in < k ≤ in(c),

1

2
≤ πn([0, in]) ≤

πn([0, k − 1])

πn([k, n])
≤ 1

πn([in(c), n])
≤ 1

1− c
.

This implies tn/2 ≤ tn(c) ≤ tn/(1 − c). Similarly, for c ≤ 1/2, one can show that
tn/2 ≤ tn(c) ≤ tn/c. Combining both cases gives

(3.9) tn/2 ≤ tn(c) ≤ tn/min{c, 1− c}.

As a consequence of the above discussion, we obtain the following theorem.

Theorem 3.6. Referring to Theorem 1.3. For n ≥ 1, let jn ∈ {0, 1, ..., n} and set

t′n = max


jn−1∑
k=0

πn([0, k])

πn(k)pn,k
,

n∑
k=jn+1

πn([k, n])

πn(k)qn,k

 .

Suppose that

0 < lim inf
n→∞

πn([0, jn]) ≤ lim sup
n→∞

πn([0, jn]) < 1.

Then, Theorem 1.3 remains true if tn is replaced by t′n.

Proof. The proof comes immediately from (3.9) with c = πn([0, jn]). �

We use this observation to bound the cutoff time in the following theorem.

Theorem 3.7. Referring to Theorem 1.3. Suppose that Fc has a total variation
cutoff. Then, for any ϵ ∈ (0, 1),

2 log 2

5
≤ lim inf

n→∞

T
(c)
n,TV(ϵ)

tn
≤ lim sup

n→∞

T
(c)
n,TV(ϵ)

tn
≤ 2

Proof of Theorem 3.7. The upper bound is given by Remark 3.1 and the fact,
max{s, t} ≥ (s + t)/2, whereas the lower bound is obtained by applying a = 2/5
and b = a log(2/(1 + 2ϵ)) in (3.8) with ϵ→ 0. �
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3.4. Bounding the spectral gap. This subsection is devoted to poviding bounds
on the specral gap for birth and death chains. As the graph associated with a birth
and death chain is a path, weighted Hardy’s inequality can be used to bound the
spectral gap. We refer to the Appendix for a detailed discussion of the following
results. See Theorems A.1-A.3.

Theorem 3.8. Consider an irreducible birth and death chain on {0, ..., n} with
birth, death and holding rates pi, qi, ri and stationary distribution π. Let λ be the
spectral gap and set, for 0 ≤ i ≤ n,

C(i) = max

max
j:j<i

i−1∑
k=j

π([0, j])

π(k)pk
,max
j:j>i

j∑
k=i+1

π([j, n])

π(k)qk

 .

Then, for 0 ≤ m ≤ n,

1

4C(m)
≤ λ ≤ 1

min{π([0,m]), π([m,n])}C(m)
.

In particular, if M is a median of π, that is, π([0,M ]) ≥ 1/2 and π([M,n]) ≥ 1/2,
then

1

4C(M)
≤ λ ≤ 2

C(M)
.

Theorem 3.9. Consider an irreducible birth and death chain on {0, ..., n} with
birth, death and holding rates pi, qi, ri and stationary distribution π. Let λ be the
spectral gap and set N = ⌈n/2⌉. Suppose that pi = qn−i for 0 ≤ i ≤ n. Then,

1

4C
≤ λ ≤ 1

C
,

where

C = max
0≤i≤N−1

π([0, i])
N−1∑
j=i

1

π(j)pj

 if n is even,

and

C = max
0≤i≤N−1

π([0, i])
N−2∑

j=i

1

π(j)pj
+

1

2π(N − 1)pN−1

 if n is odd.

Remark 3.5. In [18], the author also obtained bounds similar to Theorem 3.9 for
the case π(i) ≥ π(i + 1) with 0 ≤ i < n/2 using the path technique. For more
information on path techniques, see [11, 12, 14] and the references therein.

4. Examples

In this section, we will apply the theory developed in the previous section to
examples of special interest. First, we give a criterion on the cutoff using the birth
and death rates.

Theorem 4.1 (Cutoffs from birth and death rates). Let F = {(Ωn,Kn, πn)|n =
1, 2, ...} be a family of irreducible birth and death chains on Ωn = {0, 1, ..., n} with
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birth rate, pn,i, death rate qn,i and holding rate rn,i. Let λn be the spectral gap of
Kn. For n ≥ 1, let jn ∈ {0, ..., n} and set

tn = max


jn−1∑
k=0

πn([0, k])

πn(k)pn,k
,

n∑
k=jn+1

πn([k, n])

πn(k)qn,k


and

ℓn = max

 max
j:j<jn

jn−1∑
k=j

πn([0, j])

πn(k)pn,k
, max
j:j>jn

j∑
k=jn+1

πn([j, n])

πn(k)qn,k

 .

Suppose that

0 < lim inf
n→∞

πn([0, jn]) ≤ lim sup
n→∞

πn([0, jn]) < 1.

Then, for ϵ ∈ (0, 1/2) and δ ∈ (0, 1),

λn ≍ 1/ℓn, T
(c)
n,TV(ϵ) ≍ tn ≍ T

(δ)
n,TV(ϵ).

Furthermore, the following are equivalent.

(1) Fc has a cutoff in total variation.
(2) For δ ∈ (0, 1), Fδ has a cutoff in total variation.
(3) Fc has precutoff in total variation.
(4) For δ ∈ (0, 1), Fδ has a precutoff in total variation.
(5) tn/ℓn → ∞.

The above theorem is obvious from Theorems 2.2, 3.6 and 3.8. We use two
classical examples, simple random walks and Ehrenfest chains, to illustrate how to
apply Theorem 4.1 to determine the total variation cutoff and mixing times.

Example 4.1 (Simple random walks on finite paths). For n ≥ 1, the simple random
walk on {0, ..., n} is a birth and death chain with pn,i = qn,i+1 = 1/2 for 0 ≤ i < n
and rn,0 = rn,n = 1/2. It is clear that Kn is irreducible and aperiodic with uniform
stationary distribution. Let tn, ℓn be the constants in Theorem 4.1. It is an easy
exercise to show that ℓn ≍ n2 ≍ tn. By Theorem 4.1, neither Fc nor Fδ has total

variation precutoff, but T
(c)
n,TV(ϵ) ≍ n2 ≍ T

(δ)
n,TV(ϵ) for ϵ ∈ (0, 1/2) and δ ∈ (0, 1). In

fact, one may use a hitting time statement to prove that the mixing time has order
at least n2, when ϵ ∈ [1/2, 1). This implies that the above approximation of mixing
time holds for ϵ ∈ (0, 1).

Example 4.2 (Ehrenfest chains). Consider the Ehrenfest chain on {0, ..., n}, which
is a birth and death chain with rates pn,i = 1 − i/n and qn,i = i/n. It is obvious
that Kn is irreducible and periodic with stationary distribution πn(i) = 2−n

(
n
i

)
.

An application of the representation theory shows that, for 0 ≤ i ≤ n, 2i/n is an
eigenvalue of I−Kn. Let λn, sn be the constants in Theorem 2.2. Clearly, λn = 2/n
and sn ≍ n log n and, by Theorem 2.2, both Fc and Fδ have a total variation cutoff.
Note that, as a simple corollary, one obtains the non-trivial estimates

⌈n
2 ⌉−1∑
i=0

(
n
0

)
+ · · ·+

(
n
i

)(
n
i

) ≍ n log n, max
0≤i<n/2

i∑
j=0

(
n

j

)
×

⌈n2 ⌉−1∑
j=i

(
n

i

)−1

≍ n.

For a detailed computation on the total variation and the L2-distance, see e.g. [9].

In the next subsections, we consider birth and death chains of special types.
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4.1. Chains with valley stationary distributions. In this subsection, we con-
sider birth and death chains with valley stationary distribution. For n ≥ 1, let
Ωn = {0, 1, ..., n} and Kn be an irreducible birth and death chain on Ωn with birth,
death and holding rates, pn,i, qn,i, rn,i. Suppose that there is jn ∈ Ωn such that

(4.1) pn,i ≤ qn,i+1, ∀i < jn, pn,i ≥ qn,i+1, ∀i ≥ jn.

Obviously, the stationary distribution πn of Kn satisfies πn(i) ≥ πn(i+1) for i < jn
and πn(i) ≤ πn(i+ 1) for i ≥ jn.

Let tn, ℓn be the constants in Theorem 4.1 and write

ℓn = max

 max
j:j<jn

jn∑
k=j+1

πn([0, j])

πn(k)qn,k
, max
j:j>jn

j−1∑
k=jn

πn([j, n])

πn(k)pn,k

 .

Set

ML = max
0<i≤jn

qn,i, mL = min
0<i≤jn

qn,i, MR = max
jn≤i<n

pn,i, mR = min
jn≤i<n

pn,i.

Clearly,

ℓn ≤ max

πn([0, jn])mL

jn∑
i=0

1

πn(i)
,
πn([jn, n])

mR

n∑
i=jn

1

πn(i)

 .

Let j′n be such that πn([0, j
′
n]) ≥ πn([0, jn])/2 and πn([j

′
n, jn]) ≥ πn([0, jn])/2. Note

that if jn ≥ 1, then jn ≥ max{2j′n, j′n + 1}. By (4.1), this implies

jn∑
k=j′n+1

πn([0, j
′
n])

πn(k)
≥ πn([0, jn])

4

jn∑
k=j′n

1

πn(k)
≥ πn([0, jn])

8

jn∑
k=0

1

πn(k)
.

One can derive a similar inequality from the other end point and this yields

ℓn ≥ 1

8
min

πn([0, jn])ML

jn∑
i=0

1

πn(i)
,
πn([jn, n])

MR

n∑
i=jn

1

πn(i)

 .

For tn, note that

πn([0, jn − 1])

2

jn−1∑
k=0

1

πn(k)
≤

jn−1∑
k=0

πn([0, k])

πn(k)
≤ πn([0, jn − 1])

jn−1∑
k=0

1

πn(k)

and

πn([jn + 1, n])

2

n∑
k=jn+1

1

πn(k)
≤

n∑
k=jn+1

πn([k, n])

πn(k)
≤ πn([jn + 1, n])

n∑
k=jn+1

1

πn(k)

This implies

tn ≤ max

πn([0, jn])mL

jn∑
i=0

1

πn(i)
,
πn([jn, n])

mR

n∑
i=jn

1

πn(i)


and

tn ≥ 1

8
max

πn([0, jn])ML

jn∑
i=0

1

πn(i)
,
πn([jn, n])

MR

n∑
i=jn

1

πn(i)


The following theorem is an immediate consequence of the above discussion and
Theorem 4.1.
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Theorem 4.2. Let F = {(Ωn,Kn, πn)|n = 1, 2, ...} be a family of birth and death
chains satisfying (4.1). Assume that πn([0, jn]) ≍ πn([jn, n]) and

max
0<i≤jn

qn,i ≍ min
0<i≤jn

qn,i, max
jn≤i<n

pn,i ≍ min
jn≤i<n

pn,i.

Then, there is no cutoff for Fc,Fδ and, for ϵ ∈ (0, 1/2) and δ ∈ (0, 1),

T
(c)
n,TV(ϵ) ≍ T

(δ)
n,TV(ϵ) ≍

1

λn
≍ max

 1

qn,jn

jn∑
i=0

1

πn(i)
,

1

pn,jn

n∑
i=jn

1

πn(i)

 .

For an illustration of the above theorem, we consider the following Markov chains.
For n ≥ 1, let Ωn = {0, 1, ..., n}, πn be a non-uniform probability distribution on
Ωn satisfying (4.1) and Mn be a transition matrix given by

(4.2) Mn(i, j) =



1/2 for j = i− 1, i ≤ jn,

1/2 for j = i+ 1, i ≥ jn,

πn(i+ 1)/(2πn(i)) for j = i+ 1, i < jn,

πn(i− 1)/(2πn(i)) for j = i− 1, i > jn,

1/2− πn(i+ 1)/(2πn(i)) for j = i < jn,

1/2− πn(i− 1)/(2πn(i)) for j = i > jn.

Note that Mn is the Metropolis chain for πn associated to the simple random walk
on Ωn. For more information on the Metropolis chain, see [8] and the references
therein. The next theorem is a corollary of Theorem 4.2.

Theorem 4.3. Let F = {(Ωn,Mn, πn)|n = 1, 2, ..} be the family of Metropolis
chains satisfying (4.1)-(4.2). Suppose πn([0, jn]) ≍ πn([jn, n]). Then, neither Fc

nor Fδ has a total variation precutoff but, for ϵ ∈ (0, 1/2) and δ ∈ (0, 1),

T
(c)
n,TV(ϵ) ≍

n∑
i=0

1

πn(i)
≍ T

(δ)
n,TV(ϵ).

Example 4.3. Let a > 0 and π̌n,a, π̂n,a be probability measures on {0,±1, ...,±n}
given by

(4.3) π̌n,a(i) = čn,a(|i|+ 1)a, π̂n,a(i) = ĉn,a(n− |i|+ 1)a,

where čn,a, ĉn,a are normalizing constants. Let F̌ , F̂ be families of the Metropolis
chains for π̌n,a, π̂n,a associated to the simple random walks on {0,±1, ...,±n}, that
is,

M̌n,a(i, j) = M̌n,a(−i,−j), M̂n,a(i, j) = M̂n,a(−i,−j)
and

M̌n,a(i, j) =


1
2 if j = i+ 1, i ∈ [0, n− 1]

ia

2(i+1)a if j = i− 1, i ∈ [1, n]
(i+1)a−ia

2(i+1)a if j = i, i /∈ {0, n}
1− na

2(n+1)a if i = j = n

and

M̂n,a(i, j) =


1
2 if j = i− 1, i ∈ [1, n]

(n−i)a

2(n−i+1)a if j = i+ 1, i ∈ [0, n− 1]
(n−i+1)a−(n−i)a

2(n−i+1)a if j = i ̸= 0

1− na

(n+1)a if i = j = 0

.
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Let λ̌n,a, λ̂n,a and Ťn,a, T̂n,a be the spectral gaps and total variation mixing times

of M̌n,a, M̂n,a. It has been proved in [7, 18] that there is C > 1 such that, for all
a > 0 and n ≥ 1,

1

Cλ̌n,a
≍ na

((
1 +

1

n

)a

+
n

1 + a

)
(1 + v(n, a)) ≤ C

λ̌n,a

and
1

Cλ̂n,a
≤ (n+ a)2

(1 + a)2
≤ C

λ̂n,a
,

where v(n, 1) = log n and v(n, a) = (n1−a − 1)/(1− a) for a ̸= 1. By Theorem 4.2,
F̌c and F̌δ have no cutoff in total variation but, for fixed a > 0, ϵ ∈ (0, 1/2) and
δ ∈ (0, 1),

Ť (c)
n,a(ϵ) ≍ Ť (δ)

n,a(ϵ) ≍


n2 if a ∈ (0, 1)

n2 log n if a = 1

n1+a if a ∈ (1,∞)

.

The above result in continuous time case is also obtained in [18].

To see the cutoff for F̂ , let

tn =

n−1∑
k=0

π̂n,a([−n,−n+ k])

π̂n,a(−n+ k)
=

n∑
k=1

k−a
k∑

j=1

ja.

By Theorems 3.1-3.5, we have

2tn
3

≤ T̂ (c)
n,a(1/10) ≤ 3600tn.

Note that, for k ≥ 1 and a > 0,

ka(k + a)

2(1 + a)
≤

k∑
j=1

ja ≤ 2ka(k + a)

1 + a
.

This implies

n(n+ a)

6(1 + a)
≤ T̂ (c)

n,a(1/10) ≤
14400n(n+ a)

1 + a
.

We collect the above results in the following theorem.

Theorem 4.4. For n ≥ 1, let an > 0 and π̌n,an , π̂n,an be probability measures given

by (4.3). Let F̌ , F̂ be the families of Metropolis chains for π̌n,an , π̂n,an as above with

total variation mixing time Ťn,TV, T̂n,TV. Then, for ϵ ∈ (0, 1/2) and δ ∈ (0, 1),

T̂
(c)
n,TV(ϵ) ≍ T̂

(δ)
n,TV(ϵ) ≍

n(n+ an)

1 + an

and

Ť
(c)
n,TV(ϵ) ≍ Ť

(δ)
n,TV(ϵ) ≍ nan

((
1 +

1

n

)an

+
n

1 + an

)
(1 + v(n, an)),

where v(n, 1) = log n and v(n, a) = (n1−a − 1)/(1− a) for a ̸= 1.

Moreover, neither F̌c nor F̌δ has a total variation cutoff. Also, F̂c and F̂δ have
a total variation cutoff if and only if an → ∞.
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4.2. Chains with monotonic stationary distributions. In this subsection, we
consider birth and death chains with monotonic stationary distributions. For n ≥ 1,
let Ωn = {0, 1, ..., n} and Kn be a birth and death chain on Ωn with birth, death
and holding rates, pn,i, qn,i, rn,i. Suppose that

(4.4) pn,i ≥ qn,i+1, ∀0 ≤ i < n.

If Kn is irreducible, then the stationary distribution πn satisfying πn(i) ≤ πn(i+1)
for 0 ≤ i < n. Let jn ∈ Ωn and tn, ℓn be the constants in Theorem 4.1. Assume
that πn([0, jn]) ≍ πn([jn, n]) and

(4.5) max
0≤i<jn

pn,i ≍ min
0≤i<jn

pn,i, max
jn≤i<n

pn,i ≍ min
jn≤i<n

pn,i.

Using a discussion similar to that in front of Theorem 4.2, one can show that

tn ≍ max

 1

pn,1

jn−1∑
k=0

πn([0, k])

πn(k)
,

1

pn,jn

n∑
k=jn

1

πn(k)


and

ℓn ≍ max

 1

pn,1
max

0≤j<jn

jn−1∑
k=j

πn([0, j])

πn(k)
,

1

pn,jn

n∑
k=jn

1

πn(k)

 .

This leads to the following theorem.

Theorem 4.5. Let F = {(Ωn,Kn, πn)|n = 1, 2, ...} be a family of irreducible
birth and death chains with Ωn = {0, 1, ..., n} and birth, death and holding rates
pn,i, qn,i, rn,i. Let λn, Tn,TV be the spectral gap and total variation mixing time of
Kn and set

un =

jn−1∑
k=0

πn([0, k])

πn(k)
, vn = max

0≤j<jn

jn−1∑
k=j

πn([0, j])

πn(k)
, wn =

n∑
k=jn

1

πn(k)
.

Assume that πn([0, jn]) ≍ πn([jn, n]) and (4.5) holds. Then, for ϵ ∈ (0, 1/2) and
δ ∈ (0, 1),

λ−1
n ≍ max

{
vn
pn,1

,
wn

pn,jn

}
, T

(c)
n,TV(ϵ) ≍ T

(δ)
n,TV(ϵ) ≍ max

{
un
pn,1

,
wn

pn,jn

}
.

Moreover, Fc and Fδ have a total variation cutoff if and only if

un/vn → ∞, (unpn,jn)/(wnpn,1) → ∞.

For n ≥ 1, let fn be a non-decreasing function on [0, n] and set Fn(x) =∫ x

0
fn(t)dt and Gn(x,m) =

∫m

x
1/fn(t)dt. Note that if there is C > 1 such that

C−1fn(i)πn(0) ≤ πn(i) ≤ Cfn(i)πn(0), ∀0 ≤ i ≤ n, n ≥ 1,

then
1

2C2

(
Fn(k)

fn(k)
+ 1

)
≤ πn([0, k])

πn(k)
≤ C2

(
Fn(k)

fn(k)
+ 1

)
and

1

2C

(
Gn(j, jn) +

1

fn(j)

)
≤ πn(0)

jn−1∑
k=j

1

πn(k)
≤ C

(
Gn(j, jn) +

1

fn(j)

)
.
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This implies

πn([0, j])

jn−1∑
k=j

1

πn(k)
≤ C2

(
Gn(j, jn) +

1

fn(j)

)
(Fn(j) + fn(j))

and

πn([0, j])

jn−1∑
k=j

1

πn(k)
≥ 1

4C2

(
Gn(j, jn) +

1

fn(j)

)
(Fn(j) + fn(j)) .

Let un, vn, wn be the constants in Theorem 4.5 and assume that

min
0≤i<n

pn,i ≍ max
0≤i<n

pn,i ≍ 1.

Consider the following cases.
Case 1: fn(x) = exp{αnx

βn} with infn αn > 0 and infn βn ≥ 1. In this case,
Fn(x) = O(fn(x)) and Gn(x,m) = O(1/fn(x)) for 1 ≤ x < m. By setting jn = n,
we obtain

πn([0, jn]) ≍ πn([jn, n]), un ≍ n, vn ≍ wn ≍ 1.

By Theorem 4.5, λn ≍ 1 and, for ϵ ∈ (0, 1/2) and δ ∈ (0, 1),

T
(c)
n,TV(ϵ) ≍ T

(δ)
n,TV(ϵ) ≍ n.

There is a total variation cutoff for Fc or Fδ.
Case 2: fn(x) = exp{αnx

βn} with 0 < infn αn ≤ supn αn < ∞ and 0 <
infn βn ≤ supn βn < 1. Note that, for α ∈ R and β ∈ (0, 1),

d

dx

(
x1−βeαx

β
)
=
(
αβ + (1− β)x−β

)
eαx

β

.

This implies that, uniformly for n/2 ≤ x and 1 + x ≤ m ≤ n,

Fn(x) ≍ x1−βnfn(x), Gn(x,m) ≍
(
x1−βn

fn(x)
− m1−βn

fn(m)

)
.

Letting jn = ⌊n− n1−βn⌋ yields

πn([0, jn]) ≍ πn([jn, n]), un ≍ n2−βn , vn ≍ n2−2βn ≍ wn.

By Theorem 4.5, Fc and Fδ have a total variation cutoff and

λn ≍ n2βn−2, T
(c)
n,TV(ϵ) ≍ T

(δ)
n,TV(ϵ) ≍ n2−βn , ∀ϵ ∈ (0, 1/2), δ ∈ (0, 1).

Case 3: fn(x) = exp{αn[log(x + 1)]βn} with 0 < infn αn ≤ supn αn < ∞ and
1 < infn βn ≤ supn βn <∞. Note that, for α ∈ R and β > 1,

d

dx

(
(x+ 1)eα[log(x+1)]β

[log(x+ 1)]β−1

)
=

(
αβ +

1− (β − 1)/ log(x+ 1)

[log(x+ 1)]β−1

)
eα[log(x+1)]β .

This implies that, uniformly for n/2 ≤ x < m ≤ n,

Fn(x) ≍
(x+ 1)

[log(x+ 1)]βn−1
eαn[log(x+1)]βn

and

Gn(x,m) ≍

(
(x+ 1)e−αn[log(x+1)]βn

[log(x+ 1)]βn−1
− (m+ 1)e−αn[log(m+1)]βn

[log(m+ 1)]βn−1

)
.
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Set jn = n[1− (log n)1−βn ]. The above computation leads to

πn([0, jn]) ≍ πn([jn, n]), un ≍ n2(log n)1−βn , vn ≍ n2(logn)2−2βn ≍ wn.

By Theorem 4.5, both Fc and Fδ have a total variation cutoff and, for ϵ ∈ (0, 1/2)
and δ ∈ (0, 1),

λn ≍ n−2(log n)2βn−2, T
(c)
n,TV(ϵ) ≍ n2(logn)1−βn ≍ T

(δ)
n,TV(ϵ).

Case 4: fn(x) = exp{αn[log(x + 1)]βn} with supn αn < ∞ and supn βn ≤ 1.
Observe that, for α > 0 and β ≤ 1,

d

dx

(
(x+ 1)eα[log(x+1)]β

)
=
(
1 + αβ[log(x+ 1)]β−1

)
eα[log(x+1)]β .

This implies that, uniformly for n/4 ≤ i < m ≤ n,

Fn(i) ≍ (i+ 1)eαn[log(i+1)]βn
, Gn(i,m) ≍

(
i+ 1

eαn[log(i+1)]βn
− m+ 1

eαn[log(m+1)]βn

)
.

Letting jn = ⌊n/2⌋ implies

πn([0, jn]) ≍ πn([jn, n]), un ≍ vn ≍ wn ≍ n2.

By Theorem 4.5, we have

T
(c)
n,TV(ϵ) ≍ T

(δ)
n,TV(ϵ) ≍ λ−1

n ≍ n2, ∀ϵ ∈ (0, 1/2), δ ∈ (0, 1),

and there is no total variation cutoff for Fc or Fδ.

4.3. Chains with symmetric stationary distributions. This subsection is ded-
icated to the study of birth and death chains with symmetric stationary distribu-
tions. Let K be an irreducible birth and death chain on {0, ..., n} with stationary
distribution π. Note that π is symmetric at n/2, that is, π(n − i) = π(i) for
0 ≤ i ≤ n/2, if and only if

pipn−i−1 = qi+1qn−i, ∀0 ≤ i ≤ n/2.

By the symmetry of π, we will fix jn = ⌊n/2⌋ when applying Theorem 4.1.
Consider a family of irreducible birth and death chains, F = {(Ωn,Kn, πn)|n =

1, 2, ...} with Ωn = {0, 1, ..., n}. Let pn,i, qn,i, rn,i be respectively the birth, death
and holding rates of Kn and tn, ℓn be constants in Theorem 4.1. Assume that πn
is symmetric at n/2. Continuously using the fact (a+ b)/2 ≤ max{a, b} ≤ a+ b for
a ≥ 0, b ≥ 0, we obtain

tn ≍
∑

k:k≤n/2

πn([0, k])

πn(k)min{pn,k, qn,n−k}

and

ℓn ≍ max
j:j≤n/2

∑
k:j≤k≤n/2

πn([0, j])

πn(k)min{pn,k, qn,n−k}
.

Theorem 4.1 can be rewritten as follows.

Theorem 4.6. Let F = {(Ωn,Kn, πn)|n = 1, 2, ...} be a family of irreducible birth
and death chains with Ωn = {0, 1, ..., n}. Let λn and pn,i, qn,i, rn,i be the spectral
gap and the birth, death and holding rates of Kn. Assume that

pn,ipn,n−i−1 = qn,i+1qn,n−i, ∀0 ≤ i ≤ n/2.
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Then, for ϵ ∈ (0, 1/2) and δ ∈ (0, 1),

λn ≍ 1/ℓn, T
(c)
n,TV(ϵ) ≍ T

(δ)
n,TV(ϵ) ≍ tn,

where

tn =
∑

k:k≤n/2

πn([0, k])

πn(k)min{pn,k, qn,n−k}

and

ℓn = max
j:j≤n/2

πn([0, j]) ∑
k:j≤k≤n/2

1

πn(k)min{pn,k, qn,n−k}

 .

Moreover, the following are equivalent.

(1) Fc has a cutoff in total variation.
(2) For δ ∈ (0, 1), Fδ has a cutoff in total variation.
(3) Fc has a precutoff in total variation.
(4) For δ ∈ (0, 1), Fδ has a precutoff in total variation.
(5) tn/ℓn → ∞.

The next theorem considers a perturbation of birth and death chains which has
the same stationary distribution as the original chains. The new chains keep the
order of mixing time and spectral gap unchanged.

Theorem 4.7. Consider the family in Theorem 4.6 and assume that

pn,ipn,n−i−1 = qn,i+1qn,n−i, ∀0 ≤ i ≤ n/2.

For n ≥ 1, let An ⊂ {0, ..., n − 1}, cn,i ∈ [0, 1] for i ∈ An and K̃n be a birth and
death chain on Ωn with birth and death rates, p̃n,i, q̃n,i, satisfying

p̃n,i = cn,ipn,i + (1− cn,i)min{pn,i, qn,n−i} for i ∈ An,

q̃n,i+1 = qn,i+1p̃n,i/pn,i for i ∈ An,

p̃n,i = pn,i, q̃n,i+1 = qn,i+1 for i /∈ An.

Let λn, λ̃n and Tn,TV(ϵ), T̃n,TV(ϵ) be the spectral gaps and total variation mixing

times of Kn, K̃n. Then, given ϵ ∈ (0, 1/2) and δ ∈ (0, 1),

λ̃n ≍ λn, T̃
(c)
n,TV(ϵ) ≍ T

(c)
n,TV(ϵ) ≍ T̃

(δ)
n,TV(ϵ) ≍ T

(δ)
n,TV(ϵ),

where the approximation is uniform on the choice of An, cn,i.

Proof. The approximation of the spectral gap and the total variation mixing time
is immediate from Theorem 4.6, whereas the uniformity of the approximation is
given by Theorems 3.1, 3.5 and 3.8. �

Example 4.4. For n ≥ 1, let Kn be a birth and death chain on {0, 1, ..., 2n} given
by

Kn(i, i+ 1) = Kn(i+ 1, i) =

{
1/2 for even i

1/(2n) for odd i
.

By Theorem 4.7, the mixing time and spectral gap of Kn are comparable with those

of K̃n, where K̃n(i, i + 1) = K̃n(i + 1, i) = 1/(2n) for 0 ≤ i < 2n. Let F be the
family consisting of Kn. By Theorem 4.6, neither Fc nor Fδ has a total variation

precutoff and T
(c)
n,TV(ϵ) ≍ T

(δ)
n,TV(ϵ) ≍ λ−1

n ≍ n3 for all ϵ ∈ (0, 1/2) and δ ∈ (0, 1),
which is nontrivial.
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Next, we consider simple random walks on finite paths with bottlenecks. For n ≥
1, let kn ≤ n and xn,1, ..., xn,kn be positive integers satisfying 1 ≤ xn,i < xn,i+1 ≤ n
for i = 1, ..., kn − 1. Let Kn be the birth and death chain on {0, 1, ..., n} of which
birth, death and holding rates are given by

(4.6) pn,i−1 = qn,i =

{
1/2 for i /∈ {xn,1, ..., xn,kn}
ϵn,j for i = xn,j , 1 ≤ j ≤ kn

,

where ϵn,j ∈ (0, 1/2] for 1 ≤ j ≤ kn. Clearly, Kn is irreducible and the stationary
distribution, say πn, is uniform on {0, 1, ..., n}. The following theorem is immediate
from Theorems 4.6.

Theorem 4.8. Let F be a family of birth and death chains given by (4.6) and λn
be the spectral gap of Kn. For n ≥ 1, set

tn = n2 +

kn∑
i=1

min{xn,i, n+ 1− xn,i}
ϵn,i

and

ℓn = n2 + max
j:j≤n/2

 ∑
i:|xn,i−n/2|≤j

n/2 + 1− j

ϵn,i

 .

Then, for all ϵ ∈ (0, 1/2) and δ ∈ (0, 1),

T
(c)
n,TV(ϵ) ≍ T

(δ)
n,TV(ϵ) ≍ tn, λn ≍ 1/ℓn.

Furthermore, the following are equivalent.

(1) Fc has a cutoff in total variation.
(2) For δ ∈ (0, 1), Fδ has a cutoff in total variation.
(3) Fc has precutoff in total variation.
(4) For δ ∈ (0, 1), Fδ has a precutoff in total variation.
(5) tn/ℓn → ∞.

Remark 4.1. Let tn, ℓn be the constants in Theorem 4.8. Then,

tn ≍ n2 +
∑
j∈Ln

xn,j
ϵn,j

+
∑
j∈Rn

n+ 1− xn,j
ϵn,j

and

ℓn ≍ n2 +max
i∈Ln

∑
j∈Ln:j≥i

xn,i
ϵn,j

+ max
i∈Rn

∑
j∈Rn:j≤i

n+ 1− xn,i
ϵn,j

.

where Ln = {i : xn,i ≤ n/2} and Rn = {i : xn,i > n/2}.

Theorem 1.4 considers a special case of Theorem 4.8 with ϵn,i = ϵn for 1 ≤ i ≤ kn.
It is clear from Theorem 1.4 that if kn is bounded, then no cutoff exists for Fc or
Fδ. The following example shows a case of cutoffs for the family in Theorem 1.4.

Example 4.5. Let F be the family in Theorem 1.4, with kn = ⌊n1/3⌋ − 1 and

xn,i =

⌊
n5/6

n1/3 − i

⌋
, ∀1 ≤ i ≤ kn.

Clearly, for n large enough, xn,i ̸= xn,j when i ̸= j. Let an, bn be the constant in
Theorem 1.4. It is not hard to show that

an ≍ n5/6 log n, bn ≍ n5/6.
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By Theorem 1.4, Fc and Fδ, with δ ∈ (0, 1), have a total variation cutoff if and
only if ϵn = o(n−7/6 log n). Furtheromre, if ϵn = o(n−7/6 logn), then

T
(c)
n,TV(ϵ) ≍

n5/6 log n

ϵn
≍ T

(δ)
n,TV(ϵ), ∀ϵ, δ ∈ (0, 1).

The following two theorems treat special cases of Theorem 4.8.

Theorem 4.9. Let F be a family of birth and death chains satisfying (4.6). Let N

be a positive constant. Suppose, for n ≥ 1, there are constants J
(n)
1 , ..., J

(n)
N and a

partition of {1, ..., kn}, say I(n)1 , ..., I
(n)
N , such that, for 1 ≤ k ≤ N ,

max
i∈I

(n)
k

{xn,i ∧ (n+ 1− xn,i)} ≍ min
i∈I

(n)
k

{xn,i ∧ (n+ 1− xn,i)} ≍ J
(n)
k ,

where a ∧ b = min{a, b}. Then, neither Fc nor Fδ has a total variation cutoff.
Moreover,

T
(c)
n,TV(ϵ) ≍ T

(δ)
n,TV(ϵ) ≍ λ−1

n ≍ tn, ∀ϵ ∈ (0, 1/2), δ ∈ (0, 1)

where

tn = n2 + max
1≤k≤N

J (n)
k

∑
l∈I

(n)
k

1

ϵn,l

 .

The next theorem gives an example that no total variation cutoff exists for Fc,Fδ

even when the constant N in Theorem 4.9 tends to infinity.

Theorem 4.10. Let F be a family of birth and death chains satisfying (4.6). Sup-
pose that minj ϵn,j ≍ maxj ϵn,j and xn,i = ⌊in/kn⌋ with kn ≤ n/2, then neither Fc

nor Fδ has a total variation cutoff, but

T
(c)
n,TV(ϵ) ≍ T

(δ)
n,TV(ϵ) ≍ λ−1

n ≍ max{n2, nkn/ϵn,1}, ∀ϵ ∈ (0, 1/2), δ ∈ (0, 1).

Remark 4.2. Note that the assumption regarding the birth and death rates in this
section can be relaxed using the comparison technique in [11, 12].

Appendix A. Spectral gaps of finite paths

This section is devoted to finding the correct order of spectral gaps of finite paths.
Let G = (V,E) be the undirected finite graph with vertex set V = {0, 1, 2, ...n} and
edge set E = {{i, i + 1} : i = 0, 1, ..., n − 1}. Given two positive measures π, ν on
V,E with π(V ) = 1, the Dirichlet form and variance associated with ν and π are
defined by

Eν(f, g) :=
n−1∑
i=1

[f(i)− f(i+ 1)][g(i)− g(i+ 1)]ν(i, i+ 1)

and

Varπ(f) := π(f2)− π(f)2,

where f, g are functions on V . The spectral gap of G with respect to π, ν is defined
as

λGπ,ν := min

{
Eν(f, f)
Varπ(f)

∣∣∣∣f is non-constant

}
.
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To bound the spectral gap, we need the following setting. Let C+(i) and C−(i)
be constants defined by

(A.1) C+(i) = max
j:j>i

j∑
k=i+1

π([j, n])

ν(k − 1, k)
, C−(i) = max

j:j<i

i−1∑
k=j

π([0, j])

ν(k, k + 1)
,

where max ∅ := 0.

Theorem A.1. Let G = (V,E) be a path on {0, 1, ..., n} and π, ν be positive mea-
sures on V,E with π(V ) = 1. Referring to (A.1), set C(m) = max{C+(m), C−(m)}.
Then, for 0 ≤ m ≤ n,

1

4C(m)
≤ λGπ,ν ≤ 1

min{π([0,m]), π([m,n])}C(m)
.

In particular, if M is a median of π, that is, π([0,M ]) ≥ 1/2 and π([M,n]) ≥ 1/2,
then

1

4C(M)
≤ λGπ,ν ≤ 2

C(M)
.

Remark A.1. Referring to the setting in Theorem A.1, the authors in [7] obtained
λGπ,ν ≥ 1/C ′, where

(A.2) C ′ = min
0≤j≤n

max


j−1∑
k=0

π([0, k])

ν(k, k + 1)
,

n∑
k=j+1

π([k, n])

ν(k − 1, k)

 .

Let C+(m), C−(m) be constants in (A.1) and C(m) be the constant in Theorem
A.1. Then, for 0 ≤ j ≤ n,

j−1∑
k=0

π([0, k])

ν(k, k + 1)
≥ C−(j) ,

n∑
k=j+1

π([k, n])

ν(k − 1, k)
≥ C+(j).

This yields C ′ ≥ minm C(m). In particular, if M is a median of π, then

C ′ ≥ 1

2

(
M−1∑
k=0

π([0, k])

ν(k, k + 1)
+

n∑
k=M+1

π([k, n])

ν(k − 1, k)

)
≥ C(M)

2
.

The lower bound of Theorem A.1 is at least of the same order than /C ′ and some-
times significantly better.

The proof of Theorem A.1 is based on the following proposition, which is related
to weighted Hardy’s inequality on {1, ..., n}.

Proposition A.2. Fix n ≥ 1. Let µ, π be positive measures on {1, ..., n} and A be
the smallest constant such that

(A.3)
n∑

i=1

 i∑
j=1

g(j)

2

π(i) ≤ A
n∑

i=1

g2(i)µ(i), ∀g ̸= 0.

Then, B ≤ A ≤ 4B, where

B = max
1≤i≤n

π([i, n])
i∑

j=1

1

µ(j)

 .
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Remark A.2. Miclo [16] discussed the infinity case {1, 2, ...} using the method in
[17], which was introduced by Muckenhoupt to study the continuous case [0,∞).
For more information on the weighted Hardy inequality, see [16] and the references
therein.

Proof of Theorem A.1. We first consider the lower bound of λGπ,ν . Let f be any
function defined on V and set f+ = [f−f(m)]1{m,...,n} and f− = [f−f(m)]1{0,...,m}.
Then,

(A.4)
Eν(f, f)
Varπ(f)

≥ Eν(f, f)
π(f − f(m))2

=
Eν(f+, f+) + Eν(f−, f−)

π(f2+) + π(f2−)

Set g(j) = f(m+j)−f(m+j−1) for 1 ≤ j ≤ n−m and h(i) = f(m−i)−f(m−i+1)
for 1 ≤ i ≤ m. Note that

Eν(f+, f+) =
n−m∑
j=1

g2(j)ν(m+ j − 1,m+ j), π(f2+) =
n−m∑
j=1

(
j∑

k=1

g(k)

)2

π(m+ j),

and

Eν(f−, f−) =
m∑
i=1

h2(i)ν(m− i,m− i+ 1), π(f2−) =

m∑
j=1

(
j∑

k=1

h(k)

)2

π(m− j).

By Proposition A.2, the above computation implies that

Eν(f+, f+)
π(f2+)

≥ 1

4C+(m)
,

Eν(f−, f−)
π(f2−)

≥ 1

4C−(m)
.

Putting this back to (A.4) gives the desired lower bound.
For the upper bound, we first consider the case C = C+(m). By Proposition

A.2, C+(m) ≤ A, where A is the smallest constant A such that, for any function ϕ
defined on {1, 2, ..., n−m+ 1},

n−m∑
j=1

(
j∑

k=1

ϕ(k)

)2

π(m+ j) ≤ A

n−m∑
j=1

ϕ2(j)ν(m+ j − 1,m+ j).

Let ϕ be a minimizer for A, which must exist, and define ψ by setting

ψ(i) =

{
ϕ(1) + · · ·+ ϕ(i−m) for m < i ≤ n

0 for 0 ≤ i ≤ m
.

Clearly, 1/C+(m) ≥ 1/A = Eν(ψ,ψ)/π(ψ2). Without loss of generality, we may
assume further that ϕ is nonnegative. Note that π({ψ = 0}) ≥ π([0,m]). By
the Cauchy-Schwartz inequality, this implies π(ψ)2 ≤ π({ψ > 0})π(ψ2) ≤ π([m +
1, n])π(ψ2) and, then, Varπ(ψ) ≥ π([0,m])π(ψ2). This leads to 1/C = 1/C+(m) ≥
π([0,m])λGπ,ν . Similarly, if C = C−(m), one can prove that 1/C ≥ π([m,n])λGπ,ν .
This yields the upper bound of the spectral gap. �
Proof of Proposition A.2. The proofs of Theorem A.1 and Proposition A.2 are very
similar to those in [16]. Note that A is attained at functions of the same sign and
we assume that g is non-negative. As A is attainable, the minimizer g for A satisfies
the following Euler-Lagrange equations.

(A.5) Ag(i)µ(i) =

n∑
j=i

(g(1) + · · ·+ g(j))π(j), ∀1 ≤ i ≤ n.
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This is equivalent to the following system of equations.

A[g(i)µ(i)− g(i+ 1)µ(i+ 1)] = (g(1) + · · ·+ g(i))π(i), ∀1 ≤ i ≤ n,

with the convention that µ(n + 1) := 0. Inductively, one can show that g > 0.
Summing up (A.5) over {1, ..., ℓ} yields

A

ℓ∑
i=1

g(i) =

ℓ∑
i=1

1

µ(i)

n∑
j=i

(g(1) + · · ·+ g(j))π(j)

≥
ℓ∑

i=1

n∑
j=ℓ

(g(1) + · · ·+ g(j))π(j)

µ(i)

≥

(
ℓ∑

i=1

g(i)

)(
ℓ∑

i=1

1

µ(i)

)
π([ℓ, n]).

This leads to A ≥ B.
To see the upper bound, we use Miclo’s method in [16]. Set N(j) =

∑j
i=1 1/µ(i).

By the Cauchy inequality, the left side of (A.3) is bounded above by

n∑
i=1

π(i)
i∑

j=1

g2(j)µ(j)N1/2(j)
i∑

l=1

1

µ(l)N1/2(l)
.

Note that, for s > 0, t > 0, t1/2 − s1/2 ≥ (t− s)/(2t1/2). This implies 2(N1/2(l)−
N1/2(l − 1)) ≥ 1/(µ(l)N1/2(l)) with the convention that N(0) := 0. Consequently,
we have

i∑
l=1

1

µ(l)N1/2(l)
≤ 2N1/2(i) ≤

(
4B

π([i, n])

)1/2

,

and, thus,

n∑
i=1

 i∑
j=1

g(j)

2

π(i) ≤
√
4B

n∑
i=1

π(i)

π([i, n])1/2

i∑
j=1

g2(j)µ(j)N1/2(j)

≤
√
4B

n∑
j=1

g2(j)µ(j)N1/2(j)

n∑
i=j

π(i)

π([i, n])1/2
.

Again, the inequality for s, t implies

n∑
i=j

π(i)

π([i, n])1/2
≤ 2π([j, n])1/2 ≤

√
4B

N1/2(j)
.

This gives the desired upper bound. �

Next, we consider a special case. Let π, ν are measures on V = {0, 1, ..., n}, E =
{{i, i+ 1}|0 ≤ i < n} with π(V ) = 1. Suppose

(A.6) π(i) = π(n− i), ν(i, i+ 1) = ν(n− i− 1, n− i), ∀0 ≤ i ≤ n/2.

By the symmetry of π and ν, if ψ is a minimizer for λGπ,ν with π(ψ) = 0, then ψ
is either symmetric or anti-symmetric at n/2. The former is set aside because ψ is
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known to be monotonic and this leads to the case ψ(n− i) = −ψ(i) for 0 ≤ i ≤ n/2.
If n is even with n = 2k, then ψ(k) = 0 and this implies

λGπ,ν = inf

{∑k
i=1(f(i)− f(i− 1))2ν(i− 1, i)∑k−1

i=0 f
2(i)π(i)

∣∣∣∣f(k) = 0, f ̸= 0

}
.

Equivalently, if one sets g(i) = f(k− i)− f(k− i+1) and µ(i) = ν(k− i, k− i+1)
for 1 ≤ i ≤ k, then 1/λGπ,ν is the smallest constant A such that

(A.7)
k∑

i=1

 i∑
j=1

g(j)

2

π(k − i) ≤ A
k∑

i=1

g2(i)µ(i), ∀g ̸= 0.

Similarly, if n is odd with n = 2k − 1, one has

λGπ,ν = min

{∑k−1
i=1 (f(i)− f(i− 1))2ν(i− 1, i) + 2f2(k − 1)ν(k − 1, k)∑k−1

i=0 f
2(i)π(i)

∣∣∣∣f ̸= 0

}
,

and this leads to (A.7) with g(1) = f(k−1), µ(1) = 2ν(k−1, k) and, for 2 ≤ i ≤ k,
g(i) = f(k− i)− f(k− i+1) and µ(i) = ν(k− i, k− i+1). A direct application of
Proposition A.2 implies the following theorem.

Theorem A.3. Let G = (V,E) be the graph with V = {0, 1, ..., n}, E = {{i, i +
1}|i = 0 ≤ i < n} and let π, ν be positive measures on V,E satisfying π(V ) = 1 and
(A.6). Set N = ⌈n/2⌉. Then, 1/(4C) ≤ λGπ,ν ≤ 1/C, where

C = max
0≤i<N

π([0, i])
N−1∑
j=i

1

ν(j, j + 1)

 if n is even,

and

C = max
0≤i<N

π([0, i])
N−2∑

j=i

1

ν(j, j + 1)
+

1

2ν(N − 1, N)

 if n is odd.

Remark A.3. The symmetry of π, ν in Theorems A.3 can be relaxed using the
comparison technique.
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COMPARISON OF CUTOFFS BETWEEN LAZY WALKS AND

MARKOVIAN SEMIGROUPS

GUAN-YU CHEN1 AND LAURENT SALOFF-COSTE2

Abstract. We make a connection between the continuous time and lazy dis-
crete time Markov chains through the comparison of cutoffs and mixing time

in total variation distance. For illustration, we consider finite birth and death
chains and provide a criterion on cutoffs using eigenvalues of the transition
matrix.

1. Introduction

Let Ω be a countable set and (Ω,K, π) be an irreducible Markov chain on Ω with
transition matrix K and stationary distribution π. Let

Ht = e−t(I−K) =
∞∑
i=0

e−ttiKi/i!

be the associated semigroup which describes the corresponding natural continuous
time process on Ω. For δ ∈ (0, 1), set

(1.1) Kδ = δI + (1− δ)K,

where I is the identity matrix indexed by Ω. Clearly, Kδ is similar to K but with an
additional holding probability depending of δ. We call Kδ the δ-lazy walk or δ-lazy
chain of K. It is well-known that if K is irreducible with stationary distribution π,
then

lim
m→∞

Km
δ (x, y) = lim

t→∞
Ht(x, y) = π(y), ∀x, y ∈ Ω, δ ∈ (0, 1).

In this paper, we consider convergence in total variation. The total variation
between two probabilities µ, ν on Ω is defined by ∥µ−ν∥TV = sup{µ(A)−ν(A)|A ⊂
Ω}. For any irreducible K with stationary distribution π, the (maximum) total
variation distance is defined by

(1.2) dTV(m) = sup
x∈Ω

∥Km(x, ·)− π∥TV,

and the corresponding mixing time is given by

(1.3) TTV(ϵ) = inf{m ≥ 0|dTV(m) ≤ ϵ}.

We write the total variation distance and mixing time as d
(c)
TV, T

(c)
TV for the continuous

semigroup and as d
(δ)
TV, T

(δ)
TV for the δ-lazy walk.

A sharp transition phenomenon, known as cutoff, was introduced by Aldous and
Diaconis in early 1980s. See e.g. [8, 5] for an introduction and a general review of

2000 Mathematics Subject Classification. 60J10,60J27.
Key words and phrases. Markov chains, cutoff phenomenon.
1Partially supported by NSC grant NSC100-2918-I-009-010.
2Partially supported by NSF grant DMS-1004771.
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cutoffs. In total variation, a family of irreducible Markov chains (Ωn,Kn, πn)
∞
n=1 is

said to present a cutoff if

(1.4) lim
n→∞

Tn,TV(ϵ)

Tn,TV(η)
= 1, ∀0 < ϵ < η < 1.

The family is said to present a (tn, bn) cutoff if bn = o(tn) and

|Tn,TV(ϵ)− tn| = O(bn), ∀0 < ϵ < 1.

The cutoff for the associated continuous semigroups is defined in a similar way.
This paper contains the following general result.

Theorem 1.1. Consider a family of irreducible and positive recurrent Markov
chains F = {(Ωn,Kn, πn)|n = 1, 2, ...}. For δ ∈ (0, 1), let Fδ be the family of as-
sociated δ-lazy walks and let Fc be the family of associated continuous semigroups.

Suppose T
(c)
n,TV(ϵ0) → ∞ for some ϵ0 ∈ (0, 1). Then, the following are equivalent.

(1) Fδ has a cutoff in total variation.
(2) Fc has a cutoff in total variation.

Furthermore, if Fc has a cutoff, then

lim
n→∞

T
(c)
n,TV(ϵ)

T
(δ)
n,TV(ϵ)

= 1− δ, ∀ϵ ∈ (0, 1).

Theorem 1.2. Let F be the family in Theorem 1.1. Assume that tn → ∞. Then,
the following are equivalent.

(1) Fc has a (tn, bn) cutoff.
(2) For δ ∈ (0, 1), Fδ has a (tn/(1− δ), bn) cutoff.

We refer the readers to Theorems 3.1, 3.4, 3.5 and 3.7 for more detailed discus-
sions.

For an illustration, we consider finite birth and death chains. For n ≥ 1, let
Ωn = {0, 1, ..., n} and Kn be the transition kernel of a birth and death chain on Ωn

with birth rate pn,i, death rate qn,i and holding rate rn,i, where pn,n = qn,0 = 0 and
pn,i + qn,i + rn,i = 1. Suppose that Kn is irreducible with stationary distribution
πn. For the family {(Ωn,Kn, πn)|n = 1, 2, ...}, Ding et al. [10] showed that, in
the discrete time case, if infi,n rn,i > 0, then the cutoff in total variation exists if
and only if the product of the total variation mixing time and the spectral gap,
which is defined to be the smallest non-zero eigenvalue of I −K, tends to infinity.
There is also a similar version for the continuous time case. The next theorem
is an application of the above result and Theorem 1.1, which is summarized from
Theorem 4.10.

Theorem 1.3. Let F = {(Ωn,Kn, πn)|n = 1, 2, ...} be a family of irreducible birth
and death chains as above. For n ≥ 1, let 0, λn,1, ..., λn,n be eigenvalues of I −Kn

and set

λn = min
1≤i≤n

λn,i, sn =

n∑
i=1

λ−1
n,i.

Then, the following are equivalent.

(1) Fc has a total variation cutoff.
(2) For δ ∈ (0, 1), Fδ has a total variation cutoff.
(3) snλn → ∞.
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The remaining of this article is organized as follows. In Section 2, the concepts
of cutoffs and mixing times are introduced and fundamental results are reviewed.
In Section 3, a detailed comparison of the cutoff time and window size is made
between the continuous time and lazy discrete time cases, where the state space is
allowed to be infinite. In Section 4, we focus on finite birth and death chains and
provide a criterion on total variation cutoffs using the eigenvalues of the transition
matrices.

2. Cutoffs in total variation

Throughout this paper, for any two sequences sn, tn of positive numbers, we
write sn = O(tn) if there are C > 0, N > 0 such that |sn| ≤ C|tn| for n ≥ N . If
sn = O(tn) and tn = O(sn), we write sn ≍ tn. If tn/sn → 1 as n → ∞, we write
tn ∼ sn.

Consider the following definitions.

Definition 2.1. Referring to the notation in (1.2), a family F = {(Ωn,Kn, πn)|n =
1, 2, ...} is said to present a total variation

(1) precutoff if there is a sequence tn and B > A > 0 such that

lim
n→∞

dn,TV(⌈Btn⌉) = 0, lim inf
n→∞

dn,TV(⌊Atn⌋) > 0.

(2) cutoff if there is a sequence tn such that, for all ϵ > 0,

lim
n→∞

dn,TV(⌈(1 + ϵ)tn⌉) = 0, lim
n→∞

dn,TV(⌊(1− ϵ)tn⌋) = 1.

(3) (tn, bn) cutoff if bn = o(tn) and

lim
c→∞

F (c) = 0, lim
c→−∞

F (c) = 1,

where

F (c) = lim sup
n→∞

dn,TV(⌈tn + cbn⌉), F (c) = lim inf
n→∞

dn,TV(⌊tn + cbn⌋).

In definition 2.1, tn is called a cutoff time and bn is called a window for tn. The
cutoffs for continuous semigroups is the same except the deletion of ⌈·⌉ and ⌊·⌋.

Remark 2.1. In Definition 2.1, if tn → ∞ (or equivalently Tn,TV(ϵ) → ∞ for some
ϵ ∈ (0, 1)), then the cutoff is consistent with (1.4). This is also true for cutoffs in
continuous semigroups without the assumption tn → ∞.

The following lemma characterizes the total variation convergence using specific
subsequences of indices and events, which is useful in proving and disproving cutoffs.

Lemma 2.1. Consider a family of irreducible and positive recurrent Markov chains
{(Ωn,Kn, πn)|n = 1, 2, ...}. Let tn be a sequence of nonnegative integers. Then, the
following are equivalent.

(1) dn,TV(tn) → 0.
(2) For any increasing sequence of positive integers nk, any Ank

⊂ Ωnk
and

any xnk
∈ Ωnk

, there is a subsequence mk such that

lim
k→∞

∣∣∣Ktmk
mk (xmk

, Amk
)− πmk

(Amk
)
∣∣∣ = 0.
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Proof of Lemma 2.1. (1)⇒(2) is obvious. For (2)⇒(1), choose An ⊂ Ωn and
xn ∈ Ωn such that dn,TV(tn) ≤ 2|Ktn

n (xn, An) − πn(An)|. Let nk be an increasing
sequence of positive integers and choose a subsequence mk such that

lim
k→∞

∣∣∣Ktmk
mk (xmk

, Amk
)− πmk

(Amk
)
∣∣∣ = 0.

This implies dmk,TV(tmk
) → 0, as desired. �

Remark 2.2. Lemma 2.1 also holds in continuous time under the release of tn to
positive real numbers. See [4, 5] for further discussions on cutoffs.

3. Comparisons of cutoffs

In this section, we establish the relation of cutoffs between lazy walks and con-
tinuous semigroups. Let Ω be a countable set and K be a transition matrix indexed
by Ω. In the notation of (1.1), the δ-lazy walk evolves in accordance with

(Kδ)
t =

t∑
i=0

(
t

i

)
δt−i(1− δ)iKi, ∀δ ∈ (0, 1), t ≥ 0,

whereas the continuous time chain follows

Ht = e−t(I−K) =

∞∑
i=0

(
e−t t

i

i!

)
Ki.

Observe that I −K = (I −Kδ)/(1− δ). This implies

(3.1) d
(c)
TV(t) ≤ e−t/(1−δ)

m∑
i=0

[t/(1− δ)]i

i!
+ d

(δ)
TV(m).

Concerning the cutoff times and windows, we discuss each of them in detail.

3.1. Cutoff times.

Theorem 3.1. Let F = {(Ωn,Kn, πn)|n = 1, 2, ...} be a family of irreducible
Markov chains on countable state spaces with stationary distributions. For δ ∈
(0, 1), let Fδ = {(Ωn,Kn,δ, πn)|n = 1, 2, ...} and Fc = {(Ωn,Hn,t, πn)|n = 1, 2, ...}.
Suppose there is ϵ0 > 0 such that T

(δ)
n,TV(ϵ0) → ∞ or T

(c)
n,TV(ϵ0) → ∞. Then, the

following are equivalent.

(1) Fδ has a cutoff (resp. precutoff) in total variation.
(2) Fc has a cutoff (resp. precutoff) in total variation.

Furthermore, if Fc has a cutoff, then

lim
n→∞

T
(c)
n,TV(ϵ)

T
(δ)
n,TV(ϵ)

= 1− δ, ∀ϵ ∈ (0, 1).

The above theorem is in fact a simple corollary of the following proposition.

Proposition 3.2. Let Fδ,Fc be families in Theorem 3.1 and tn, rn be sequences
tending to infinity. Fix δ ∈ (0, 1).

(1) If d
(δ)
n,TV(⌈tn⌉) → 0, then

lim
n→∞

d
(c)
n,TV((1− δ)tn + cbn) = 0,

for all c > 0 and for any sequence bn satisfying
√
tn = o(bn).
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(2) If d
(c)
n,TV(rn) → 0, then

lim
n→∞

d
(δ)
n,TV(⌈rn/(1− δ) + cbn⌉) = 0,

for all c > 0 and for any sequence bn satisfying
√
rn = o(bn).

(3) If d
(c)
n,TV(rn) → 1, then

lim
n→∞

d
(δ)
n,TV(⌊rn/(1− δ)⌋) = 1.

(4) If d
(δ)
n,TV(⌊tn⌋) → 1, then

lim
n→∞

d
(c)
n,TV((1− δ)tn) = 1.

Proof. We prove (1), while (2) goes in a similar way and is omitted. Suppose

d
(δ)
n,TV(⌈tn⌉) → 0. Since

√
tn = o(bn), it is clear that

(3.2) lim
n→∞

d
(δ)
n,TV(⌈tn + cbn + c′

√
tn⌉) = 0, ∀c > 0, c′ ∈ R.

Fix c > 0 and let xn ∈ Ωn, An ⊂ Ωn. Given any increasing sequence nl, we may
choose, according to Lemma 3.8, a subsequence ml such that πml

(Aml
) → α ∈ [0, 1]

and, for all c′ ∈ R,

lim
l→∞

K
⌈tml

+cbml
+c′

√
tml

⌉
ml,δ

(xml
, Aml

) =
1√
2πδ

∫ ∞

−∞
e−(x−c′)2/(2δ)f(x)dx,

and

lim
l→∞

Hml,(1−δ)(tml
+cbml

)(xml
, Aml

) =
1√
2π

∫ ∞

−∞
e−x2/2f(x)dx,

where f is nonnegative and bounded by 1. By (3.2) and Lemma 3.9, f equals to α

almost everywhere and, by Lemma 2.1, this implies d
(c)
n,TV((1− δ)tn + cbn) → 0 as

n→ ∞ for all c > 0.
The proofs for (3) and (4) are similar and we only give the details for (4). First,

we choose sequences xn ∈ Ωn and An ⊂ Ωn such that

lim
n→∞

πn(An) = 1, lim
n→∞

K
⌊tn⌋
n,δ (xn, An) = 0.

Let nl be a sequence tending to infinity. Applying Lemma 3.8 with c = 0 and
an,m = Km

n (xn, An), we may choose a subsequence, say ml, such that

lim
l→∞

Hml,(1−δ)tml
(xml

, Aml
) =

1√
2π

∫ ∞

−∞
e−x2/2g(x)dx

and

lim
l→∞

K
⌊tml

⌋
ml,δ

(xml
, Aml

) =
1√
2πδ

∫ ∞

−∞
e−x2/(2δ)g(x)dx,

where g is nonnegative measurable function bounded by 1. This leads to g = 0
almost everywhere and

lim
l→∞

d
(c)
ml,TV((1− δ)tml

) = 1.

�

The following is a simple corollary of Proposition 3.2 (1)-(2).

Corollary 3.3. Let Fδ,Fc be families in Theorem 3.1 and tn, rn be sequences
tending to infinity. Fix δ ∈ (0, 1).
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(1) If d
(δ)
n,TV(⌈tn⌉) → 0, then

lim
n→∞

d
(c)
n,TV((1 + ϵ)(1− δ)tn) = 0, ∀ϵ > 0.

(2) If d
(c)
n,TV(rn) → 0, then

lim
n→∞

d
(δ)
n,TV(⌈(1 + ϵ)rn/(1− δ)⌉) = 0, ∀ϵ > 0.

Proof of Theorem 3.1. Set rn = T
(δ)
n,TV(ϵ0) and sn = T

(c)
n,TV(ϵ0). Suppose rn → ∞.

By Corollary 3.3 (2), if

lim inf
n→∞

d
(c)
n,TV((1− δ)rn/2) = 0,

then

lim inf
n→∞

d
(δ)
n,TV(⌈(1 + ϵ)rn/2⌉) = 0, ∀ϵ > 0.

But, taking ϵ = 1/2 implies that, for n large enough,

d
(δ)
n,TV(⌈(1 + ϵ)rn/2⌉) ≥ d

(δ)
n,TV(rn − 1) > ϵ0 > 0.

This makes a contradiction and, hence, if rn → ∞, then

lim inf
n→∞

d
(c)
n,TV((1− δ)rn/2) > 0.

In a similar way, if sn → ∞, then Corollary 3.3 (1) implies

lim inf
n→∞

d
(δ)
n,TV(⌈sn⌉) > 0.

This proves the following equivalence.

T
(δ)
n,TV(ϵ0) → ∞ for some ϵ0 > 0 ⇔ T

(c)
n,TV(ϵ0) → ∞ for some ϵ0 > 0.

For the equivalence of (1) and (2), the proof for precutoffs is given by Corollary
3.3 (1)-(2), while the proof for cutoffs also uses Proposition 3.2 (3)-(4). �

3.2. Cutoff windows. This section is devoted to the comparison of cutoff windows
introduced in Definition 2.1.

Theorem 3.4. Let F be a family of irreducible positive recurrent Markov chains
and Fδ,Fc be associated families of lazy walks and continuous semigroups. Let
tn, bn be sequences of positive reals and assume that tn → ∞. If Fδ (resp. Fc)
presents a (tn, bn) cutoff in total variation, then

√
tn = O(bn).

Remark 3.1. There are examples with cutoffs but the order of any window size must
be bigger than

√
tn. Consider the Ehrenfest chain on {0, ..., n}, which is a birth

and death chain with rates pn,i = 1 − i/n, qn,i = i/n and rn,i = 0. It is obvious
that Kn is irreducible and periodic with stationary distribution πn(i) = 2−n

(
n
i

)
.

An application of the representation theory shows that, for 0 ≤ i ≤ n, 2i/n is an
eigenvalue of I −Kn. Let λn = 2/n and sn =

∑n
i=1 n/(2i) =

1
2n logn+ O(n). By

Theorem 4.1, since λnsn tends to infinity, both Fc and Fδ have a total variation
cutoff. For a detailed computation on the total variation and the L2-distance, see
e.g. [7]. It is well-known that Fc has a ( 14n log n, n) total variation cutoff. By

Theorem 3.5, Fδ has a ( n log n
4(1−δ) , n) total variation cutoff for δ ∈ (0, 1), which is

nontrivial. For the continuous time Ehrenfest chains, Theorem 3.4 says that the
window size is at least

√
n log n, while n is the correct order.
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Proof of Theorem 3.4. We prove the continuous time case. The lazy discrete time
case can be treated similarly. Assume the inverse that the sequence

√
tn/bn is not

bounded. By considering the subsequence of
√
tn/bn which tends to infinity, it loses

no generality to assume that bn = o(
√
tn). According to the definition of cutoffs,

we may choose C > 0, xn ∈ Ωn and An ⊂ Ωn such that

lim inf
n→∞

|Hn,tn+Cbn(xn, An)− πn(An)| > 0.

By Lemma 3.8, one may choose a sequence nl tending to infinity such that πnl
(Anl

)
converges to α ∈ [0, 1] and

lim
l→∞

Hnl,tnl
+Cbnl

(xnl
, Anl

) =
1√
2π

∫ ∞

−∞
e−x2/2f(x)dx ̸= α,

where f is positive and bounded by 1. Let c ∈ R. For any ϵ > 0, choose N > 0
such that, for n ≥ N ,∣∣∣∣∣∣Hn,tn+cbn(xn, An)−

∑
i:|i−tn|≤N

√
tn

(
e−(tn+cbn)

(tn + cbn)
i

i!

)
Ki

n(xn, An)

∣∣∣∣∣∣ < ϵ.

Note that

e−(tn+cbn)
(tn + cbn)

i

i!
= e−(tn+Cbn)

(tn + Cbn)
i

i!
(1 + o(1)) as n→ ∞,

where o(1) is uniform for |i− tn| ≤ N
√
tn. This implies

lim
l→∞

Hnl,tnl
+cbnl

(xnl
, Anl

) =
1√
2π

∫ ∞

−∞
e−x2/2f(x)dx, ∀c ∈ R.

Since Fc presents a (tn, bn) cutoff, the right-side integral is equal to α, a contradic-
tion. �
Theorem 3.5. Let Fδ,Fc be families in Theorem 3.4 and tn → ∞. Then, the
following are equivalent.

(1) Fδ has a (tn, bn) cutoff.
(2) Fc has a ((1− δ)tn, bn) cutoff.

To prove this theorem, we need the following proposition.

Proposition 3.6. Let Fδ,Fc be as in Theorem 3.5 and tn, rn be sequences tending
to infinity.

(1) If Fδ has a (tn, bn) cutoff, then Fc has a ((1 − δ)tn, dn) cutoff for any
sequence satisfying dn = o(tn) and bn = o(dn).

(2) If Fc has a (rn, bn) cutoff, then Fδ has a (rn/(1 − δ), dn) cutoff for any
sequence satisfying dn = o(rn) and bn = o(dn).

Proof. Immediately from Theorem 3.4 and Proposition 3.2. �
Proof of Theorem 3.5. We prove (1)⇒(2), while the reasoning for (2)⇒(1) is sim-
ilar. Suppose that Fδ has a (tn, bn) cutoff with tn → ∞. Fix ϵ ∈ (0, 1) and

set cn = |T (c)
nTV(ϵ) − (1 − δ)tn|. By [5, Proposition 2.3], it remains to show that

cn = O(bn). Assume the inverse, that is, there is a subsequence ξ = {nl|l = 1, 2, ...}
such that cnl

/bnl
→ ∞ as l → ∞. Let Fδ(ξ),Fc(ξ) be families of Fδ,Fc restricted to

ξ. This implies Fδ(ξ) has a (tnl
, bnl

) cutoff, but Fc(ξ) has no
(
(1− δ)tnl

,
√
bnl
cnl

)
cutoff, a contradiction with Proposition 3.6. �
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3.3. Chains with specified initial states. For any probability µ on a countable
set Ω, we write (µ,Ω,K, π) as an irreducible Markov chain on Ω with transition
matrix K, stationary distribution π and initial distribution µ. The total variation
distances for the associated δ-lazy walk and continuous time chain are defined by

(3.3) d
(δ)
TV(µ, n) = ∥µKn

δ − π∥TV, d
(c)
TV(µ, t) = ∥µHt − π∥TV.

Denoted by T
(δ)
TV (µ, ϵ), T

(c)
TV(µ, ϵ) are the corresponding mixing times and the concept

of cutoffs can be defined similarly as Definition 2.1 according to (3.3). It is an easy
exercise to achieve a similar version of Lemma 2.1 for cutoffs with specified initial
distributions. The proofs for Propositions 3.2-3.6 and Corollary 3.3 can be adapted
to the case when the initial distribution is prescribed. This gives the following
theorems.

Theorem 3.7. Let F = {(µn,Ωn,Kn, πn)|n = 1, 2, ...} be a family of irreducible
Markov chains and Fδ,Fc be families of associated δ-lazy walks and continuous
time chains.

(1) Fδ has a cutoff (resp. precutoff) iff Fc has a cutoff (resp. precutoff).

(2) If Fδ has a cutoff, then T
(c)
n,TV(µn, ϵ) ∼ (1− δ)T

(δ)
n,TV(µn, ϵ) as n tends to ∞

for all ϵ ∈ (0, 1).

Let tn → ∞ and bn > 0.

(3) Fδ has a (tn, bn) cutoff iff Fc has a ((1− δ)tn, bn) cutoff.
(4) If Fδ has a (tn, bn) cutoff, then

√
tn = O(bn).

3.4. Proofs. This subsection collects required techniques for the proof of theorems
in Sections 3.1-3.2.

Lemma 3.8. Let an,m ∈ [0, 1], tn > 0 and c ∈ R. Suppose that tn → ∞. Then,
there is a subsequence nk of positive integers and a nonnegative measurable function
f bounded by 1 such that

lim
k→∞

∞∑
m=0

(
e−tnk

−c
√

tnk
(tnk

+ c
√
tnk

)m

m!

)
ank,m =

1√
2π

∫ ∞

−∞
e−(x−c)2/2f(x)dx,

for all c ∈ R, and

lim
k→∞

∑
m≥0

(
[(tnk

+ c
√
tnk

)/(1− δ)]

m

)
(1− δ)mδ[(tnk

+c
√

tnk
)/(1−δ)]−mank,m

=
1√
2πδ

∫ ∞

−∞
e−(x−c)2/(2δ)f(x)dx,

for all c ∈ R, δ ∈ (0, 1), where [z] is any of ⌈z⌉, ⌊z⌋.

Proof. For n ≥ 1 and any Borel set A ⊂ R, set

µn(A) =
1√
tn

∑
m:m−tn/

√
tn∈A

an,m.

Let nk be a subsequence of N such that

(3.4) lim
k→∞

µnk
((a, b]) = µ((a, b]), ∀a, b ∈ Q, a < b.

Clearly, µ((a, b]) ≤ b − a for a < b and a, b ∈ Q. This implies the convergence in
(3.4) holds for all a < b and µ((a, b]) ≤ b−a. As a consequence of the Carathéodory
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extension theorem, µ can be extended to a measure on R. It is obvious that µ is
absolutely continuous with respect to the Lebesgue measure and we write f as the
Radon-Nykodym derivative.

Let ϵ > 0 and choose M > 0 such that, for n ≥M ,∑
m:|m−tn|/

√
tn /∈(−M,M ]

e−tn−c
√
tn
(tn + c

√
tn)

m

m!
< ϵ.

For any integer N > 1, set xi = iM/N and An,i = {m ≥ 0||m − tn|/
√
tn ∈

(xi, xi+1]}. By Stirling’s formula, it is easy to see that

e−tn−c
√
tn
(tn + c

√
tn)

m

m!
=

1 + o(1)√
2πtn

exp

{
−1

2

(
m− tn√

tn
− c

)2
}

as n→ ∞,

where o(1) is uniformly for m ∈ An,i and −N ≤ i < N . This implies

∑
m∈An,i

(
e−tn−c

√
tn
(tn + c

√
tn)

m

m!

)
an,m

{
≤Miµn(An,i)/

√
2π + o(1)

≥ miµn(An,i)/
√
2π + o(1)

,

where Ui = sup{e−(x−c)2/2|x ∈ (xi, xi+1] and Li = inf{e−(x−c)2/2|x ∈ (xi, xi+1]}.
Summing up i and replacing n with nk yields

lim sup
k→∞

∞∑
m=0

(
e−tnk

−c
√

tnk
(tnk

+ c
√
tnk

)m

m!

)
ank,m ≤ 1√

2π

N−1∑
i=−N

Miµ((xi, xi+1]) + ϵ

and

lim inf
k→∞

∞∑
m=0

(
e−tnk

−c
√

tnk
(tnk

+ c
√
tnk

)m

m!

)
ank,m ≥ 1√

2π

N−1∑
i=−N

miµ((xi, xi+1])− ϵ.

Letting N → ∞ and then ϵ → 0 gives the desired limit. The proof of the second
limit is similar and omitted. �

Lemma 3.9. Let f be a bounded nonnegative measurable function and set F (t) =∫∞
−∞ e−(x−t)2f(x)dx. If F is constant, then f is constant almost everywhere.

Proof. Set A = F (t), B−1 =
∫∞
−∞ e−x2/2f(x)dx and write

e−(x−t/2)2f(x) = B−1
√
2πet

2/4

(
1√
2π
e−(t−x)2/2

)(
Be−x2/2f(x)

)
.

Note that AB/(
√
2πet

2/4) is the density of X + Y , where X has the standard

normal distribution, Y is continuous with density function Be−x2/2f(x) and X,Y

are independent. This implies AB = 1/
√
2 and

e−u2

= E(eiu(X+Y )) = e−u2/2E(eiuY ), ∀u ∈ R.

Clearly, Y has the standard normal distribution and, thus, f is a constant a.e. �
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3.5. A remark on the spectral gap and mixing time. In this subsection, we
make a comparison of spectral gaps between continuous time chains and δ-lazy
discrete time chains. Let (Ω,K, π) be an irreducible and reversible finite Markov
chain with spectral gap λ, the smallest non-zero eigenvalue of I − K. First, we
consider the continuous time case. Since (K,π) is reversible, there is a function f
defined on {0, 1, ..., n} such that Kf = (1− λ)f . This implies

d
(c)
TV(t) =

1

2
∥Ht − π∥∞→∞ ≥ ∥(Ht − π)f∥∞

2∥f∥∞
=
e−λt

2
,

where ∥A∥∞→∞ := sup{∥Ag∥∞ : ∥g∥∞ = 1}. Consequently, we obtain

T
(c)
TV(ϵ) ≥

− log(2ϵ)

λ
.

For the lazy discrete time case, a similar discussion yields

d
(δ)
TV(t) ≥ βt

δ/2, T
(δ)
TV (ϵ) ≥

⌊
log(2ϵ)

log βδ

⌋
,

where βδ is the second largest absolute value of all nontrivial eigenvalue values of
Kδ. By setting δ0 = inf{δ ∈ (0, 1)|βδ = 1− (1− δ)λ}, it is easy to see that δ0 ≤ 1/2
and, for δ ∈ [δ0, 1), βδ = 1− (1− δ)λ. As a function of δ, βδ is decreasing on (0, δ0)
and increasing on (δ0, 1). Note that |1− (1− δ)λ| ≤ βδ ≤ max{1−2δ, 1− (1− δ)λ}.
The first inequality implies 1 − βδ ≤ (1 − δ)λ. Using the second inequality, if
βδ > 1 − 2δ, then 1 − βδ = (1 − δ)λ. If βδ ≤ 1 − 2δ, then 1 − βδ ≥ 2δ ≥ δλ,
where the last inequality uses the fact λ ≤ 2. We summarize the discussion in the
following lemma.

Lemma 3.10. Let K be an irreducible transition matrix on a finite set Ω with
stationary distribution π. For δ ∈ (0, 1), let Kδ be the δ-lazy walk given by (1.1).
Suppose (π,K) is reversible, that is, π(x)K(x, y) = π(y)K(y, x) for all x, y ∈ Ω
and let λ be the smallest non-zero eigenvalue of I−K and βδ be the largest absolute
value of all nontrivial eigenvalues of Kδ. Then, it holds true that

min {1− δ, δ}λ ≤ 1− βδ ≤ 1− |1− (1− δ)λ| ≤ (1− δ)λ, ∀δ ∈ (0, 1).

Furthermore, for ϵ ∈ (0, 1/2),

T
(c)
TV(ϵ) ≥

− log(2ϵ)

λ
, T

(δ)
TV (ϵ) ≥

⌊
log(2ϵ)

log βδ

⌋
≥
⌊

− log(2ϵ)

2max{1− δ, log(2/δ)}λ

⌋
,

where the last inequality assumes |Ω| ≥ 2/δ.

Proof. It remains to prove the second inequality in the lower bound of the mixing
time for the δ-lazy chain. Note that if λ ≤ 1/2, then

− log βδ ≤ − log(1− (1− δ)λ) ≤ 2(1− δ)λ,

where the last inequality uses the fact log(1 − x) ≥ −2x for x ∈ (0, 1/2). For
λ ≥ 1/2, let θ1(δ), ..., θ|Ω|(δ) be eigenvalues of Kδ. Then, θi(δ) = δ + (1 − δ)θi(0)

and
∑|Ω|

i=1 θi(0) ≥ 0. See [12] for a reference on the second inequality. This implies

1 + (|Ω| − 1)βδ ≥
|Ω|∑
i=1

θi(δ) ≥ |Ω|δ.
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Assuming |Ω| ≥ 2/δ, the above inequality yields

βδ ≥ |Ω|δ − 1

|Ω| − 1
≥ δ

2
, − log βδ ≤

(
2 log

2

δ

)
λ.

�

4. Finite birth and death chains

In this section, we consider the total variation cutoff for birth and death chains.
A birth and death chain on {0, 1, ..., n} with birth rate pi, death rate qi and holding
rate ri is a Markov chain with transition matrix K given by

(4.1) K(i, i+ 1) = pi, K(i, i− 1) = qi, K(i, i) = ri, ∀0 ≤ i ≤ n,

where pi + qi + ri = 1 and pn = q0 = 0. It is obvious that K is irreducible if and
only if piqi+1 > 0 for 0 ≤ i < n. Under the assumption of irreducibility, the unique
stationary distribution π of K is given by π(i) = c(p0 · · · pi−1)/(q1 · · · qi), where c
is a positive constant such that

∑n
i=0 π(i) = 1.

In the next two subsections, we recall some results developed in [9, 10] and make
an improvement on them using the result in Section 3. In the third subsection,
we go back to the issue of cutoffs and make a comparison of total variation and
separation cutoffs.

4.1. The total variation cutoff. Throughout this subsection, we let

(4.2) F = {(Ωn,Kn, πn)|n = 1, 2, ...}
denote a family of irreducible birth and death chains with Ωn = {0, 1, ..., n} and
transition matrix

(4.3) Kn(i, i+ 1) = pn,i, Kn(i, i− 1) = qn,i, Kn(i, i) = rn,i, ∀0 ≤ i ≤ n,

where pn,i + qn,i + rn,i = 1 and pn,n = qn,0 = 0. Write λn = λ(Kn) as the spectral
gap of Kn. As before, Fc denotes the family of associated continuous semigroups
and, for δ ∈ (0, 1), Fδ denotes the family of δ-lazy chains. Recall one of the main
results in [10] as follows.

Theorem 4.1 (Theorems 3-3.1 in [10]). Consider the family in (4.2). For n ≥ 1,
let λn be the smallest nonzero eigenvalue of I − Kn and let βn,δ be the second
largest absolute value of all nontrivial eigenvalues of Kn,δ. Then, Fc (resp. Fδ

with δ ∈ (0, 1)) has a total variation cutoff if and only if T
(c)
n,TV(1/4)λn → ∞ (resp.

T
(δ)
n,TV(1/4)(1 − βn,δ) → ∞). Moreover, if Fc (resp. Fδ) has a cutoff, then the

window has size at most
√
T

(c)
n,TV(1/4)/λn (resp.

√
T

(δ)
n,TV(1/4)/(1− βn,δ)).

Remark 4.1. By Lemma 3.10, the total variation cutoff in discrete time case is

equivalent to T
(δ)
n,TV(1/4)λn → ∞. By Theorems 3.1-4.1 and Lemma 3.10, if Fc or Fδ

has a cutoff, then the window size is at most
√
T

(c)
n,TV(1/4)/λn or

√
T

(δ)
n,TV(1/4)/λn.

Remark 4.2. There are examples with cutoffs, but the order of the optimal window

size is less than
√
T

(c)
n,TV(1/4)λn. See Remark 3.1.

The combination of the above theorem and Theorem 3.1 yields

Theorem 4.2. Referring to Theorem 4.1, the following are equivalent.
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(1) Fc has a total variation cutoff.
(2) Fδ has a total variation cutoff.
(3) Fc has a total variation precutoff.
(4) Fδ has a total variation precutoff.

(5) T
(c)
n,TV(ϵ)λn → ∞ for some ϵ ∈ (0, 1).

(6) T
(δ)
n,TV(ϵ)λn → ∞ for some ϵ ∈ (0, 1).

Proof of Theorem 4.2. It remains to show (3)⇒(5) and this is given by the inequal-

ity d
(c)
n,TV(t) ≥ e−λnt/2. �

Theorem 4.3. Consider the family in (4.2). It holds true that T
(c)
n,TV(ϵ/2) ≍

T
(δ)
n,TV(η/2) for all ϵ, η, δ ∈ (0, 1). Furthermore, if there is ϵ0 ∈ (0, 1) such that

T
(c)
n,TV(ϵ0/2)λn or T

(δ)
n,TV(ϵ0/2)λn is bounded, then T

(c)
n,TV(ϵ/2) ≍ 1/λn and T

(δ)
n,TV(ϵ/2) ≍

1/λn for all ϵ, δ ∈ (0, 1).

Proof of Theorem 4.3. Assume that there is a subsequence nk and ϵ, η ∈ (0, 1/2)

such that either T
(c)
nk,TV(ϵ)/T

(δ)
nk,TV(η) → ∞ or T

(δ)
nk,TV(η)/T

(c)
nk,TV(ϵ) → ∞. By

Lemma 3.10, we have T
(c)
nk,TV(ϵ)λnk

→ ∞ or T
(δ)
nk,TV(η)λnk

→ ∞. In either case,
Theorems 3.1-4.1 imply that the subfamily indexed by (nk)

∞
k=1 has a cutoff in both

continuous time and δ-lazy discrete time cases. As a consequence of Theorem 3.1,

we obtain T
(c)
nk,TV(ϵ) ∼ (1−δ)T (δ)

nk,TV(η), which contradicts with the assumption. �
Concerning the window size, a combination of Theorem 3.4 and Theorem 4.1

yields

Theorem 4.4. Let F , λn be as in Theorem 4.1. Suppose that Fc or Fδ has a total
variation cutoff and λn ≍ 1. Then, for any ϵ, η ∈ (0, 1) with ϵ ̸= η,∣∣∣T (c)

n,TV(ϵ)− T
(c)
n,TV(η)

∣∣∣ ≍√T (c)
n,TV(ϵ) ≍

∣∣∣T (δ)
n,TV(ϵ)− T

(δ)
n,TV(η)

∣∣∣ .
4.2. The separation cutoff. In this subsection, we apply the results obtained in
the previous subsection to the separation cutoff. First, we give a definition of the
separation in the following. Given an irreducible finite Markov chain K on Ω with
initial distribution µ and stationary distribution π, the separation distance at time
m is defined by

dsep(µ,m) := max
x∈Ω

{
1− µKm(x)

π(x)

}
.

Aldous and Diaconis [2] introduce the concept of the strong stationary time to
identify the separation distance. Set dsep(m) = maxi dsep(i,m). A well-known
bound on the separation is achieved by Aldous and Fill in Lemma 7 of [1, Chapter
4], which says

(4.4) d̄(m) ≤ dsep(m), dsep(2m) ≤ 1− (1− d̄(m))2,

where d̄(m) := maxi,j ∥Km(i, ·)−Km(j, ·)∥TV. It is clear from the definitions that
dTV(m) ≤ d̄(m) ≤ 2dTV(m). Let Tsep(ϵ) be the separation mixing time. The above
inequalities imply

(4.5) TTV(ϵ) ≤ Tsep(ϵ) ≤ 2TTV(ϵ/4), ∀ϵ ∈ (0, 1).

Note that the above discussions are also valid for the continuous time case. As the
separation distance is between (0, 1), the separation cutoff is similar to the total
variation cutoff as in Definition 2.1. By (4.5), we obtain the following lemma.
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Lemma 4.5. Let F be a family of finite Markov chains in either discrete or con-
tinuous time case. Assume that Tn,TV(ϵ) → ∞ or Tn,sep(ϵ) → ∞ for some ϵ ∈ (0, 1)
in discrete time case. Then, F has a total variation precutoff if and only if F has
a separation precutoff.

For birth and death chains, the application of (4.5) to Theorem 4.3 leads to the
following theorem.

Theorem 4.6. Theorem 4.3 also holds in separation. Furthermore, for ϵ, η ∈
(0, 1/2), T

(c)
n,TV(ϵ) ≍ T

(c)
n,sep(η).

Let K be an irreducible birth and death chain on {0, 1, ..., n} with stationary
distribution π. The authors in [10] obtain the following fact

(4.6) d(c)sep(t) = 1− Ht(0, n)

π(n)
, d(δ)sep(m) = 1− Km

δ (0, n)

π(n)
∀δ ∈ [1/2, 1).

The authors in [9] provide a criterion on the separation cutoff for continuous time
chains and monotone discrete time chains. The result says that a separation cutoff
exists if and only if the product of the spectral gap and the separation mixing time
tends to infinity. The next theorem is a consequence of this fact and Theorems 4.2
and 4.6, which is also obtained in [10].

Theorem 4.7. Let F be a family of birth and death chains given by (4.2). The
following are equivalent.

(1) Fc has a cutoff in total variation.
(2) For δ ∈ (0, 1), Fδ has a cutoff in total variation.
(3) Fc has a cutoff in separation.
(4) For δ ∈ [1/2, 1), Fδ has a cutoff in separation.

The next theorem is a simple corollary of Theorems 4.2-4.7 and Lemma 4.5.

Theorem 4.8. Theorem 4.2 also holds in separation distance with δ ∈ [1/2, 1).

4.3. The cutoff time in total variation and separation. In this subsection, we
introduce a spectral representation of the total variation mixing time. Let K be the
transition kernel of an irreducible birth and death chain on {0, 1, ..., n}. Suppose
that K is irreducible with stationary distribution π and let 0 < λ1 < · · · < λn be
the eigenvalues of I −K. Consider the continuous time case. Using [9, Theorem
4.1] and [10, Corollary 4.5], we have

d(c)sep(t) = 1− Ht(0, n)

π(n)
= 1− Ht(n, 0)

π(0)
= P(S > t),

where S is a sum of n independent exponential random variables with parameters
λ1, ..., λn. By the one-sided Chebyshev inequality, one has

ES −
√
Var(S)/(1/ϵ− 1) ≤ T (c)

sep(ϵ) ≤ ES +
√
(1/ϵ− 1)Var(S), ∀ϵ ∈ (0, 1).

Note that

ES =
n∑

i=1

1

λi
, Var(S) =

n∑
i=1

1

λ2i
≤ (ES)2.

Clearly, this implies

(4.7)
(
√
1− ϵ−

√
ϵ)ES√

1− ϵ
≤ T (c)

sep(ϵ) ≤
(
√
ϵ+

√
1− ϵ)ES√
ϵ

, ∀ϵ ∈ (0, 1).
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The above equation says that, given ϵ ∈ (0, 1/2), the separation mixing time is
bounded by

∑n
i=1 λ

−1
i up to universal constants. The above discussion is also valid

for discrete time case with the assumption that K(i, i + 1) + K(i + 1, i) ≤ 1 for
0 ≤ i < n. See [9] for the details. The next proposition is an application of (4.5)
and (4.7).

Proposition 4.9. Let K be an irreducible birth and death chain on {0, 1, ..., n}.
Let 0, λ1, ..., λn be eigenvalues of K and set s =

∑n
i=1 λ

−1
i . Then,(√

1− ϵ−
√
ϵ√

1− ϵ

)
s ≤ T (c)

sep(ϵ) ≤
(√

ϵ+
√
1− ϵ√
ϵ

)
s, ∀ϵ ∈ (0, 1/2),

and

1

2

(√
1− 4ϵ−

√
4ϵ√

1− 4ϵ

)
s ≤ T

(c)
TV(ϵ) ≤

(√
ϵ+

√
1− ϵ√
ϵ

)
s, ∀ϵ ∈ (0, 1/8).

The above also holds in discrete time case with the assumption that K(i, i + 1) +
K(i+ 1, i) ≤ 1 for 0 ≤ i < n.

Applying Proposition 4.9 to Theorems 4.2-4.7 yields the following theorem, where
the result in separation is included in [9] and the result in total variation is implicitly
obtained in [10].

Theorem 4.10 (Cutoffs from the spectrum). Let F be the family in (4.2). For
n ≥ 1, let λn,1, ..., λn,n be non-zero eigenvalues of I −Kn and set

λn = min
1≤i≤n

λn,i, sn =
1

λn,1
+ · · ·+ 1

λn,n
.

Then, the following are equivalent.

(1) Fc has a total variation cutoff.
(2) For δ ∈ (0, 1), Fδ has a total variation cutoff.
(3) Fc has a total variation precutoff.
(4) For δ ∈ (0, 1), Fδ has a total variation precutoff.
(5) snλn → ∞.

The above also holds in separation with δ ∈ [1/2, 1). In particular, if (5) holds,
then, for ϵ ∈ (0, 1),

1

2
≤ lim inf

n→∞

T
(c)
n,TV(ϵ)

sn
≤ lim sup

n→∞

T
(c)
n,TV(ϵ)

sn
≤ 1.

The last result establishes a relation between the mixing time and birth and death
rates. Consider an irreducible birth and death chain (Xm)∞m=0 on {0, 1, ..., n} with
transition matrix K and stationary distribution π. Let Nt be a Poisson process of
parameter 1 that is independent of Xm and set, for 0 ≤ i ≤ n,

τi := inf{t ≥ 0|XNt = i}.
Brown and Shao discuss the distribution of τi in [3] and obtain the following result.

P0(τn > t) =
n∑

j=1

∏
k ̸=j

θk
θk − θj

 e−θjt,

where Pi is the conditional probability given X0 = i and θ1, ..., θn are eigenvalues
of the submatrix of I − K indexed by {0, 1, ..., n − 1}. Let Ei be the conditional
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expectation given X0 = i. Clearly, this implies E0τn =
∑n

j=1 1/θj . Note that E0τn
can be formulated by the birth and death rates using the strong Markov property.
This leads to

(4.8) E0τn =
n∑

j=1

1

θj
=

n−1∑
k=0

π([0, k])

π(k)pk
,

where π(A) :=
∑

i∈A π(i).
Fix 0 ≤ i0 ≤ n. By (4.8), we have

E0τi0 =

i0∑
i=1

1

λ′i
, Enτi0 =

n−i0∑
i=1

1

λ′′i
,

where λ′1, ..., λ
′
i0

and λ′′1 , ..., λ
′′
n−i0

are eigenvalues of the submatrices of I − K in-

dexed respectively by {0, ..., i0 − 1} and {i0 + 1, ..., n}. Let λ̄1 ≤ · · · ≤ λ̄n be a
rearrangement of λ′1, ..., λ

′
i0
, λ′′1 , ..., λ

′′
n−i0

. Clearly, λ̄1, ..., λ̄n are eigenvalues of the
submatrix obtained by removing the i0-th row and the i0-th column of I −K. Let
λ1 < · · · < λn be nonzero eigenvalues of I −K. By Theorem 4.3.8 in [11], we have
λ̄i ≤ λi ≤ λ̄i+1 and this leads to

n∑
i=2

1

λ̄i
≤

n∑
i=1

1

λi
≤

n∑
i=1

1

λ̄i
=

i0−1∑
k=0

π([0, k])

π(k)pk
+

n∑
k=i0+1

π([k, n])

π(k)qk
,

where the first equality uses (4.8). By Proposition 4.9, we obtain, for ϵ ∈ (0, 1),

T
(c)
TV(ϵ) ≤ T (c)

sep(ϵ) ≤
(√

ϵ+
√
1− ϵ√
ϵ

)
min

0≤i≤n

{
i−1∑
k=0

π([0, k])

π(k)pk
+

n∑
k=i+1

π([k, n])

π(k)qk

}
.

The above discussion also holds in discrete time case with the assumption that
pi + qi+1 ≤ 1 for all 0 ≤ i < n. This includes the δ-lazy chain for δ ∈ [1/2, 1) and
we apply it to get the following corollary.

Corollary 4.11. Let F = {(Ωn,Kn, πn)|n = 1, 2, ...} be a family of irreducible
birth and death chain in (4.2) with birth, death and holding rates pn,i, qn,i, rn,i. For
n ≥ 1, set

tn = min
0≤i≤n

{
i−1∑
k=0

πn([0, k])

πn(k)pn,k
+

n∑
k=i+1

πn([k, n])

πn(k)qn,k

}
.

If Fc or Fδ has a total variation cutoff, then, for ϵ ∈ (0, 1) and δ ∈ [1/2, 1),

lim sup
n→∞

T
(c)
n,sep(ϵ)

tn
≤ 1, lim sup

n→∞

T
(δ)
n,sep(ϵ)

tn
≤ 1

1− δ
,

and, for ϵ ∈ (0, 1),

lim sup
n→∞

T
(c)
n,TV(ϵ)

tn
≤ 1 lim sup

n→∞

T
(δ)
n,TV(ϵ)

tn
≤ 1

1− δ
.

Remark 4.3. In [6], the constant tn in Corollary 4.11 is proved to be of the same
order as the constant sn in Theorem 4.10 and the following term

in−1∑
k=0

πn([0, k])

πn(k)pn,k
+

n∑
k=in+1

πn([k, n])

πn(k)qn,k
,

where in satisfies πn([0, in]) ≥ 1/2 and πn([in, n]) ≥ 1/2.
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Remark 4.4. The bound in Corollary 4.11 is also be obtained implicitly in [10] using
a coupling argument.
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