SPECTRAL COMPUTATIONS FOR BIRTH AND DEATH
CHAINS

GUAN-YU CHEN! AND LAURENT SALOFF-COSTE?2

ABSTRACT. We consider the spectrum of birth and death chains on a n-path.
An iterative scheme is proposed to compute any eigenvalue with exponential
convergence rate independent of n. This allows one to determine the whole
spectrum in order n? elementary operations. Using the same idea, we also
provide a lower bound on the spectral gap, which is of the correct order on
some classes of examples.

1. INTRODUCTION

Let G = (V, E) be the undirected finite path with vertex set V = {1,2,...n} and
edge set £ = {{i,i+1}:i=1,2,....,n — 1}. Given two positive measures m, v on
V, E with w(V) = 1, the Dirichlet form and variance associated with v and 7 are
defined by

n—1
E(f.9) = S 1FG) — (i + Dllgi) — g(i + Dlwiyi+1)
i=1
and
Varr (f) == m(f?) — 7 (f)?,
where f, g are functions on V. When convenient, we set v(0,1) = v(n,n+ 1) = 0.
The spectral gap of G with respect to m, v is defined as

. &N,
)\T(i,, = mln{vaii(ff;
Let M,f’:,, be a matrix given by Mgu(i,j) =0 for |i — j| > 1 and
v(i — 1,i) + v(i,i+ 1)
7 (i) '

fis non—constant} .

G (; : v(i,j) . G ;-
Mw,u(lvj) == 7T(72) ) v|7’ 7j| = 17 M‘fr,u(l77’) =
Obviously, )\,Cf,l, is the smallest non-zero eigenvalue of Mf -
Undirected paths equipped with measures 7, v are closely related to birth and
death chains. A birth and death chain on {0,1,2,...,n} with birth rate p;, death
rate ¢; and holding rate r; is a Markov chain with transition matrix K given by

(1.1) K@G,i+1)=p;, K@Gi—1)=¢q;, K(@,i)=r;, V0<i<nmn,

where p; + ¢; + 7, = 1 and p, = go = 0. Under the assumption of irreducibility,
that is, p;g;+1 > 0 for 0 < ¢ < n, K has a unique stationary distribution m
given by 7(i) = ¢(po---pi—1)/(q1 - - qi), where ¢ is the positive constant such that
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>r om(i) = 1. The smallest non-zero eigenvalue of I — K is exactly the spectral
gap of the path on {0,1,...,n} with measures 7,v, where v(i,i + 1) = 7(i)p; =
(i + 1)qq1 for 0 <i < n.

Note that if 1 is the constant function of value 1 and ¢ is a minimizer for )\f s

then ¢ — 7(1))1 is an eigenvector of ng. This implies that any minimizer v for
)\f!l, satisfying 7(1) = 0 satisfies the Euler-Lagrange equation,

(12) AL, m(@)o(i) = (i) — (i = D]w(i —1,9) + [$) — (i + Dw(i i+ 1),

for all 1 <4 < n. Assuming the connectedness of G (i.e., the superdiagonal and
subdiagonal entries of ng are positive), the rank of ng — Al is at least n—1. This
implies that all eigenvalues of Mf , are simple. See Lemma A.3 for an illustration.
Observe that, by (1.2), any non-trivial eigenvector of Mf , has mean 0 under .
This implies that all minimizers for the spectral gap are of the form at) + b1, where
a,b are constants and 1 is a nontrivial solution of (1.2). In 2009, Miclo obtained
implicitly the following result.

Theorem 1.1. [15, Proposition 1] If ¢ is a minimizer for )\ﬂ ., then ¥ must be
monotonic, that is, either ¥ (i) < Y(i+1) for all1 <i<n or w( ) > (i +1) for
alll1 <i<n.

One aim of this paper is to provide a scheme to compute the spectrum of M

7TD7

particular, the spectral gap. Based on Miclo’s observation, it is natural to conmder
the following algorithm.

Choose two positive reals g, a in advance and set, for £ = 0,1, ...,

Lpp(1l) = —

for 1 < i < n, where t+ = max{t, 0},

51/ (1/1163 ¢k)
Varg (vr)

The following theorems discuss the behavior of A.

{0 () = ¥n (i = Dw(i = 1,0) = Mem (@) (i)} F
v(i,i+ 1) :

3. Apt1 =

Theorem 1.2 (Convergence to the exact value). Referring to (A1), if n =2, then
Ak =S, forall k> 1. If n > 3, then the sequence (A, vr) satisfies

(1) If o = XS, then Ay = XS, for all k > 0.

(2) If Xo # XS, then A\ > Xey1 > XS, for k > 1.

(3) Set (\*,¢*) = klim (Mg, ¥g). Then, X\ = &, (¢*,¢*)/Var, (¢v*) = )\fﬁu and
bde el

(") = 0.

Theorem 1.3 (Rate of convergence). Referring to Theorem 1.2, there is a constant
o € (0,1) independent of the choice of (Ao, a) such that 0 < X\p — S, < oF 1Ay for
all k> 1.

By Theorem 1.3, we know that the sequence \; generated in (A1) converges to
the spectral gap exponentially but the rate (—log o) is undetermined. The following
alternative scheme is based on using more information on the spectral gap and will
provide convergence at a constant rate.
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Choose a > 0, Ly < )\f’y < Uy in advance and set, for £k = 0,1, ...,
1.Yp(1) = —a, \p = %(Lk + Ug)

N . . . N
(i 1) — () 4 L) = i = DIl = 1.1) = M) (i)

v(i,i+1)
for 1 < i < n, where t+ = max{t, 0},
Lgy1 =L, Ugy1 = A i w(yg) >0
3.Q Lysr = M, Upsr = Uy, if m(ehy) <0 .
Liir = Upp1 = M if () = 0
Theorem 1.4 (Dichotomy method). Referring to (A2), it holds true that
0 <max{Uy — AS,,AS, — Ly} < (Up — Lo)27 ", Vk >0.

TV

3

In Theorem 1.4, the convergence to the spectral gap is exponentially fast with
explicit rate, log 2. See Remark 2.2 for a discussion on the choice of Ly and Uy. For
higher order spectra, Miclo has a detailed description of the shape of eigenvectors in
[14] and this will motivate the definition of similar algorithms for every eigenvalue
in spectrum. See (Di) and Theorem 3.4 for a generalization of (A2) and Theorem
3.14 for a localized version of Theorem 1.3.

The spectral gap is an important parameter in the quantitative analysis of
Markov chains. The cutoff phenomenon, a sharp phase transition phenomenon
for Markov chains, was introduced by Aldous and Diaconis in early 1980s. It is
of interest in many applications. A heuristic conjecture proposed by Peres in 2004
says that the cutoff exists if and only if the product of the spectral gap and the
mixing time tends to infinity. Assuming reversibility, this has been proved to hold
for LP-convergence with 1 < p < oo in [2]. For the L!-convergence, Ding et al.
[10] prove this conjecture for continuous time birth and death chains. In order to
use Peres’ conjecture in practice, the orders of the magnitudes of spectral gap and
mixing time are required. The second aspect of this paper is to derive a theoretical
lower bound on the spectral gap using only the birth and death rates. This lower
bound is obtained using the same idea used to analyze the above algorithm. For
estimates on the mixing time of birth and death chains, we refer the readers to
the recent work [4] by Chen and Saloff-Coste. For illustration, we consider several
examples of specific interest and show that the lower bound provided here is in fact
of the correct order in these examples.

This article is organized as follows. In Section 2, the algorithms in (Al)-(A2)
are explored and proofs for Theorems 1.2-1.4 are given. In Section 3, the spectrum
of M¢, is discussed further and, based on Miclo’s work [14], Algorithm (A2) is
generalized to any specified eigenvalue of Mf - Our method is applicable for paths
of infinite length (one-sided) and this is described in Section 4. For illustration, we
consider some Metropolis chains and display numerical results of Algorithm (A2)
in Section 5. In Section 6, we focus on uniform measures with bottlenecks and
determine the correct order of the spectral gap using the theory in Sections 2-3. It
is worthwhile to remark that the assumptions in Section 6 can be relaxed using the
comparison technique in [7, 8]. As the work in this paper can also be regarded as
a stochastic counterpart of theory of finite Jacobi matrices, we would like to refer
the readers to [18, 19] for a complementary perspective.

v
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2. CONVERGENCE TO THE SPECTRAL GAP

This section is devoted to proving Theorems 1.2-1.4. First, we prove Theorem
1.1 in the following form.

Lemma 2.1. Let A > 0 and ¢ be a non-constant function on V. Suppose (A, )
solves (1.2) and ¢ is monotonic. Then, 1 is strictly monotonic, that is, either
() <Y@i+1) forl<i<mnory(i)>yp(i+1) forl1 <i<n.

Proof. Obviously, (1.2) implies that 7(¢)) = 0. Without loss of generality, it suffices
to consider the case when (1) < 0 and %(n) > 0. Since v is non-constant and
A&, > 0, we have (1) < (2) and ¥(n — 1) < t(n). Note that if there are

TV

1< i < §'< n such that (i — 1) < (i), $(j) < $(j + 1) and (k) = ¥(i) = ()
for i < k < j, then (1.2) yields

NG (D)0 (0) = [W(i) = (i = D] = 1,4) + [0(i) = 6 + Dp(ii+1) >0
and
A2 (DY) = [0G) =0 = Vv — 1,7) + [$() =G + DIv(j.j +1) <0,
a contradiction. Thus, ¥ is strictly increasing. (]
We note the following corollary.

Corollary 2.2. Let (A %) be a pair satisfying (1.2). Then, A = )‘S,V if and only if
1 is monotonic.

Proof. One direction is obvious from Theorem 1.1. For the other direction, assume
that 1 is monotonic and let ¢ be a minimizer for )\f,y with 7(¢) = 0. Since (A, )
and ()\fvy, ¢) are solutions to (1.2), one has

Ar(1g) = E,(,8) = A7, m().

By Lemma 2.1, ¢ and ¢ are strictly monotonic and this implies &, (¢, ¢) # 0. As a
consequence of the above equations, we have A = )\TC;:V. O

The following proposition is the key to Theorem 1.2.
Proposition 2.3. Suppose that (A, ) satisfies A > 0, (1) < 0 and, for 1 <i<mn,

{[v(@) = 9@ = D] — 1,8 = Ar(@)e(i)}*
v(i,i+1) ’

(2.1) YE+1) =)+

where t+ = max{t,0}. Then, the following are equivalent.

(1) & (¥, ¥) = AVarg(¥).
(2) m(y) = 0.
(3) A=A%,.
Furthermore, if n > 3, then any of the above is equivalent to

(4) &) = AT, Var(y)

Remark 2.1. For n = 2, it is an easy exercise to show that AY , = v(1,2)/(w(1)7(2)).
By following the formula in (2.1), one has ¥(2) = ¢(1)[1 — An(1)/v(1,2)], which
leads to &, (¢, ¢)/Var, () = )\fyy.
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Proof of Proposition 2.3. Set B = {1 <i <n|¢(i) =¢¥(n)} and B¢ = {1,2,...,4¢}.
Since ¥(1) < 0 and A > 0, (1) < ¢(2) and B¢ is nonempty. According to (2.1), v
is non-decreasing. Note that if (i) = ¥(i+1), then 1(:) > 0 and ¥(i42) = 1 (i+1).
This implies ¢ is strictly increasing on {1,2,...,ip + 1} and, for 1 < i < 4y,

Am (i) (i) = [(i) = (i + D]v(iyi+ 1) + [(i) — (i — D]w(i - 1,4).
Multiplying (i) on both sides and summing over all ¢ in B¢ yields

NS U0 = Y 6) — 6+ DG+ 1)

+ 9 (i0) [ (i0) — ¥ (io + 1)]v(io, 0 + 1)
=&, (Y, ) +Y(io + 1)[1/)@ ) — (io + 1)]v(io, io + 1)

E,(1,1) + A (n Zw
This is equivalent to
(2.2) Eu(, 1) = AVarg () + A ()7 () — (n)],
which proves (1)<(2).
If A= )\fl,, then ¢ is an eigenvector for Mgu associated to )\f’u. This proves

(3)=(2). For (2)=(3), assume that 7()) = 0. In this case, ¢ must be strictly
increasing. Otherwise, (i) = ¥(n) > 0 for ¢ € B and, according to (2.1), this
implies

n—1 n—1

AVarr () > A w(i)?(i) > D [0(0) — (i + DPv(ii+1) = E@,v),

= i=1
which contradicts (1). As 4 is strictly increasing and () = 0, (A, ¢) solves (1.2).
By Corollary 2.2, A = )\fiy

To finish the proof, it remains to show (4)=(3) ((3)=-(4) is obvious from the

equivalence among (1), (2) and (3)). Assume that &, (¢,¢) = /\G ,Var,(¢). By
Lemma 2.1, 4 is strictly monotonic and this implies, for 1 <4

A (@) (i) = (@) = (i + D]v(i,i+1) + [(@) — (i — 1)}1/(2' —1,4).

As 1 is a minimizer for )\ one has, for 1 <i < n,

AL m(@)[) —m()] = W(i) =@+ Dv(,i+ 1) + [ — 9 — D] - 1,4).

If A # A\¢, the comparison of both systems yields

G
W(i) = AAG Ew; VI <i<n.

™,V

As n >3, ¥(1) = 9(2), a contradiction! This forces A = A& as desired. O

™,V

The following is a simple corollary of Proposition 2.3, which plays an important
role in proving Theorem 1.4.

Corollary 2.4. Let n > 3. For A > 0, let ¢ be the vector generated by (2.1) with
¢(1) <0. Then, (A — XS ,)m(¢x) > 0 for A >0 and X # \G,
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Proof. Without loss of generality, we fix ¢»(1) = —1 for all A > 0. Set T(\) =
(). To prove this corollary, it suffices to show that

<0 ifA< )G
T(\ jid
( ){>o if A > \G,

For A > 0, define L(\) := &, (P, pa)/Varz(¢x). By (2.2), one has

AT(A)[m(¢2) — éa(n)]
2.3 L) — A= .
(2.3) (A) Var. (65)
Since ¢y is non-constant, w(¢x) < ¢x(n). This implies T'(A) < 0 for A € (0,A% ).
For A > \¢ , set I = ()\fy, o0). By Proposition 2.3, T(\) = 0 if and only if A =

A¢ . By the continuity of T', this implies either T'(I) C (—o0,0) or T(I) C (0, 00).
In the case T'(I) C (—00,0), one has L(\) > X for A € I. As L(I) is bounded,
L¥()) is convergent with limit A > A¢,, and this yields

AT (N)[r(¢5) — ¢5(n)]

0= lim [LFT(\) — LF(\)] = >0,
A [ ) = LA] Var,(¢5)
a contradiction. Hence, T'(A) > 0 for A > )\fyu. O

Proof of Theorem 1.2. The proof for n = 2 is obvious from a direct computation
and we deal with the case n > 3, here. By the equivalence of Proposition 2.3 (3)-
(4),if Ao = XS, then X\ = XS, for all k > 1. If g # MY, then A, > XS, for
k > 1. Note that (Mg, ¥r) solves. the system in (2.1). By (2. 2) this implies

The strict monotonicity of A; in (2) comes immediately from Corollary 2.4. In
(3), the continuity of (2.1) in A implies that (A*,4¢*) is a solution to (2.1) and
E,(Y*,4p*) = A*Var(¢p*). By Proposition 2.3, A* =AY , and 7(¢)*) = 0, as desired.

(I

Proof of Theorem 1.3. Recall the notation in the proof of Corollary 2.4: For A > 0,
let ¢ be the function defined by (2.1) and L(A) = &,(dx, ¢r)/Varz(¢x). By (2.2)
and Corollary 2.4, L(A) € (AY,,\) for A > AY . As L is bounded, Theorem 1.3

follows from Lemma A.1. O
Proof of theorem 1.4. Immediate from Corollary 2.4. O

In the end of this section, we use the following proposition to find how the shape
of the function ¢ in (2.1) evolves with A. In Proposition 2.5, we set ¢ = ¢» when
1 is given by (2.1). It is easy to see from (2.1) that ¢, is strictly increasing before
some constant, say ig = ig(A), and then stays constant equal to ¢ (ig) after ig. The
proposition shows how the constant io(A) evolves.

Proposition 2.5. For A > 0, let ¢ be the function generated by (2.1) with $»(1) =
—1 and, for 1 <i<mn, set T;(\) = 22:1 oa(i)m(i). For1 <i<mn, let

ai(N) =1+m(i+1)/7() — (i +1)/v(i,i + 1),
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a1 0o 0 .- 0
a1 0 :
o & A
(24) A= s ,
0 0 0
. . ai,l()\) 1
0 o . 0 D g\

7(2)
and let \%) be the smallest root of det A;(\) = 0. Then,
(1) )\fu = \n=1) \(n=2) ... 2D,
(2) dr(i) < da(i+1) = da(i+2) for X € ND NV and 1 < i < n—2, where
A

©) = 0.
(3) da(n —1) < ga(n) for A € (0,A""2),
In particular, Tiy1(\) = —m(1) det A;(\) for A € (0,A07V) and (A= XO)T; 4 (N) >
0 for A € (0,AXD)U (XD, 00) with 1 <i<n—1.
Proof. By Lemma A2, \() > \®) > ... > X\(»=1) > g and, for 1 <i<n-—1,

>0 VYA€ (—o0,\)

25 det A;(\ A
(25) ¢ (){<o VA € (A@, A1)

where A0 = co. Note that if T;(\) < 0 for some 1 < i <n—1, then

[02(F) = 020G = DIv(G = 1,5) = Ar(§)éa(4)
v(j,j+1)

oA +1) = da(d) + . V1<j<i.

This implies

(26) )=o) -

AT ZW(J')%(J'% V1<l <

j=1

Multiplying 7(¢ 4+ 1) and adding up T;(\) yields

Tl +1)
m(£)

From the above discussion, we conclude that if T;(\) < 0, then

Tg+1(>\) = ag()\)Tg(/\) - Tg_l()\), V1 S 12 S 1.

(2.7) Typ1(N) = —m(1) det A (\), V1 <<

When ¢ = i — 1, (2.5) implies det 4;_1(\) > 0 for A\ < AC~1. By the continuity
of T; and det A;_1, if there is some A < A0~V such that T;(\) < 0, then T;(\) =
—m(1)det A;_1(A\) for A < AG~D. As a consequence of (2.7) with £ = i, this
will imply Tjy1(A\) = —m(1)det A;(\) for A < A=Y, Hence, it remains to show
that T;(\) < 0 for some A < A=Y, To see this, according to Corollary 2.4, one
can choose a constant A < min{)\ﬁy,)\(i’l)} such that T,,_1(X) < 0. Since ¢y (i)

is non-decreasing in i, we obtain T;(A) < 0, as desired. This proves T;11(\) =
—m(1)det A;(\) for A < AC~V. In particular, T,,(A) = —7(1) det A,,_1()) for X <
A("=2) By Corollary 2.4, we have A\(*~1) = )\fﬂ,. This proves Proposition 2.5 (1).
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Next, observe that, for A € (A®), A=),

1+1 7
Z m(7)6r(j) = Tis1(N) > 0, Zw(j)@(j)zmko-

By (2.6), it is easy to see that [px(i + 1) — dx(4)]v(i,i + 1) = =AT;(N) > 0 and
[pA(i +2) — (i + 1)]v(i+ 1,0+ 2)
={[oA(i +1) = oa(@)w(i,i + 1) = Am(i + 1)a(i + 1)}
(AT ()} =0,
This proves Proposition 2.5 (2). To prove Proposition 2.5 (3), we use (1) to derive
Tho1(N) = —m(1)det Ap_s(X) <0, VA€ (0,A2),

Using (2.6), this implies ¢x(n—1) < ¢x(n). The last part of Proposition 2.5 follows
easily from (2.5) and the fact that

Tz()\> >0= Ti+1()\) > 0 and Tl()\) <0= Tzfl()\) < 0.
[l

Remark 2.2. In Proposition 2.5, if A\ > \() = u(1,2)[x(1) " +7(2) '], then ¢, (i) =
$(2) for i = 2,...,n. Note that, for A > X, ¢5(2) = —1 + Ax(1)/v(1,2) and

() = -1+ )‘77(11)/((11’_2;(1))7 Varx(¢y) = r(1 )(1( O (1 ))
By (2.3), this leads to L(\) = v(1,2)/[x(1)(1—7(1)] for A > A1), In the case n = 2,

it is clear that v(1,2)/[x(1)(1 — 7(1)] = v(1,2)[x(1) "L + 7(2) 1] = AC,,.

3. CONVERGENCE TO OTHER EIGENVALUES

In this section, we generalize the algorithms (A1) and (A2) so that they can be
applied for the computation to any specified eigenvalue.

3.1. Basic setup and fundamental results. Recall that G is a graph with vertex
set V.= {1,2,..,n} and edge set E = {{i,i + 1}|i = 1,2,...,n — 1}. Given two
positive measures 7, v on V, E with 7(V) = 1, let Mgu be a n-by-n matrix defined
in the introduction and given by

—v(i,j) /(i) if i —jl=1
(3.1) ME,(i,5) = < [w(i — 1,49) + v(i,i + 1)]/n(i) ifj=i
0 if |i —j] > 1

Since v is positive everywhere and Mf , is tridiagonal, all eigenvalues of M G have
algebraic multiplicity 1. Throughout this section, let {\§ < \{ < --- < )\G 1}
denote the eigenvalues of Mf , with associated L?(7)-normalized eigenvectors (y =
1,C2, ., Cno1- Clearly, A§ =0, \§ = )\TC;V,V and, for 1 <k <n,

(8:2) A7GR)m(k) = [Gk) = Gk = D]w(k = 1E) + [G(k) = Gk + D]w(k, b+ 1).
Let 1 < i < n—1. As ( is non-constant, it is clear that (;(1) # ¢;(2) and

Gi(n — 1) # G(n). Moreover, if (;(k) = (i(k+ 1) for some 1 < k < n, then
Gi(k) # ¢i(k—1) and ;(k+1) # ¢;(k+2). Gantmacher and Krein [13] showed that
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there are exactly ¢ sign changes for ¢; with 1 < i < n. Miclo [14] gives a detailed
description on the shape of (; as follows.

Theorem 3.1. For 1 < i <n—1, let (; be an eigenvector associated to the ith
smallest non-zero eigenvalue of the matriz in (3.1) with (;(1) < 0. Then, there are
l=a1 <by <ap <by <---<a; <b =n with aj;1 —b; € {0,1} such that ¢; is
strictly increasing on [a;, b;] for odd j and is strictly decreasing on [a;,b;] for even
J, and Gi(aj41) = Gi(bj) for 1 < j <.
In the following, we make some analysis related to the Euler-Lagrange equations

in (3.2).
Definition 3.1. Fixn > 1 and let f be a function on {1,2,...,n}. For 1 <i <n-—1,
fiscalled “Typed” if thereare 1 = a1 < by <as < by <--- < a; <b; <nsatisfying
a1 — b; € {0,1} such that

(1) f is strictly monotonic on [a;,b;] for 1 < j <.

(2) [f(a;) = fla; + DIlf(aj+1) — flaj+1 +1)] <0 for 1 < j <.

(3) flaj+1) = f(b)), for 1 < j <4, and f(k) = f(b;), for b; <k <n.
The points a;, b; will be called “peak-valley points” in this paper.

Remark 3.1. Note that the difference between Definition 3.1 and Theorem 3.1 is the
requirement b; < n, instead of b; = n. By Theorem 3.1, any eigenvector associated
to the ith smallest non-zero eigenvalue of the matrix in (3.1) must be of type ¢ with
bi =nNn.

Definition 3.2. Let 7, v be positive measures on V, E with 7(V) = 1. For A € R,
let £y be a function on {1,2,...,n} defined by £,(1) = —1 and, for 1 < k < n,
[Ex(k) — Ex(k — D)]v(k — 1, k) — Am(k)éx (k)
vik,k+1)
Remark 3.2. Note that §¢ = —1 and, for A < 0, &, is strictly decreasing and of
type 1. For A > 0, if &x(k—1) < &x(k) = En(k+ 1), then £, (k) > 0 and this implies
Ex(k+2) < &(k+1). Similarly, if Ex(k— 1) > &3(k) = &(k 4+ 1), then €\(k) <0
and {x(k+2) > &x(k+1). Thus, £, must be of type i for some 1 < i <n— 1.
Lemma 3.2. For A > 0, let £\ be the function in Definition 3.2. Suppose that £y
is of type i with 1 <i<n —1.
(1) If &x(n — 1) # &x(n), then there is € > 0 such that {xqs is of type i for
—e<d<e.
(2) If &x(n—1) = &x(n), then there is € > 0 such that Exys s of type i + 1 and
Ex_s is of type i for 0 < § < e.

Ex(k+1) =&(k) +

Proof. Let aj;,b; be the peak-valley points of £,. By the continuity of £y in A and
Remark 3.2, one can choose € > 0 such that, for 6 € (—¢,€), {\+s remains strictly
monotonic on [a;,b;] for j =1,...,7 and
[Ex+s(bj — 1) = &t (0))][En+s(aj+1 +1) — Exto(ajrr)] > 0,

for 1 <j<i.In(1),b =n. Fix 0 € (—¢,¢) and set a] = a1 =1, b, =b; = n. For
1<j <, set

V; =aj . =b; if [Ea+6(bj — 1) = Exts(bj)][Ex+5(b;) — Exns(aj+1)] <O

Wy =aj = ajn if [Ex+5(05 — 1) — Exnys(0)][Ex+5(b5) — Exts(ajr1)] > 0.

b;- =b;, a}H =ajr1 if [Egs(by — 1) — &g (0)][En+s(D) — Exts(ajr1)] =0
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Clearly, {x+ is of type i with peak-valley points a’;, b;. This proves Lemma 3.2 (1).

For part (2), we consider ¢ < n — 2 and b; = n — 1. By similar argument as
before, one can choose € > 0 such that the restriction of {5 to {1,2,...,n — 1} is
of type i for § € (—e, ). To finish the proof, it remains to compare &, 5(n—1) and
&xt+s(n). Recall that Tj(\) = >°7_; &x(k)m(k) as in the proof for Proposition 2.5.
Using a similar reasoning as for (2.7), one shows that T;41(A) = —m(1) det A;())
for 1 < i < n, where A;()\) is the matrix in (2.4). This implies that the non-
zero eigenvalues of ng, say A§, ..., A\ |, are the roots of det A,,_1(\) = 0. As a
consequence of Lemma A.2, det A,,_2(\) = 0 has exactly n — 2 distinct roots, say
a; < ag < --- < an—1, and they satisfy the interlacing property )\]G <a; < >\§;+1 for
1 < j <n—2. Note that det A,,_5(A\) and det A,,_1 () tend to infinity as —\ tends
to infinity. This leads to the fact that if det A,,_2(A) = 0 and det A,,_1(\) < 0,
then det A,,_2(-) is strictly decreasing in a neighborhood of A. If det A,_2(A) =0
and det A,_1(A) > 0, then det A,_o(+) is strictly increasing in a neighborhood of
A

Back to the proof of (2). Suppose that £x(n —2) < {x(n—1). By Remark 3.2, it
is easy to check that T,,_1(\) = 0 and T,,(\) > 0 or, equivalently, det A,_2(\) =0
and det A,_1(\) < 0. According to the conclusion in the previous paragraph, we
can find € > 0 such that det A,,_5(-) is strictly decreasing on (A — €, A + €), which
yields

Eps(n) = Exps(n — 1) —

v(in—1,n) >égsn—1) if —e<d<0’

A+ 0)Tuor (A + 0) {< Exisn—1) f0<d<e

This gives the desired property in Lemma 3.2 (2). The other case, {x(n — 2) >
&x(n — 1), can be proved in the same way and we omit the details. O

The following proposition characterizes the shape of & for A > 0.

Proposition 3.3. For A > 0, let £\ be the function in Definition 3.2. Let A\ <
< < A9, be non-zero eigenvalues of ng in (3.1) and oy < -+ < an_2o be zeros
of det A,,_o(N\), where Ap_o(:) is the matriz in (2.4). Then,
(1) )\jG<aj <)\?+1,f0r1§j§n—2.
(2) & is of type j for X € (aj—1,04] and 1 < j < n —1, where o := 0 and
Q1 :— OQ.

Proof. (1) is immediate from Lemma A.2. For (2), note that «; is an eigenvalue
of the submatix of ng obtained by removing the nth row and column. This

implies {p;(n — 1) =&o,(n) for i =1, ...,n — 2 and {x(n — 1) # &a(n) for A > 0 and
A ¢ {aq,...,an_2}. By Lemma 3.2, &, is of type i for ;1 < A < a;. O

Given A > 0, the above proposition provides a simple criterion to determine to
which of the intervals (o, a;41] A belongs to, that is, the type of {x. However,
knowing the type of £, is not sufficient to determine whether X is bigger or smaller
than AY. We need the following remark.

Remark 3.3. Using the same argument as the proof of Proposition 2.5, one can show
that 7(£y) = —m(1)det A,_1 (), where A,,_1(\) is the matrix in (2.4). Clearly,
7(€x) has zeros AY, ..., \G_| and tends to minus infinity as A tends to minus infinity.

This implies that 7(£y) < 0, for A < A, and
m(€0) >0 YAE (A M%), 7€) <0 YA€ (A, A5),
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for i > 1, where \S := oo.

As a consequence of Proposition 3.3 and Remark 3.3, we obtain the following
dichotomy algorithm, which is a generalization of (A2). Let 1 <i<n —1.
Choose positive reals Ly < )\Z-G < Uy and set, for £ =0,1, ...,
1.&,, be the function generated by A\; = (L¢ + Up)/2 in Definition 3.2,
2. According to Definition 3.1, set
(Di) Loy1 = Lo, Uppr = A if €y, is of type j with j > 4,
or if &, is of type i and (—1)""tx(&,,) >0
Upy1 =Up, Loy = N if &y, is of type j with j < 4, .
or if &y, is of type i and (—1)*"17(&y,) <0
Lipy =Up1 =N it &5, is of type i and 7(€y,) > 0

Theorem 3.4. Referring to (Di),
0 <max{U; — A\ NS — Ly} < (Uy — Lo)27%, Ve>0.

70 1

Proof. Immediate from Proposition 3.3 and Remark 3.3. O

Proposition 3.3 (2) bounds the eigenvalues using the shape of £, generated from
one end point. We now introduce some other criteria to bound eigenvalues using
the shape of £, from either boundary point. Those results will be used to prove
Theorem 6.1.

Proposition 3.5. For A > 0, let £\ be the function in Definition 3.2 and EA be a
function given by

P P [Ex(k) = &x(k + D] (k, k + 1) = Am (k)& (k)
k—1)=&(k
13\ ) =&(k) + = L1 ;
fork=n,n—1,..,2 with &(n) = —1. Let 2§ < - < X, be eigenvalues ofMTf’:l,
in (3.1) and let f|p be the restriction of f to a subset B of V.. Suppose 1 < kg < n.
(1) If &xlq1,... oy s of type i with (=1)%€x(ko) > 0 and gA|{ko,...,n} is of type j
with (—1)7€x (ko) > 0, then )\g_j_Q < A< )\ﬁ_j_l. N
(2) If&xlqa....koy s of type i with (=1)"€x(ko) < 0 and Ex[ik,....ny is of type j
with (—1)7&x(ko) < 0, then A% ; < A< AG R
() I &xlq1,..moy s of type i with (=1)"€x(ko) > 0 and Ex|(k,...ny is of type j
with (=1)7&x(ko) < 0, then AZ,; 5 <X < AZ,,.

Proof. By Proposition 3.3, £,(n) is a polynomial of degree n — 1 satisfying

(1) &e(n) >0, VO<i<n, (=1)"¢5(n)>0, VI<i<n-1
This implies that there are w; € (8;, A% 1), 0 < i <n—2, such that (—1)""1&,(n) >
0 for A € (w;—1,w;) and 0 <7 <n —1 with w_; = —oc0 and w,_1 = 0.

The proofs for (1)-(3) in Proposition 3.5 are similar and we deal with (1) only.
By the Euler-Lagrange equations in (3.2), it is easy to see that, for 1 <[ < n, 5)\[@

and §~ G are eigenvectors of MﬂG , in (3.1) associated with A&, which implies & A6 =

—&xe (n)é}?. First, assume that A < >‘iG+j72' By Proposition 3.3, §>"L'G+j—2|{l""’k0}
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is of type at least ¢ and EAG% 2|{k0,..‘,n} is of type at least j. This implies that
i+j— ~
(n)ée

2 itj—2
£>‘G+' , is of type at least ¢ + j — 1. This is a contradiction.
i+7—

the patching of 5/\ic+j72|{17m7k0} and _g)‘ic+j— |{k0,..,,n}a which equals to

Next, assume that A > )\g_j_l. By Proposition 3.3, we may choose a; < A (resp.
az < A) such that x|y, k) (resp. §~,\|{k0,m7n}) changes the type at a; (resp. as).
If Aiqrjfl < min{ay, as}, then a similar reasoning as before implies that £>\1G+_7~_1 is
of type at most i + j — 2, a contradiction. If min{a;, a2} < AZ ;| < max{as,az},
then exactly one of gA‘ch‘ 1|{17.__,k0} and é}& 1|{k07._,n} does not change its type.

itj— itj—
This implies that the gluing point kg can not be a local extremum and, thus, the
patching function is of type at most i + j — 2, another contradiction! According to
the discussion in the first piragraph of this proof, if )\Z-Gﬂ;l > max{ay,as}, then
none of @\lcﬂil l{1,....k0} and ‘EA?H,I ltko,....n} chan%es type nor, of course, the sign at
ko. Consequently, we obtain (71)”]5)\‘@* 1(1170)5)\%‘ (ko) > 0, which contradicts
- -
the fact { o = —&ye (n)éa O
G

iti—1 i1

Proposition 3.6. For A >0 and 1 <k <n-—1, let sg()\) be the kth sign change of
&y defined by s := 0 and spr1(A) :=1inf{l > s (AN)[EA(DEX(I—1) < 0 or &x(1) = 0},
where inf § :=n+1. Then, for 0 < A1 < A2, sk(A1) > si(X2) foralll <k <n-—1.

Proof. Let 1 <k <n—1. If sg(A1) = n+ 1, then it is clear that si(A1) > sp(A2).
Suppose that sx(A1) = £ < n. Obviously, &y, [q1,....ep is of type k. Referring to
(2.4), let A%, ..., A5 | be the roots of det A,_1(\) = 0 and of, ...,at_, be roots of
det Ap_2(A) = 0. According to the first paragraph of the proof for Proposition
3.5, there are w! € (af_;,\f) with 1 <4 < £ — 1 such that (—1)"+1&,(¢) > 0 for
A€ (wf,wf, ;) and 1 <4 < ¢ — 1, where af := 0. Since & (0)&xe (£) = 0, one has
wi <A< af;. As it is assumed that Ay > A, if Ay > af;, then &3, [(1,....¢3 is of type
at least k + 1 and, consequently, si(X2) < £ = si(\1). If Al < af, then Exalin,..o
is type k and &£, (¢) < 0. This implies si(A2) < € = sx(A1), as desired.

3.2. Bounding eigenvalues from below. Motivated by Theorem 3.1, we intro-
duce another scheme generalizing (2.1) to bound the other eigenvalues of Mf , from
below.

Definition 3.3. For A > 0, let £, be a function in Definition 3.2. If &, is of type 1,

1 <i<n—1, with peak-valley points 1 = a1 < b1 <ag < by <--- < a; < b; <n,
then define

@)y ) Ex(R) for k < b, .
x (k)= {Q(k) —&x(b;) fork>b;’ lsy<i

andsetgg\j)zﬁ,\ fori<j<mn-1.
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Remark 3.4. For A > 0, if &, is of type ¢, then §§\j) is of type j for 7 < i. Moreover,
for k < bj,

€ (k) — € (k — D]v(k — 1,k) = Ar(k)EY (k)

Ok +1) =0 (k) +

v(k,k+1)
_ gy - ArOE’ W) & ) (k)
A v(k,k+1) ’

and, for b; <k < mn,

(6 (k) = &7 (k = Dw(k — 1, k) — M (k)5 (k)
v(k,k+1) ’

where F;(t) = max{¢t,0} if j is odd, and F;(¢t) = min{¢,0} if j is even. Note that

§§\1) is exactly ¢, in Proposition 2.5.

Pk +1) =P (k) +

Thereafter, let £ and £ be functions on (0, 00) defined by

(@) (@)
(3.3) E()\>_M E(i)()\:M Vi<i<n-—1,

~ Varg (&)’ Var, (7))
where £, and f;i) are functions in Definitions 3.2-3.3.

Remark 3.5. Note that £ = L=, By a similar reasoning as in the proof for (2.2),
one can show that, for A > 0,

A (E)[7(6) — & (n)] (@) (€))7 ()]
Varz (&) ’ Var,( g\z))
From Proposition 3.3, it followss immediately that £(\) = £®(\) for X € (0, o).

L) =N+ LON) =X+

To explore further £ and £(), we need more information of 7(£y), w(gg“), m(&x)—
&(n) and 7(€)") = & ()

Lemma 3.7. Let &, be the function in Definition 3.2 and )\Z»G,ai be constants in
Proposition 3.3. Then, w(£x) — &x(n) = 0 has n — 1 distinct roots, say By < f1 <
- < Bp—a, which satisfy fo = 0 and a; < B; < /\Z-CfH forl <1 <n—2. Furthermore,
m(€x) — &x(n) > 0 for A € (Bai—1, B2:) and w(§x) — Ex(n) < 0 for X € (Bai, Bit1),
with _1 = —o0 and B,_1 = 0.

Proof. Set u(A) :=m(£x) —&x(n). According to Definition 3.2, u(\) is a polynomial
of degree n— 1 and satisfies u(0) = 0. Note that 7(£,) = 0 for A € {\{, .., \¢_;}. If
i is odd, then { ¢ (n—1) < { ¢ (n). This implies ¢ (n) > 0 and, hence, u(A\F) < 0.
Similarly, if i is even, then u(A&) > 0.

By Lemma 3.2 and Proposition 3.3, if A = a; with odd 4, then &,, is of type 4
with &, (n — 1) = &,,(n). This implies &,,(n) > 0 and 7(&,,) = 7(n)&q, (n), which
yields u(«;) < 0. Similarly, one can show that u(a;) > 0 if 4 is even. O

Remark 3.6. We consider the sign of ﬂ'(ﬁy)) and W(fg\i)) - g\i) (n) in this remark.
By Proposition 3.3, f;i) =& for A < . A > a with1 < ¢ < n—2
then &) is of type j with 5 > 4. Fix 1 < i < n — 2 and set kg = ko(\) =
min{k[¢" (j) = €?(n), Vk < j < n}. Clearly, ko(A) < n —1 for A > a;. Ob-
serve that, for A > «; with odd i, £x(ko — 1) < &x(ko) > &x(ko + 1), which implies
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ZZO 11 m(k)éx(k) < 0 and ZZ"Zl m(k)éx(k) > 0. A similar reasoning for the case
of even ¢ gives Zf‘;l m(k)éx(k) > 0 and ZZ"Zl m(k)éx(k) < 0. Consequently, we
obtain

(3.4) (D) >0, (D) [(E) &0 )] > 0,

for A > a; and 1 <4 < n—2. Note that, by Proposition 3.3, 5)\ =& for A < ;. In

addition with Remark 3.3, Lemma 3.7 and the continuity of 5 \ > the first inequality
of (3.4) holds for A > A¢ and the second inequalities of (3.4) hold for A > 3; ;.

According to Lemma 3.7 and Remark 3.6, we derive a generalized version of
Proposition 2.3 in the following.

Proposition 3.8. Letn >3 and 1 < i < n—1. For A > 0, let &, g\i) be the
functions in Definition 3.2 and B; be the constants in Lemma 3.7.

(1) For A > ﬂl 1, the following are equivalent.
( ) (f,\ , ) )\Varw(f)\ )
(12) (€)= 0
(1-3) A=\,
(2) For Bi—1 < A < 3, the following are equivalent.
(2-1) &.(&x,€0) = AVarg(€y).
(2:2) 7(£r) = 0.
(2-3) A=\,

Proof. The proof for Proposition 3.8 (2) is similar to the proof for Proposition 3.8
(1) and we deal only with the latter. By Lemma 3.7 and Remark 3.6, one has

<0 for A>)\¢
>0 fOY6i71<)\<)\iG.

m(ED) (el — g(ﬂ{

This proves the equivalence of (1-1) and (1-2). Under the assumption of (1-2) and
using Remark 3.3, one has A < «;. This implies f/(\l) = &) is an eigenvector for M,f,j
with associated eigenvalue A\. As A € (8;_1, ], it must be the case A\ = )\iG. This
gives (1-3), while (1-3)=(1-2) is obvious and omitted. O
Remark 3.7. Tt is worthwhile to note that if (1-1) and (2-1) of Proposition 3.8 are
removed, then the equivalence in (1) holds for A > A ; and the equivalence in (2)
holds for A € (A ;,A% ;). Once A{ is known, we can determine A\Y using the
sign of = ( g\i)). See Theorem 3.9 for details.

Remark 3.8. Note that condition (4) of Proposition 2.3 is not included in Propo-
sition 3.8. In fact, the equivalence may fail, that is, there may exist some A €
(Bi—1,8:) \ {\§'} such that &,(&x,€0)/Vary (€x) = M. See Example 3.2 for a coun-
terexample.

As Proposition 3.8 focuses on the characterization of zeros of L(\) — A, the
following theorem concerns the sign of L(A) — A.

Theorem 3.9. Let Aﬁai,ﬁi be the constants in Proposition 3.3 and Lemma 3.7,
and L be the function in (3.3). Then, X§,..,\C |, B1,..., Bu_a are fived points of
L and, for1 <i<n-—2,

(1) L) < X for X € (\E, B)).
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(2) LA) > A for X e (ﬂn)\ﬁl).
(3) LON) < X for A € (\F, 00).

Proof. Immediate from Lemma 3.7 and Remarks 3.5-3.6. (]
By Theorem 3.9, we obtain a lower bound on any specified eigenvalue of Mf -

Corollary 3.10. Let 1 <i<n—1 and \g > /\iG. Consider the sequence Ag+1 =
LO(Ng) with £ >0 and set

Vo limy_oo A¢  if A¢ converges
B supycr Ao if A¢ diverges

where I = {l|Ag—1 > A¢g < Apg1}. Then, A\* < /\iG,
It is not clear yet whether the sequence Ay in Corollary 3.10 is convergent, even

locally. This subject will be discussed in the next subsection. Now, we establish

some relations between the roots of det A;(A) = 0 and the shape of §§i). This is a
generalization of Proposition 2.5.

Proposition 3.11. For 1 < i < n —1, let A;(\) be the matriz in (2.4), 9@ <
R 01@ be zeros of det A;(A\) =0 and set 951_1) := 00. Referring to the notation
in Proposition 3.3, it holds true that, for 1 <i:<n—1,

W) AF =00 <, =0 <o <.

@ &GO AG+) == (n) forxe (0,077 V) and i <j<n—2.

3) €0 —1)#0m) for xe (6"72,677) and i <n —1.
Proof. The order in (1) is a simple application of Lemma A.3. For (2), fix 1 <
i < n—1and set y(\) = min{jl¢” (k) = €7 (n),Vj < k < n} and B(A) =
{1,2,...,7(\)}, Bt (\) = B(\) U {y(\) 4+ 1}. Clearly, i + 1 < y(\) < n. We use the
notation &x|¢ to denote the restriction of €y to a set C. Suppose that i is odd. By
Remark 3.4, §§\Z) =&y on B(A) and &)y is of type i with

H((A) = 1) <&L(v(N) = &) + ).
By Lemma 3.2(1), if &x(v(A) + 1) < &x(y(A)), then there is € > 0 such that, for
6] < €, ExyslB(n is of type i and
O+s(Y(A) = 1) <& (Y(N) > Engs(v(A) +1).
This implies (A + 0) = y(A) for § € (—¢,€). By Lemma 3.2(2), if &n(y(A) +1) =
Ex(7(N)), then there is € > 0 such that, for 0 € (—¢,0), {xy6|p+(n) is of type @ with

Hs(Y(A) = 1) < &s(v(N) < Exgs(v(A) + 1),
and, for 6 € (0,¢€), Exys/p+(n) 18 of type i + 1 with

O+s(Y(A) = 1) <& (V) > Engs(v(A) +1).
This yields v(A 4+ 6) = y(A) for § € (0,¢) and y(A+J) = v(A) + 1 for § € (—¢,0).
The proof for the case of even ¢ is similar and we conclude from the above that
~(A) is a non-increasing and right-continuous function taking values on {i+1,...,n}.
Let ¢;41 > -+ > cy—1 be the discontinuous points of () such that v(c;) = j for
i1+ 1<j<n-—1. As a consequence of the above discussion, fc,~|{1,..4,j} is of type
i with &.,(j) = &;(j + 1) and this implies 21:1 m(k)&e; (k) = 0. That means c;
is a root of det A;_1(A) = 0 for j = ¢+ 1,...,n — 1. By Proposition 3.3 and the
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second equality in (1), y(A\) = n for 05?;2) <A< 91(”_2) and, thus, ¢; > 01(”_2) for
j > i+ 1. As a consequence of the interlacing relationship 91@) < 95271) < 95?17 it
must be ¢; = 95j+1) for i+ 1 < j <mn — 1. This finishes the proof. O

Remark 3.9. For 1 < i <n—1, Hgi)7...79£i) are also non-zero eigenvalues of the

(¢ +1) x (i + 1) principal submatrix of (3.1) indexed by 1,...,7 + 1.

Remark 3.10. In fact, by Proposition 2.5, §§\1)(n —-1)# §§1)(n) for A € (0, 95”72)),
which is better than Proposition 3.11(3).

3.3. Local convergence of L. This subsection is dedicated to the local conver-
gence of £ in (3.3). Let a;, 3;, \{ be the constants in Proposition 3.3 and Lemma
3.7. As before, let (o = 1, ..., {41 denote the L?(7)-normalized eigenvectors of M,
associated with A\§,.., A\ ;. Clearly, §re = —G/¢G(1) and &y = Z;:Ol 2i( NG,
where p;(A) = m(£x¢;) for 0 <4 <n — 1. Note that p;(A) is a polynomial of degree
n — 1 and satisfies p;(A;) = —0;(j)/¢:(1) for ¢, € {0,1,...,n — 1}. This implies

n—1\G n—1 G
AT — A A AT — A
(3.5) po(A) = — | I e PN = | | o o
=N G g A~ N

for all 1 < ¢ < n —1. Moreover, by multiplying (3.2) with &, (k) and summing
up k, we obtain &£,(&x,¢) = A9p(A\). In the same spirit, one can show that
E(Ex,G) = Api(A) = Gi(n)po(N)] using Definition 3.2. Putting both equations
together yields

A i\n .
(3.6) pi(N) = )\C_()\épo()\), VO<i<n-—1
As a consequence of Remark 3.5, this gives
37) L) = T AT S50 =) m)
S ) S (A = N2 (n)

for A ¢ {)\§,...,A¢_;}. The next proposition follows immediately from the second
equation in (3.5) and (3.6).

Proposition 3.12. Let \{,...,\S | be the non-zero eigenvalues of ng in (3.1)
and (1, ...,Cn—1 be the corresponding L?()-normalized eigenvectors. Then,

n—1 G
A€
Gi(1)Ci(n) = — H ﬁ, Vi<i<n-1.
j=14#i "7 g

Set u(A) = Z;L;ll()\f — A)7'¢3(n). By Theorem 3.9, i, ..., 8,2 are zeros of
u(A) H"fl()\JG — A), which is a polynomial of degree n — 2. This implies

j=1
n—1 1 n—2

u(A) =C Hﬁ H(ﬂj—)\) )
j=1"7 j=1

where C' = gig::; ?711 (f(n)//\]G Putting this back to £ yields

RO N et S R g |
(38) E(A)—)\_u()\)_;/\f—/\_;ﬂj—)\’
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for A ¢ {)‘OG7 n 13517- -vﬁn—Q}-

Proposition 3.13. Let £ be the function in (3.3), A be the eigem)alue of M. 7r and
B; be the constant in Lemma 3.7. Let D; = Z;’;f(ﬁj—)\?) -2 5o J#(AG )\G)
with 1 <i<n—1. Then, for2 <i<n-—2,
(1) If D; < 0, then there is 7 € (A, 3;) such that L is strictly increasing on
(Bi—1, \S) U (7, Bi) and strictly decreasing on (A&, 7).
(2) If D; > 0, then there is n € (Bi—1,\S) such that L is strictly increasing on
(Bi—1,m) U (NS, B:) and strictly increasing on (0, AY).
(3) If D; =0, then L is strictly increasing on (B;—1, Bi)-

Proof. Using (3.7) and (3.8), one can show that £'(\{') = 0 and

3.9 L'\ = > CQ > ! =2D
(39) £0H= 3 DU ch el It
J=1,j#i Ai j=1,5#i 7 i

To prove (1) and (2), it suffices to show that if £'(7) = 0 for some 7 € (A\¥, 3;),
then 7 is a local minimum of £, and if £/(n) = 0 for some 1 € (B;_1, \{), then 7 is
a local maximum of £. We discuss the first case, whereas the second case is similar
and is omitted. Recall that u(\) = Z;:ll(/\jc —A)7'¢F(n). As 7 is a critical point
for £, one has 2(v/(7))? = u(r)u” (7). This implies

1z 2 _ 94/ "
£y = MBI () = 2 () (0)]
2(u'(1))?
where the last inequality uses the fact that u(\) < 0, for A € (A\S, 3;), and

(AE = XG)Gi(n) G (n) ]
(AE = A2(AF — )2

>0,

3(u"(N)? =20’ (A" (\) = —12 Z

1<i<j<n—1

This proves (1) and (2).
To see (3), we assume that D; = 0. Computations show that

L) =N = 1
Zoy—x ~ A=) IZ X5
n—1 _
=\ = \%)? j%:# (/\ /\)()\G ] 22: 0 ﬁ ) <0,

for A € (Bi—1,A\Y) U (MY, B;), where the last inequality uses the fact that (AJG —
NS = AF) > (8 = N(B; — AF) for j < i and (AF — N)(AF = A7) > (Bj-1 —
N)(Bj—1 — AY) for j > i. By Theorem 3.9, this implies £(A) > A& for A € (A, 3;)
and L(\) < ¢ for A € (B;_1,A¥). The desired property comes immediate from
the discussion in the previous paragraph. (I

Remark 3.11. Note that D; > 0 and D,,—; < 0. Using the same proof as above,
this implies that £()\) is strictly increasing on (A{, £1) U (Bn_2,AS_ ;). Moreover,
by (3.7), one may compute

(' (\)*L' (A =—2Z

i<j Z

/\G)
— )3

<0, VYA€ (0,AF)U (NS4, 00).
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This implies £(\) is strictly decreasing on (0, A\{) U (A& |, 00) and

n—1»

Ly = S GOAE (VS e,
N = ST a0 e i 200 = (55 1>;A )

The following local convergence is a simple corollary of Theorem 3.9 and Propo-
sition 3.13.

Theorem 3.14 (Local convergence). Let Ao > 0 and set Agy1 = L(XAg) for £ > 0.
Then, there is € > 0 such that the sequence (A\¢)72, is monotonic and converges to
N for Ao € (N — e, A +¢€) and 1 <i<n-—1.

We use the following examples to illustrate the different cases in Proposition
3.13.

Ezample 3.1 (Simple random walks). Let n > 1. A simple random walk on
{1,2,...,n} with reflecting probability 1/2 at the boundary is a birth and death
chain with transition matrix given by K(i,j) = K(1,1) = K(n,n) = 1/2 for
|i —j| = 1. It is easy to see that the uniform probability is the stationary distri-
bution of K. In the setting of graph, we have v(i,i+ 1) = 1/(2n) and (i) = 1/n.
One may apply the method in [11] to obtain the following spectral information.

1 ( jkm . jk—1Dm
sin *— — sin =——2—
VA

n n
See, e.g., [3, Section 7]. By (3.9), we get

A =1-cos %, Gi(k) =

), V1<j<n.

b1 Til sin?(jm/n) ’f 1 + cos(jm/n)
’ Pyt AG (NS = AF) . cos(im/n) — cos(jm/n)’

Clearly, Dy > 0 and D, 1 <0. If n is even, then D, /5 <O0.

Ezample 3.2 (Ehrenfest chains). An Ehrenfest chainon V' = {0, 1, ...,n} is a Markov
chain with transition matrix K given by K(i,i +1) = 1 —¢/n and K@i + 1,i) =
(i4+1)/n for i =0,...,n — 1. The associated stationary distribution is the unbiased
binomial distribution on V, that is, (i) = ()27 for i € V. To the Ehrenfest

chain, the measure v is defined by v(i,i + 1) = (";1)2‘” fori =0,...,n— 1. Using
the group representation for the binary group {0,1}", one may compute

25 n\ 2 oK\ (mn—Ek .
A= — i(k) = -1 1<j<n.
=% ow=(5)  e()(Gor) meisn
Plugging this back into (3.9) yields
n ) >0 fori<n/2

2 =0 fori=n/2 .
<0 fori>n/2.

This example points out the possibility of different signs in {D;|i = 1,...,n — 1}
including 0.
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3.4. A remark on the separation for birth and death chains. In this subsec-
tion, we give a new proof of a result, Theorem 3.15, which deals with convergence in
separation distance for birth and death chains. Let (X,,)2_, be a birth and death
chain with transition matrix K given by (1.1). In the continuous time setting, we
consider the process Y; = Xy,, where N, is a Poisson process with parameter 1
independent of X,,. Given the initial distribution p, which is the distribution of
Xy, the distributions of X,, and Y; are respectively pK™ and pe *U—5) where
eA 1= 3770 A1l Briefly, we write Hy = e *U=5)_ Tt is well-known that if K is
irreducible, then pH; converges to m as t — oo. If K is irreducible and r; > 0 for
some 4, then pK™ converges to m as m — oo. Concerning the convergence, we
consider the separations of X,,,Y; with respect to 7, which are defined by

_ MHt(JU)}.

()

Km
dgep (i, m) = max {1 - u(x)}, déep (11, ) = max {1

0<z<n m(x) 0<z<n
The following theorem is from [9].

Theorem 3.15. Let K be an irreducible birth and death chain on {0,1,...,n} with
etgenvalues Ag =0 < Ay < --- < Ap.

(1) For the discrete time chain, if p; + qi+1 < 1 for all 0 < i < n, then

n n

Ai .
duep(0,m) = dsep(n,m) = > | ] svepwll KUV LS
e J

i=1 \i=Li#j

(2) For the continuous time chain, it holds true that

) ) n n )\L N
., (0,t) = dSy(n,t) = Z H Y oAt

A
j=1 \i=1,i#j

Diaconis and Fill [6, 12] introduce the concept of dual chain to express the
separations in Theorem 3.15 as the probability of the first passage time. Brown
and Shao [1] characterize the first passage time using the eigenvalues of K for a
special class of continuous time Markov chains including birth and death chains.
The idea in [1] is also applicable for discrete time chains and this leads to the
formula above. See [9] for further discussions. Here, we use Proposition 3.12 and
Lemma 3.16 to prove this result directly.

Lemma 3.16. Let K be the transition matriz in (1.1) with stationary distribution
7. Suppose that u is a probability distribution satisfying p(i)/m(i) < p(i+1)/m(i+1)
forall0 <i<n-—1.
(1) For the discrete time chain, if p; + qiv1 < 1 for all 0 < i < n, then
uK™(@) /(i) < uK™(i+1)/m(i+ 1) for all0 <i<n andm > 0.
(2) For the continuous time chain, pH(i)/7(i) < pHe(i +1)/7(i + 1) for all
0<i<nandt>0.

Proof. Note that (2) follows from (1) if we write H; = exp{—2t(I — Z£%)}. For the
proof of (1), observe that

MKm+1(Z) _ /LKm(i _ 1)
(1) w(t—1)

PG PG
(i) " r(i+1) 7"

qi + Vi.
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By induction, if pK™()/7(i) < pK™(i+1)/m(i + 1) for 0 < i < n, then

pE™ i+ 1) uKm(i)q. . pE™ (it 1) 1 uKm(H—Z)p 1
m(i+1) (i) o w(ifl) o r(i+2) F
> MI;(Z.)(Z)%H + W(l - Qi+l)
pK™@) o pKT (L) pKm ()
) (1=pi) + i+l DT nG)

O

Remark 3.12. Lemma 3.16 is also developed in [10] in which it is shown that, for
any non-negative function f, K™ f is non-decreasing if f is non-decreasing for all
m > 0. Consider the adjoint chain K* of K in L?(r). As birth and death chains
are reversible, one has K* = K. Using the identity pK/m = K*(u/m), it is easy to
see that the above proof is consistent with the proof in [10].

Proof of Theorem 3.15. Assume that K is irreducible and let Ag =0 < A < -+ <

An be the eigenvalues of I — K with L?(7)-normalized eigenvector (o = 1, ..., (,.
By Lemma 3.16, if p satisfies pu(i)/m(é) > p(i +1)/m(i + 1) for 0 <i < n, then

. uHi(n s

iap(0) = 1= P2 G (e

Jj=1

n

where 1((;) = Y0 ¢ (0)p(@). If K satisfies p; + ¢i+1 < 1 for all 0 < i < n, then
uK™(n - m
N D WICISDIEPHL
j=1

By Proposition 3.12, setting u to be one of the dirac measure g, d, leads to the
desired identities. [l

4. PATHS OF INFINITE LENGTH

In this section, the graph G = (V, E) under consideration is infinite with V' =
{1,2,...} and E = {{i,i+ 1}|i = 1,2,...}. As before, let 7,v be positive measures
on V, E satistying 7(V') = 1. The Dirichlet form and the variance are defined in a
similar way as in the introduction and the spectral gap of G with respect to m, v is
given by

Var, (

For n > 2, let G,, = (V,,, E,,) be the subgraph of G with V,, = {1,2,....,n}, E, =
{{i,i+ 1}|1 < i < n} and let m,, v, be normalized restrictions of m,v to V,, E,.
That is, 7, (¢) = ¢,7(i), vp (4,1 + 1) = cpr(i, i+ 1) with ¢, = 1/[x(1) + - - - + 7(n)].
As before, let Mf , be an infinite matrix indexed by V and defined by

(4.1) ME,(i,5) = _V7(TZ'(7i;')7 Wim gl =1, MO = i 12)7;(:)1/(22 +1)

Clearly, Mfi ", 1s the principal submatrix of Mf , indexed by V,, x V.

)\S’V = inf {M‘f is non-constant and 7(f?) < oo} .

Lemma 4.1. Referring to the above setting, )\f,:‘rf,l,nﬂ < )‘E:,un forn > 1 and

NG, = limy, o0 AC™

TnsVn "
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Proof. Briefly, we write X for A, and A, for AZ", . Note that ), is the smallest
non-zero eigenvalue of the principal submatrix of Mf , indexed by V,, x V,,. As
a consequence of Proposition 3.11(1) and Remark 3.9, A\,11 < A,. For n > 1,
let ¢, be a minimizer for A, and define v, (i) = 1y, (¢)¢, (i) for ¢ > 1. Clearly,
one has &, (on,dn) = cn& (Un, ) and Varg, (¢,) = ¢, Varg(¢,). This implies
A< )\, for n > 2. Let \* = lim,,—yoo A\,. Note that it remains to show A* = .
For € > 0, choose a function f on V such that &E,(f, f) < (A + ¢/2)Var,(f) with
m(f?) < oo. For § > 0, we choose N > 0 such that Var, (g) > (1 — §)Var.(f)
and &, (9,9) < (L +0)EL(f, f), where g = f|v,, the restriction of f to Viy. This

implies
Ny < Enl0:9) _ (1+0E(S)
Varz (g) = (1 —0)Varz(f)
Letting § — 0 and then ¢ — 0 yields A\* < A, as desired. O

Remark 4.1. Silver [17] contains a discussion of the (weak*) convergence of the
spectral measure for G,, to the spectral measure for G in a very general setting.
Lemma 4.1 can also be proved using Theorem 4.3.4 in [17].

Proposition 4.2. For A > 0, let ¢5(1) = —1 and

{[@a()) = oa(i = Dw(i = 1,i) — Am(i)oa (i)}

Vi > 1.
v(ii+ 1) Vi =

oa(i+1) = oa(i) +
Set \1 = o0 and N\, = )\ff,un forn > 2.

(1) Fori>2and X € [N, hi—1), &a(1 — 1) < dr(i) = Pa(i + 1).

(2) For A € (0,AS,], (i) < px(i + 1) for alli > 1.

s N

Proof. Immediate from Proposition 3.11 and Remarks 3.9-3.10. (]

Remark 4.2. By Proposition 4.2, one may generate a dichotomy algorithm for )\f’y
using the shape of ¢,. See (Di).

The following theorem extends Theorem 1.1 to infinite paths.

Theorem 4.3. If )\f,y >0 and &, (¢, )/ Vary (¢) = )\fyu for some function 1) on
V with 7(v¥) = 0, then v is strictly monotonic and satisfies

XEm(i)(i) = [$(6) — (i + V(i + 1) + () — (i — Dlw(i— 1,3), Vi > 1.
Theorem 4.4. For A\ > 0, let ¢ be the function in Proposition 4.2 and set L(\) =
Ex(dr, Pr)/Vary(dy). Then,

(1) G, <L(\) <X for e (AG,,,00).
(2) L™(A) = XS, asn — oo for A € (XS, 00).

T,V

Proof. Let A > )xf,y. By Lemma 4.1, \; < A < \;_; for some 7 > 2. By Proposition
4.2 (1), one has ¢ (i — 1) < ¢ (i) = ¢x(i + 1). As in (2.2), we obtain

_ T(EIT(62) = ()] N~ oy
L) =2+ Var- () : ;@(])w(])zo.

This leads to m(¢x) > 0 and 7(¢x) < ¢ (i), which implies L(A) < A. That means
L has no fixed point on ()\f,y,oo). The lower bound of (1) follows immediately

from Theorem 4.3. For (2), set \* = lim,,_,oc L™(A\) > )\gy. As a consequence of
o0). If A* > A& then \* is a fixed point of L, a

TV

(1), L is continuous on (A&

T,V

contradiction! Hence, \* = )\fyy. O
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5. A NUMERICAL EXPERIMENT

In this section, we illustrate the algorithm (A2) on a specific Metropolis chain.
The Metropolis algorithm introduced by Metropolis et al. in 1953 is a widely used
construction that produces a Markov chain with a given stationary distribution 7.
Let m be a positive probability measure on V and K be an irreducible Markov
transition matrix on V. For simplicity, we assume that K(z,y) = K(y,x) for all
z,y € V. The Metropolis chain evolves in the following way. Given the initial
state x, select a state, say y, according to K (z,-) and compute the ratio A(z,y) =
m(y)/m(x). If A(z,y) > 1, then move to y. If A(z,y) < 1, then flip a coin with
probability A(z,y) on heads and move to y if the head appears. If the coin lands
on tails, stay at x. Accordingly, if M is the transition matrix of the Metropolis
chain, then

K(z,y) if A(z,y) =1,z #y
M(z,y) = { K@ 9)A(z,y) if A(z,y) < 1
K(x,x)+ .A(z) 1K(av,z)(l—A(av,z)) ifz=y

It is easy to check w(x) M (z,y) = w(y)M (y,x). As K is irreducible, M is irreducible.
Moreover, if 7 is not uniform, then M (z,z) > 0 for some x € V. This implies that
M is aperiodic and, consequently, M*(z,y) — 7(y) and e~ *U=M)(z,9) = n(y) as
t — oo. For further information on Metropolis chains, see [5] and the references
therein.

For n > 1, let G,, = (V,,, E,,) be a graph with V,, = {0,£1,...,£n} and E,, =
{{i,i4+1} : i = —n,...,n—1}. Suppose that K, is the transition matrix of the simple
random walk on V,,, that is, K,(—n,—n) = K,(n,n) = 1/2 and K,(i,i + 1) =
K,(i+1,i) =1/2 for all —n < i < n. For a > 0, let 7, 4,7, be probabilities on
V., ={0,+£1,...,£n} given by

ﬁn,a(i) = én,a(m +1)%, 7c"n,a(i) = én,u(n — il +1)7,

where ¢, o, and ¢, , are normalizing constants. It is easy to compute that

(5'1) Cn,a/2 < 1/én,a < 1/én,a < 2¢p.q,
where
n+ 1 a+1
S G S )
a+1

The Metropolis chains, Kma and Kn’a, for 7, q and 7, o based on the simple random
walk K, have transition matrices given by

Kn)a(i,j) = Kma(_ia _j)a Kn,a(i,j) = Kn,a(_ia _.7)

and

N[

if j=i+1,i€[0,n—1]

§ - if j=i—1,i€e[l,n]
Kna(ig) =< (0. 0

i ifj=ii¢{0n}
1*2(nnT)a ifi=j=n
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and
%( . if j=i—1,i€[l,n]
) AnmD if j=i+1,i€[0,n—1]
Kn,a(i7j): ?1(171_1-143)1 —(n—1)% g . . .
e =070
1— ifi=j=0

(nt1)°
Saloff-Coste [16] discussed the above chains and obtained the correct order of
the spectral gaps. Let 5\717@, An,o denote the spectral gaps of Iv(n)m K, o. Referring
to the recent work in [4], one has

i—1 n
Cn(a) =2 max (j+1)—) DG+,
T \y=0 J=i
and
1—1 n—1
Cn(a):21r£iagxn ZO(J+1) 2 1(J+1)
j= j=i—

Theorem 5.1. Let Xn’a, Xn,a be spectral gaps for Kn,a,f(n,a. Then,

1 < 2
< )\n a S 3
877—a(1an)77a(2an+ 1) B ' n—a(lvn)na(2an+ 1)

and
1

6474 (1, [n/2])1-a([n/2], 1)

where ng(k,1) = Zé:k i,
Proof of Theorem 5.1. The bound for 5\,,,,1 follows immediately from the fact
N-a(1,n)na(2,n+1)

1
= S, 02D a (/2] m)

A

IN

< On(a) <2n-a(1,n)na(2,n + 1).

2
For 5\n7a, note that
i—1 n—1
Cul@) =2 max jz::o(j +1)° j;l(j +1)7°

Taking ¢ = [n/2] yields the upper bound. For the lower bound, we write

i—1 -\ a n—iu . a
A J J
Cn =2 1-—= 11— —
(a) n/rggz);n JE::O ( Z) Z ( 7 +j>

Jj=0

For i > n/2, it is clear that
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Observe that, for a > 0,

(5.2) Ol §§<1Z+]) <0, (a),

J=

where

. a—1_ .
O @14l et
o ilog 2 ifa=1

It is clear that, for i > n/2, C;, (a) < 20} (a) and this leads to

[n/2],n
§<l‘iij)a<4n§fﬂ< (n/ﬁﬂ)a'

Jj=0

Summarizing all above gives the desired lower bound.

0.5
0

FIGURE 1. These curves display the mapping m +—
Xloom,an_a(l,loom)na(l 100m + 1) in Theorem 5.1 in order
from the top a = 0.8,0.9,1.0,1.1 and 1.2. The right most point
corresponds to a path of length n = 5000.

TABLE 1. These numbers denote Xn’an,a(L n)Na(2,n+1) in The-
orem 5.1.

n 10000 20000 30000 40000 50000
a=0.8 0.5983 0.5960 0.5948 0.5941 0.5935
a=0.9 0.5652 0.5625 0.5610 0.5601 0.5594
a=1.0 0.5405 0.5377 0.5362 0.5353 0.5345
a=1.1 0.5235 0.5210 0.5197 0.5189 0.5183
a=1.2 0.5128 0.5109 0.5099 0.5093 0.5088
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Remark 5.1. Comparing with [16, Theorem 9.5], the bounds for Xn,a given in The-
orem 5.1 have a similar lower bound and an improved upper bound by a multiple
of about 1/4. For A, ,, observe that

i—1

Cga)§§:<1z>a§CYW%

j=0
where o
) =1 LT
C’L (a) + 1_|_ a
Recall the constant C;,, (a) in the proof of Theorem 5.1. Note that
n+a " 2(n+a)
= < 7 7
2(14a) = /2 (a) < (1+a)’
and, fora >0, a# 1 and n > 3,
+1 27— 1)(1+a) _3(n+a)
/ <14 <
e e e TS

where the last inequality is obtained by considering the subcases a < 2 and a > 2.
The above computation also applies for a = 1 and n € {1,2}. In the same spirit,

one can show that Cf, o, .(a) = #‘:’2). This yields

(n+ a)? A 12(n +a)?
5.3 s < Ch < ————5— Yn>1
(5:3) 6(1ta)2 = "™ = "11a2 "

Hence, we have A, , =< (1 +a)?/(n + a)?. As a consequence of (5.1) and (5.2), we
obtain that, uniformly for a > 0,

. 1\ n
1 = n? 1+ — 1 3
[Ana XN (( —i—n) +1—|—a)( +o(n,a)) asn— oo,

where v(n,1) = logn and v(n,a) = (n*=* —1)/(1 — a) for a # 1.

Remark 5.2. Note that the lower bound in Theorem 6.1 provides the correct order
of the spectral gap for the chain Iv{n,a uniformly in a but not for IA(nya. For instance,
if a grows with n, say a = n, then Theorem 6.1 implies 1/, ,, = O(n), while (5.3)
gives 1/5\,17” = 1.

Remark 5.3. Consider the chain in Theorem 5.1. A numerical experiment of Algo-
rithm (A2) is implemented and the data is collected in Figure 1 and Table 1. One
may conjecture that A, o7_a(1,7)74(2,n + 1) = c(a) as n — oo, where c(a) is a
constant depending on a.

6. SPECTRAL GAPS FOR UNIFORM MEASURES WITH BOTTLENECKS

In this section, we discuss some examples of special interests and show how the
theory developed in the previous sections can be used to bound the spectral gap. In
the first subsection, we develop a lower bound on the spectral gap in a very general
setting using the theory in Section 3. In the second subsection, we focuses on the
case of one bottleneck, where a precise estimation on the spectral gap is presented.
Those computations are based on the theoretical work in Section 2. In the third
subsection, we consider the case of multiple bottlenecks in which the exact order of
the spectral gap is determined for some special classes of chains.
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In what follows, we will use the notation 7(A) to represent the summation
> ica (i) for any measure 7 on V and any set A C V. Given two sequences
of positive reals a,, b,, we write a,, = O(b,) if a,/b, is bounded. If a,, = O(b,)
and b, = O(a,), we write a,, < b,. If a,, /b, — 1, we write a,, ~ b,.

6.1. A lower bound on the spectral gap. In this subsection, we give a lower
bound on the spectral gap in the general case.

Theorem 6.1. Let G = (V,E) be a graph with vertex set V.= {0,1,...,n} and
edge set E = {{i,i+1}|i =0,...,n— 1}. Let w,v be positive measures on V, E with
w(V)=1. Then,

—1 —1
i—1 . n .
0, 7]) L))
A¢, > max L A — )
R ]z::O v(j,j+1) j:zi-;-l v(j—1.7)

where a A b := min{a, b}.

Remark 6.1. Let C be the lower of the spectral gap in Theorem 6.1. Note that, for
any positive reals, (a +b)/2 < max{a,b} < a + b. Using this fact, it is easy to see
that C’ < C < 2C’, where

-1

i—1 . n .
. ([0, 51) m([5,n])
N ;0 v(j:j+1) +F;1 v(j =17

In particular, if i¢ is the median of , that is, 7([0,40]) > 1/2 and #([ig,n]) > 1/2,

then
—1

i[)*l . n .
7([0,41) 7 ([4, n])
=Y e Y e

v+l = v - 1)
Remark 6.2. Let (X,,)5_ be an irreducible birth and death chain on {0,1,...,n}
with birth rate p;, death rate ¢; and holding rate r; as in (1.1). For 0 < i < n,
set 7; = min{m > 0|X,,, = i} as the first passage time to state i. By the strong
Markov property, the expected hitting time to ¢ started at 0 can be expressed as

_r0) g S~ Al
EOT@ —Jz:% pj’]'('(_]) 5 ]En [ —];1 qﬂT(j) 5

where 7 is the stationary distribution of (X,,)5%°_,. Let A be the spectral gap for
(Xm)ps—o- Then, A =AY, where G is the path with vertex set {0,...,n} and

v(i,i+1) = p;w(i) = giy17(i + 1) for 0 < ¢ < n. The conclusion of Theorem 6.1
can be written as 1/A < ming<;<,{Eo7; VE,7;}.

Remark 6.3. The lower bound in Theorem 6.1 is not necessary the right order of
the spectral gap. See Remark 5.2.

Proof of Theorem 6.1. For X\ > 0, let £, be the function in Definition 3.2. That is,
¢x(0) = —1 and, for ¢ > 0,

[Ex(i+1) = Ex(@)]v(iyi + 1) = [Ex()) — Ex(i = D]w(i — 1,7) — Am(i)€x(4).
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Inductively, one can show that if 1/\ > Zﬁ;é[ﬂ([O,j])/u(j,j + 1)], then

0 < €n(i + 1) = (i) < A((0,4]) /vl + 1),

—1< (i 1) < =L+ A3 [m((0,4])/v(5. 5+ 1] <0,

for 0 < i < ¢—1. One may do a similar computation from the other end point and,
by Proposition 3.5, this implies

-1 -

([n—7+1,n))
1/ < max
/‘n’nun— JZO ]+1 2:: n—j,n ]+1)
Taking the minimum over 1 < ¢ < n gives the desired inequality. ([l

6.2. One bottleneck. For n > 1, let G,, = (V,,, E,,) be the path on {0,1,...,n}
and set m, = 1/(n+ 1) and v, = 1/(n+ 1) with C > 0. Using Feller’s method in
[11, Chapter XVI1.3], one can show that the eigenvalues of M, are 2(1—
for0<i<n.

' )

Theorem 6.2. Forn >1, lete, >0, 1<z, <[n/2] and set m, =1/(n+ 1),
€n

n+1’

Then, the spectral gap are bounded by

1 n
<)\ Lo < in § 2 1— cos — ,6— )
n?/4+ /e, TV n—xn,+1/) x,

In particular, )\f” en < min{1/n? e, /x,}.
ns¥n

1
(6.1) vy, — 1, @) = vir(i—1,1) = ——, Vi# x,.
n

+1’

Proof of Theorem 6.2. The lower bound is immediate from Theorem 6.1 by choos-
ing i = [n/2] in the computation of the maximum. For the upper bound, we set
An =1 —cos 75 and let f,, be the function on V,,_,, defined by f,(0) = —1 and,

forogzgnfxnfl
. o . [fn(z) — fn(Z - 1)]Vn—wn (i—1, Z) = 2Mn—2, Tn—z, (l)fn(z)
fn(z+1)_fn(z)+ l/nfxn(iviJrl) )

By Proposition 2.3, £, _, (fn, fn) = 2An—s, Varg, _, (fn) and 7,4, (fn) = 0. Let
gn be the function on V,, defined by g,(n — i) = fn( ) for 0 < i < n—ax, and
gn(1) = fu(n —x,) for 0 <i < xz,. A direct computation shows that

(n+ 1)5112‘," (gnsgn) = (N — zn + 1)5Vn7zn (fns fn)

and

Tnn—2pn+1) 9
ntl f (n—an).

This implies )\f” Jon < 2Ap—g,. On the other hand, using the test function,

ho(i) =n—z, +1 for 0 <i < z, and h,(i) = —x, for x, < i < n, one has

Eyon (hny hy) [Varg, (hn) = en(n+1)/[zp(n — 2, + 1)] < €,/2y,. This finishes the

proof. [l

(n + 1)Varﬂ'n (gnvgn) = (n — Tn + 1>Var7rn7wn (fn) +

The next theorem has a detailed description on the coefficient of the spectral
gap. The proof is based on Section 3, particularly Proposition 3.11 and Remark
3.10, and is given in the appendix.
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Theorem 6.3. For n > 1, let z,,en, Ty, Vi be as in Theorem 6.2. Suppose
Tn/(enn?) = a € [0,00] and x,/n — b€ [0,1/2].
(1) Ifa < oo and b =0, then )\f" e ~min{r? a"?}n"2.
(2) If a < 00 and b € (0,1/2], then )\f”uwn ~ Cn~2, where C is the unique
positive solution of the following equation.

2 7w2aC > (1 —b)i2 —bC

1+410g2———7—bCZ _ .
— (2 = O)[(1 — b)2i2 — b2C)

=0.

(3) If a = oo, then Af”yzn ~ €/ T

n

6.3. Multiple bottlenecks. In this subsection, we consider paths with multiple
bottlenecks. As before, G,, = (V,, E,) with V,, = {0,1,...,n} and E,, = {{i,i +
1}i = 0,...,n — 1}. Let k be a positive integer and z,, = (Tp,1,..., Tn,x) be a k-
vector satisfying z,,; € V,, and ,1 > 1 and z,; < 2pni41 for 1 < ¢ < k. Let
€n = (€n,1, -, €n k) be a vector with positive entries and vZ» be the measure on F,
given by

1/(n+1) ifi g {wp1, s Tnk}
enj/(n+1) ifi=x,;,1<j<k’

(6.2) vin (i —1,4) = {

Theorem 6.4. Let G, = (V,,, E,) be the path on {0,....,n}. For 0 < k < mn, let
T, be the uniform probability on V,, and vir be the measure on E,, given by (6.2).
Then,

min{1/(4n%), Cp1/2} < AS" ., < min {2 (1 — cos n-/ZH> ,Cn,z} :

where

—1
C "2+2k: in{ PO L
n,dl = | - MIN Ty 5, N — T -
* 4 = ’ ’ €n,i

and

ma

(n+1) E 1/€n,i

i:ml

C,o= min
™2 o<y <ma<n > ni(n— 2+ 1)/(enicn.;)
mq1<i<j<ma

Remark 6.4. Observe that, in Theorem 6.4, 1 — cos njjﬂ =n"2 and

. €n,j
Cn,2 S min . J
1<j<k | min{z, j,n — x, ; + 1}

. . €n,j . €n,j
= min o 1mn , . 1nn —_——— .
Jin ;<% Tn,j JiTn,i>5 M — Tn,j +1

Proof of Theorem 6.4. We first prove the upper bound. Let f; be a function on
{0,1,...,n} satisfying f(z, ; — 1) = f(x, ;) for 1 <i < k and f> be a function on
{0,...,n — k} obtained by identifying points x,,; — 1 and z,; for 1 < ¢ < k. By
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. L G . .
setting fy as a minimizer for A7, . with m,(f1) = 0, we obtain

2(1_ 2m > o 5Vn—k(f27f2) > 5V7L—k(f27f2)
cos = >
n—k+1 Var,, . (f2) Tn—k(f2)
L Gl fi) _ Elh i)
N 7Tn(f12) Varr, (f1) .
To see the other upper bound, let f; be the function on V,, satisfying g, () = —(n—
Zn,;+1) for 0 <i <z, ;—1and g;(i) =z, ; for z, ; <i <n. Computations show
that m,(g;) = 0, mn(gig;) = Tni(n—xp ;+1) fori < j, and &, (g5, 9;) = €n ;(n+1).
Set g = 25:1 a;g;. As a consequence of the above discussion, we obtain

k
gun (97 g) (n + 1) Zi:l alzenai

Varr, (9) 2 ZKJ- a;0;ZTn (N — xnj+ 1)+ Zle a?xn i(n —xn;+1) .

Taking a; = 1/¢,; for my <i < mgy and a; = 0 otherwise gives the bound C,, 2.
The lower bound is immediate from Theorem 6.1 and Remark 6.1. O

Finally, we discuss some special cases illustrating Theorem 6.4.

F1GURE 2. The dashed lines denote the weak edges of v in Theo-

rem 6.5.
Most weak edges
¢e---0—0--—-9 - - 6 -0---0 0@ : - - - &G -0 —0-—-0 - - &—0- -0 —@
atn ~— aJ, —

Jnja ——>

JIn/a

Theorem 6.5. Forn > 1, let 7, =1/(n+ 1) and v, be the measure in (6.2) with
ky, bottlenecks satisfying n — ky, < n. Suppose there are I, C {1,....,k,}, a € (0,1)
and Jp, > 0 such that |I,| is bounded and, fori ¢ I, aJp, < min{z, ;,n—x,,+1} <
Jn/a. Then,

kr
en,i (Zi:laigIn 1/67’L,i>

min —
n?’iel, min{z, ;,n — T, ; + 1}’ Jn

)\Gn

TnolUn ~~ min

Proof. Tt is easy to get the lower bound from Theorem 6.4, while the upper bound
is the minimum of C,, 2 over all connected components of {1,...,¢} \ I, and {¢ +
1oy kn b\ In. O

See Figure 2 for a reference on the bottlenecks. The following are immediate
corollaries of Theorems 6.4-6.5.

Corollary 6.6 (Finitely many bottlenecks). Referring to Theorem 6.5, if k, is
bounded, then

. . €n.i
f”u = minq —;, min - : - .
ni¥n n?’ 1<i<k, min{x, ;,n — Tp; + 1}
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Corollary 6.7 (Bottlenecks far away the boundary). Referring to Theorem 6.5, if
n—ky < n and there are a € (0,1) and J, > 0 such that aJ, < min{x, ;,n—,;+
1} < Jn/a for 1 <i<k,, then

L —1
o (e
v = min

TnVn n2 ’ J
n

Corollary 6.8 (Uniformly distributed bottlenecks). Referring to Theorem 6.5, if
min; €, ; < max; €,; and Tn,; = |in/k,| with k, <n/2, then

) 1 enn
AGn, =<minq—, =4
notn n?’ nk,

Remark 6.5. Note that the assumption of the uniformity of = and v, except at the
bottlenecks, can be relaxed by using a comparison argument.

APPENDIX A. TECHNIQUES AND PROOFS

We start with an elementary lemma.

Lemma A.1. Let a > 0 and f : [a,00) — R be a continuous function satisfying
fla) = a and f(x) € [a,z) for x > a. For b > a, set C, = sup,<,<p{(f(z) —
a)/(x —a)}. Then, C, <1 and a < f*(b) < a+ CP(b— a) for n > 0. Moreover, if
f s bounded on [a,00), then a < f*(x) < a+ C™(x —a) forn >0 and z > a with
C =sup,cicoof{(f(t) —a)/(t —a)} < 1.

Lemma A.2. Let (a;,b;,¢)52, be sequences of reals with b; > 0 and ¢; > 0. For
n>1andteR, let

ay —Clt 1 0 0 0
b1 as 702t 1 0 :
M () = 0 bo
0 0 0
. . ap—1 _cn—lt 1
0 N e 0 bn—l an —Cnt

Then, there are n distinct real Toots for det M, (t) =0, say tﬁ") << tsln), and

+1 +1 .
) <l <t v < <nn > 1
Furthermore, if ay > 1 and a;41 > 1+ b;, then t§") >0 for alln > 1.

To prove Lemma A.2, we need the following statement.
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Lemma A.3. Fizn >0 and, fori <1 <n, let a;,b;,d; be reals with b; > 0 and
d; # 0. Consider the following matrix
a1 dy 0 0 0
di'ty  ay  da O :
0  dy'Dy a3

(A.1) M =
0 0 0
. . e Ap—1 dn_1
0 ) d;i1bn71 an

Then, the eigenvalues of M are distinct reals and independent of dy,...,dn_1. Fur-
thermore, if a1 > 1 and a;11 > 1+ b;, then all eigenvalues of M are positive.

Proof of Lemma A.3. Let X,Y be diagonal matrices with X1, = Y11 = 1, X;; =
dydy ---di—y and Yy = (bybg---b;_1)"?(dydy---d;_y) for i > 1. One can show
that

g 1 0 0 - 0

by az 1 0 :
xpux-t=| 0 b s

0 0 . . .0

: . Ap—1 1

0 -+ «+ 0 by ay

Since XM X! is independent of the choice of dy,...,d,,_1, the eigenvalues of M
are independent of dy, ...,d,,_1. Note that Y MY ~! is Hermitian. This implies that
the eigenvalues of M are all real. As M is tridiagonal with non-zero entries in
the superdiagonal, the rank of M — Al is either n — 1 or n. This implies that the
eigenvalues of M are all distinct.

Next, assume that a; > 1 and a;;1 > 1+0b;. Let (YMY 1), be the leading i x i
principal matrices of Y MY ~1. By induction, one can prove that det(Y MY ~1); =
H;’:l L, where {1 = aq and ;41 = aj41 — bj/¢; for 1 < j < n. By the assumption
at the beginning of this paragraph, £; > 1 for all 1 < j < n and det(Y MY ~!); >0
for all 1 < ¢ < n. As the leading principal matrices have positive determinants,
(YMY~1) is positive definite. This proves that all eigenvalues of M are positive.

O

Proof of Lemma A.2. We prove this lemma by induction. For n = 1, it is clear that
tgl) = ay/cy is the root for det M (t). For n = 2, note that det Ma(t) is a quadratic
function that tends to infinity as |t| — oo. Since det My (tﬁl)) = —b; < 0, the
polynomial, det M(t), has two real roots, say tSQ) < tg), satisfying th) < tgl) < th).
Now, we assume that, for some n > 1, det M,,(¢) and det M,,;1(¢) have reals roots

(t)n ) and (0L satistying £ < 1 < 10 for 1 < i < n. Clearly,

det M,,(t) — oo as t — —oo. This implies

det M, (t5;13) < 0 < det M, (¢5;1)),  VE > 0.
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Observe that det M, 12(t) = (ant2—Cnrat) det My 41 (t)—by1q det M, (t). Replacing
t with ¢{"*Y yields

det My q2(t5p8)) > 0> det My 42(¢5;1)),  VE > 0.

This proves that det M,,;2(t) has (n + 2) distinct real roots with the desired inter-
lacing property.
For the second part, assume that a; > 1 and a;41 > 1+ b; for all ¢ > 1. For

n = 1, it is obvious that tgl) > 0. Suppose tgn) > 0. According to the first part, we

have 5™ > ™) > 0. By Lemma A.3, det M,,41(0) > 0, which implies ¢" ™ # 0.
As it is known that det M,,4;(t) < 0 for ¢t € (tgnﬂ),t;nﬂ)), it must be the case

t§”+1) > 0. Otherwise, there will be another root for det M,,;1(t) between t§”+1)
and 0, which is a contradiction. (I
Proof of Theorem 6.3. For convenience, we set A7" = 1—cos 2% for 1 <m < n and

let A;(X\) be the i-by-i tridiagonal matrix with entrleb (AiMN)w=1for k-1 =1
and (A;(\))ge = 2 — A. For 1 < j <4, let B!(\) be the matrix equal to A; except
the (4, j)-entry, which is defined by (BJ(\,€));; = 2 — A\/e. By Remark 3.9, )\G Jon
is the smallest root of det B™ (X, €,) = 0 and (A, )1, —; are roots of det A ()\) =0.

Note that, for 1 < j < mn,
det Bi (), €)
det Ajfl()\) det An,j()\)

= AL (A e) =2 = Xe—Rj1(N) = Ru(N),

where det Ag(A\) :=1, det A_1(A\) := 0 and

o detAjfl()\) HJ 1(2>‘3 1 )‘)

R;j(A) = dot A4 () TR

To prove this theorem, one has to determine the sign of AJ (), €).
Let £, = 0,/n? with §,, — 0. As n — oo,

N —f, 5,
log 2A% - 72)\%712 (1+0(1))7

where o(1) is uniform for 1 < ¢ < n. Note that Hz:1(2)\§-) = det 4;(0) = j + 1.
This implies

log R,,(¢) = log

dn(1+0(1))
L (S S )

On
=1 — .
Ogn+1+0<n)

By a similar reasoning, one can prove that log R;((;) = log 547 + O(dn/n) for
bounded j. This shows that, for j, € {1,...,n} and ¢, = o(j;,?),

(A.2) R; (6,)=1- + O(jntyn), asn— oo.
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Next, we compute R;, (2C, A} ) with C, — C € (0,1) and j, — oc. Note that, for
n large enough,

in—1 -1 . 2
In )\ . 3 Jn _1 )\’L‘
logR‘"(2Cn)\}n) == Z ‘7"‘7 _ Z ( Jn n)
(A.3) i=1 SN z
Ajn — i)

c, A1 =)y 0(i72).
+ Z ]—C)\l)/\;.n ogd+0(j;?)

Calculus shows that

Jn—1 i\ 2 - . 9
Ao = 1 02 sin? 0
Jn—1 In .—92
T S 1R R S L B A 7

Z ( Py ) 7Tjn/0 (1 —cos0)? +00.")

=1 In
8log2 — w2/3 .
_Sloe2- /3 L o)
In
and
n_l K3
S - 25 o ou
7 1 7, n .
i=1 ()\jn C)‘ i=1
Observe that, as n — oo,
. Jn— )\1, )\
In Jn—1 Jn .2
log — =logR; (0) = Zinzl Tin g 4+0(5,°)-
g7 = s R, (0) ; A g4+ 0(j,?)

Putting this back into (A.3) implies

2 =1 1
(Ad) R;,(2C,\L) =1+ (—1 —4log2 + % +Cn Y M) —+ 03,
i=1 "

In
We consider the following two cases.
Case 1: x,, = O(e,n?). In this case, Theorem 6.2 implies that )\f Jon <072 We

assume further that z,,/(e,n?) = a and x,,/n — b with a € [0,00) and b € [0,1/2].
Let C,, — C € (0,1). Replacing j, with z,, — 1 in (A.2) and with n — z,, in (A.4)
yields that, for b = 0,

(1 —72aC)(1 4+ o(1))

AL (2C, A, =
( C NnN—=In 7 ) .Tn
and, for b € (0,1/2],
2 2
. 1 o maC (1+0(1))
AL (200N, _y, 1 €n) = (1 +4log2 A bClib(C)> A —bn

where r(c) =377, 2 76()1[(_1?12)2_;;%26]. This proves (1) and (2).
Case 2: en? = o(x,,). This is exactly (3) and the result is immediate from Theorem
6.2. ]
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ON THE MIXING TIME AND SPECTRAL GAP FOR BIRTH
AND DEATH CHAINS

GUAN-YU CHEN! AND LAURENT SALOFF-COSTE?

ABSTRACT. For birth and death chains, we derive bounds on the spectral gap
and mixing time in terms of birth and death rates. Together with the results
of Ding et al. in [15], this provides a criterion for the existence of a cutoff
in terms of the birth and death rates. A variety of illustrative examples are
treated.

1. INTRODUCTION

Let 2 be a countable set and (2, K, 7) be an irreducible Markov chain on € with
transition matrix K and stationary distribution 7. Let I be the identity matrix
indexed by €2 and

o0
Hy = U5 = Z e K" /i)
=0

be the associated semigroup which describes the corresponding natural continuous
time process on . For § € (0,1), set

(1.1) Ks =461+ (1-9)K.
Clearly, K; is similar to K but with an additional holding probability depending

of §. We call K the d-lazy walk or d-lazy chain of K. It is well-known that if K is
irreducible with stationary distribution =, then

lim K§*(z,y) = lim Hi(x,y) =n(y), Vo,yeQ,de(0,1).
m—00 t—o00
In this paper, we consider convergence in total variation. The total variation
between two probabilities p, v on € is defined by ||p—v||rv = sup{p(A)—v(A)|A C

Q}. For any irreducible K with stationary distribution 7, the (maximum) total
variation distance is defined by

(1.2) dpy(m) = sug K™ (z,-) = 7|Tv,
xc

and the corresponding mixing time is given by

(13) TT\/(E) = lnf{m Z O‘dTv(m) S 6}, Ve € (O, ].)
We write d(TC\),7 TT(f; for the total variation distance and mixing time for the contin-

uous semigroup and d(T‘S&, T T(f,) for the -lazy walk.

2000 Mathematics Subject Classification. 60J10,60J27.

Key words and phrases. Birth and death chains, Cutoff phenomenon.
IPartially supported by NSC grant NSC100-2115-M-009-003-MY?2.
2Partially supported by NSF grant DMS-1004771.
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A birth and death chain on {0,1,...,n} with birth rate p;, death rate ¢; and
holding rate r; is a Markov chain with transition matrix K given by

K(i,i+1)=p;, K@Gi—-1)=¢q, K(@,i)=mr, V0<i<n,
where p; + ¢; + 7, = 1 and p, = ¢o = 0. It is obvious that K is irreducible if
and only if p;g;41 > 0 for 0 < i < n. Under the assumption of irreducibility, the
unique stationary distribution 7 of K is given by 7 (i) = ¢(po---pi—1)/(q1 - @),
where ¢ is a positive constant such that >..  7(i) = 1. The following theorem

provides a bound on the mixing time using the birth and death rates and is treated
in Theorems 3.1 and 3.5.

Theorem 1.1. Let K be an irreducible birth and death chain on {0,1,...,n} with
birth, death and holding rates p;,q;,7;. Let iy be a state satisfying m([0,4¢]) > 1/2
and 7 ([ig,n]) > 1/2, where m(A) = >, 4 (i), and set

= {,; TFe 2| T }
Then, for any § € [1/2,1),

c t
min {79 (1/10), 7 (1/20)} > &
and 18¢
max {T{Q(e), TV (e)} < =, Ve e (0,1).

The authors of [15] derive a similar upper bound. Note that if (X,,)>_, is a
Markov chain on €2, with transition matrix K and 7; := min{m > 0|X,,, = i}, then
t = max{Eg7;,, E,7;, }, where E; denotes the conditional expectation given Xy = 1.
See Lemma 3.2 for details.

A sharp transition phenomenon, known as cutoff, was observed by Aldous and
Diaconis in early 1980s. See e.g. [10, 5] for an introduction and a general review of
cutoffs. In total variation, a family of irreducible Markov chains (Q,,, K, m,)22 ; is

said to present a cutoff if

(1.4) im Lerv(€)
0350 Ty oy (1)

The family is said to present a (¢,,by,) cutoff if b, = o(t,,) and
Torv(€) = tn] = O(by), VO <e<L.

The cutoff for the associated continuous semigroups is defined in a similar way.
Given a family F of irreducible Markov chains, we write F, and Fs for the families
of corresponding continuous time chain and J-lazy discrete time chains.

Let F = {(Qn, Kp,m)|n = 1,2, ...} be a family of birth and death chains, where
Q, ={0,1,...,n} and K,, has birth rate p, ;, death rate g,,; and holding rate ry, ;.
Suppose that K, is irreducible with stationary distribution m,. For the family
{(Q, Kp,ymp)|n = 1,2,...}, Ding et al. [15] showed that, in the discrete time case
and assuming inf; ,, r,; > 0, the cutoff in total variation exists if and only if the
product of the total variation mixing time and the spectral gap, i.e. the smallest
non-zero eigenvalue of I — K, tends to infinity. There is also a similar version for
the continuous time case. In [6], we use the results of [13, 15] to provide another
criterion on the cutoff using the eigenvalues of K,. In both cases, the spectral gap

=1, V0<e<n<l
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is needed to determine if there is a cutoff. The following theorem provides a bound
on the spectral gap using the birth and death rates.

Theorem 1.2. Consider an irreducible birth and death chain K on {0,1,...,n} with
birth, death and holding rates, p;,q;,7;. Let m and X be the stationary distribution
and spectral gap of K and set

¢ = max { max 102:1 zj: 7([7,n])
Jij<io —~ pk e L 7(kK)aqr [’
k=j io+1
where ig s a state such that 7([0,49]) > 1/2 and w([ig,n]) > 1/2. Then,
1 2
— <AL -
4 - L

The above theorem is motivated by [16], where the author considers the spectral
gap of birth and death chains on Z. We refer the reader to [16] and the references
therein for more information. Note that if ¢, ¢ are the constants in Theorem 1.1-1.2,
then ¢ > ¢. Based on the results in [15], we obtain a theorem regarding cutoffs for
birth and death chains.

Theorem 1.3. Consider a family of irreducible birth and death chains
F={(Q,,K,,m)|n=1,2,..},
where Q,, = {0,1,...,n} and K,, has birth, death and holding rates, pn. i, Gn,i,Tn,i-

Forn > 1, let i, € {0,...,n} be a state satisfying m,([0,4,]) > 1/2 and 7, ([in +
1,n]) > 1/2 and set

in—1 n
7Tn
t, = max .
" {Z ( pnk Z 7T an}

k=0 k=in+1 n
and

=~ ml((0.4) "~ mu(lj.n])
0, = I D30 T llJ, 1)
- e Jl?gz{n 2:: n(K)Dn.k ]Iglgln . ZZ:_H T (K)o i
Then, for any € € (0,1/2) and § € (0,1), there is a constant C = C(e,0) > 1 such
that

C™ M < min{ Ty (€), Tty ()} < max{ Ty (€), Tk ()} < Ct,
for n large enough. Moreover, the following are equivalent.

(1) F. has a total variation cutoff.
(2) Ford € (0,1), F5 has a total variation cutoff.
(3) tpln — 0.

The above theorem is immediate from Theorems 1.1, 1.2, 2.2 and 2.3. The
selection of 4,, can be relaxed. See Theorem 3.6 for a precise statement. By the
results in [6], Theorem 1.3 also holds when ¢, is replaced by the following constant

Sp = ! +F !
" >\n,1 >\n,n '
where A, 1, ..., Ap,, are nonzero eigenvalues of I — K,,. Furthermore, Theorem 1.3
also holds in separation with ¢ € [1/2,1). We will use Theorem 1.3 to study the
cutoff of several examples including the following theorem which concerns random
walks with bottlenecks. It is a special case of Theorem 4.8.
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Theorem 1.4. Forn > 1, let Q, = {0,1,...,n}, 7, = 1/(n+ 1) and K,, be an
irreducible birth and death chain on €, satisfying

1/2 fori ¢ {zn1,....Tnk,}

Kn(i—1,4) = Kp(i,i— 1) = , _ :
€n forl:xn,jalgjgkn

where 0 < ky, < n, €, € (0,1/2], xp1, ..., Tnk, € Ly, are distinct and the holding
rate at i is adjusted accordingly. Set t,, = n? + a, /ey, where

k’",
a, = E min{z, ;,n+1—x,,},
i=1
and set

bp= max {(J+ D) x {1 <i<ky,:j<zn;<n-—j}}
jii<n/2

Then, for any € € (0,1/2) and § € (0,1), there is C = C(e,6) > 1 such that
C™ M < min{T 0y (€), Tty (6)} < max{ T30y (€), ik ()} < Ct,
for n large enough.

Moreover, the following are equivalent.

(1) Fe has a total variation cutoff.
(2) Ford € (0,1), Fs has a total variation cutoff.
(3) an/(ne,) — oo and a, /b, — co.

The remaining of this article is organized as follows. In Section 2, the concepts
of cutoffs and mixing times and fundamental results are reviewed. In Section 3,
we give a proof for Theorems 1.1 and 1.2. For illustration, we consider several
nontrivial examples in Section 4, where the mixing time and cutoff are determined.
Note that the assumption regarding birth and death rates in Sections 3 and 4 can
be relaxed using the comparison technique in [11, 12].

2. BACKGROUNDS

Throughout this paper, for any two sequences s,,t, of positive numbers, we
write s, = O(t,) if there are C' > 0, N > 0 such that |s,| < C|t,| for n > N. If
$n = O(t,) and ¢, = O(s,), we write s, < t,. If t,,/s, — 1 as n — oo, we write

tn ~ Sp.
2.1. Cutoffs and mixing time. Consider the following definitions.

Definition 2.1. Referring to the notation in (1.2), a family F = {(Qy, K, m)|n =
1,2, ...} is said to present a total variation

(1) precutoff if there is a sequence t,, and B > A > 0 such that
lim dyov([Bt]) =0, liminf dy1v(|Ata]) > 0.
(2) cutoft if there is a sequence t,, such that, for all € > 0,
Jim. dnrv([(1+€)tn]) =0, Jim dn,ov([(1 = €)tn]) = 1.

In definition 2.1(2), t, is called a cutoff time. The definition of a cutoff for
continuous semigroups is similar with [-] and || deleted.
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Remark 2.1. In Definition 2.1, if ¢,, — oo (or equivalently T;, rv(€) — oo for some

€ (0,1)), then the cutoff is consistent with (1.4). This is also true for cutoffs
in continuous semigroups without the assumption ¢, — oo. See [4, 5] for further
discussions on cutoffs.

It is well-known that the mixing time can be bounded below by the reciprocal
of the spectral gap up to a multiple constant. We cite the bound in [6] as follows.

Lemma 2.1. Let K be an irreducible transition matriz on a finite set Q with
stationary distribution w. For § € (0,1), let Ks be the §-lazy walk given by (1.1).
Suppose (mw, K) is reversible, that is, w(x)K(x,y) = w(y)K(y,x) for all z,y € Q
and let \ be the smallest non-zero eigenvalue of I — K. Then, for e € (0,1/2),

©) — log(2¢) @) —log(2¢)
Trele) 2 R Trv(e) 2 \‘2 max{1l — 4, log(2/5)})\J

where the second inequality requires |Q2] > 2/6.

2.2. Cutoffs for birth and death chains. Consider a family of irreducible birth
and death chains

F = {(QmKnaﬂ'n)m =1,2, },

where Q,, = {0,1,...,n} and K, has birth rate p, ;, death rate g, ; and holding rate
Trni. We write F., Fs as families of the corresponding continuous time chains and
0-lazy discrete time chains in F. A criterion on total variation cutoffs for families
of birth and death chains was introduced in [15], which say that, for § € (0,1),
Fe, Fs have total variation cutoffs if and only if the product of the mixing time and
the spectral gap tends to infinity. As the total variation distance is comparable
with the separation distance, the authors of [15] identify cutoffs in total variation
and separation, where a criterion on separation cutoffs was proposed in [13]. In the
recent work [6], the cutoffs for . and F; are proved to be equivalent and this leads
to the following theorems.

Theorem 2.2. [6, Section 4] Let F = {(Qp, Kp, )0 = 1,2,...} be a family of
irreducible birth and death chain with Q, = {0,1,...,n}. Forn > 1, let Ap.1,...; Ann
be nonzero eigenvalues of I — K,, and set

)\n—mln Ay, Sp=~——+-+ .
1<i<n /\n,l Ann

Then, the following are equivalent.

(1

) Fe has a total variation cutoff.
(2) Fs has a total variation cutoff.

(3) Fe has a total variation precutoff.

(4) Fs has a total variation precutoff.

(5) TT(:%V(G))\” — oo for some € € (0,1).

(6) TT(L?%V(E)ATL — o0 for some € € (0,1).

(7) spAn — 0.

Theorem 2.3. [6, Section 4] Referring to Theorem 2.2, it holds true that, for
e,n € (0,1/2) and § € (0,1),

¢ )
T (€) = )y ().
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Further, if there is g € (0,1/2) such that Ty(;%«v(ﬁo)/\n or T,(f%v(eo))\n is bounded,
then, for any € € (0,1/2) and 6 € (0,1),

c é —
Thirv(e) = Ty (0 = A,
2.3. A remark on the precutoff. Note that if there is no cutoff in total variation,
the approximation in Theorem 2.3 may fail for € € (1/2,1). This means that, for
0 <e<1/2 <n<1,theorders of T7(l?’)I‘V(E) and Tflf%v(n) can be different. Consider
the following example. For n > 3, let ,, = {0,1,...,n}, M,, = [n/2]| and
Ko(i,i+1)=Kn(i+1,i)=1/2 for0<i<n,i#M,
K,(M,, M, +1)=K,(M, +1,M,) =¢€,
K,(0,0) = K,(n,n) =1/2
K,(M,,M,)=K,(M,+1,M,+1)=1/2—¢,
with €, < 1/2. Assume that €, = o(n~2). By Theorem 1.4, we have
T (€) = TS0 (€) = nfen, Vee (0,1/2),6 € (0,1).
Next, we consider the d-lazy discrete time case with § = 1/2. Let K, 1/ =
(I + K,,)/2 and K], be the 1/2-lazy simple random walk on {0, 1, ..., M, }, that is,
K'(iyi+1) =K\ (i+1,i)=1/4, Y0<i< M,
K (i,i)=1/2, YO<i<M,
K!(0,0) = K/, (M,,, M) =3/4

(2.1)

For n > 3, set
¢, = Mmin 71(;”?/2( ’]) , Ch = max 7K:Lnl/2( ’]) .
0<i,j <M (K7,)™n (i, j) 0<ij <My (K3 )™n (i, )
Proposition 2.4. If m,, =< n?, then
e, —1, C,—1, asn— co.

Proof. For £ > 1, let (ig, i1, ...,i¢) be a path in {0, 1, ..., M, }. Note that

¢
) . 3/4—€,/2
I Knajalin-1,i) Z( / n/ ) HK’ ik—1,1k)-

k=1
This implies ¢, > (1 —2¢,/3)™ ~ 1 as n — oo. To see an upper bound of C,,, one
may use Lemma 4.4 in [15] to conclude that, for 0 < i <n and ¢ > 0,

{Kfz,l/Q(ivj) > K} p(i,j—1) V1<j<0
K 1p(0:) 2 Ky o6 +1) Vi<j<n’
and, for 0 <i < M, and ¢ > 0,

{(Km,j) > (K;)"(i,j 1) VI<j<i

(K0, 4) 2 (Kp) (7 +1) Vi<j<M,

By the induction, the above observation implies that, for any probabilities u, on
{0,...,n},{0, ..., M, } satistying u(i) = v (i) for 0 < i < M,,

I 10 (5) S V(KL Y0 < j < My, £20.
This yields C), < 1 for all n > 3. O
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For € € (0,1), let T}, 1y(€) be the total variation mixing time for K7,. Tt is well-

known that, for € € (0,1), T}, +y(e) =< n*. Let d;%%;,d%mv be the total variation
distance for K, 1/2, K],. As a consequence of the above discussion, we obtain, for
€€ (0,1),

1+e

1
s T (0) < 5 (14 s by (T ()) < 5

n—oo n—roo

Thus, for € € (1/2,1), TT(L%\Z,)( ) = O(n?). Note that, for m,, = o(n?),

nh_{rgo Z Kﬁ/z =1, Va>0.

i<an

This yields n? = O(Télé\z,)(e)) for e > 0. The above discussion is also valid for the
continuous time case and any é-lazy discrete time case. We summarizes the results
in the following theorem.

Theorem 2.5. Let F = {(Q,, K, mp)|n = 1,2,...} be the family of birth and death
chains in (2.1) and § € (0,1). Suppose that €, = o(n=2). Then, there is no total
variation cutoff for F. and Fs. Furthermore, for e € (0,1/2),

c )
Tr(L,%v(f) = qu,%v(e) = n/en,
and, fore€ (1/2,1),
c )
T (€) = T2y (€) =< n?.

Remark 2.2. Figure 1 displays the total variaton distances of the birth and death
chains on {1,2,...,100} with transition matrices K; and K given by

K1 (i,1) = 1/2, for i ¢ {1,50,51,100}
Ki(i,i+1)=Ki(i+1,4) =1/4, fori<50ori> 51
Ki(i,i) = 3/4 for k € {1,100}
Ki(iyi+1) = Ki(i+1,4) = 1073 for k = 50
Ki(iyi) = K1(i,i) = 3/4— 1073 for i € {50,51}
Kq(i,j) =0 otherwise
and
Ky(i,i+1) = Ko(i+1,4) =10"2 fori=25
Ky(iyi) = 3/4 — 1072 for i € {25,26} .
Ko(i,7) = K1(i,5) otherwise

Note that each curve has only one sharp transition for drv(t) < 1/2. This is
consistent with Theorem 1.3. These examples show that multiple sharp transitions
may occur for drv(t) > 1/2. Note also that the flat part of the curves occupy very
large time regions. For instance, the left most curve stays near the value 1/2 for ¢
between 102 and 10°.

3. BOUNDS FOR MIXING TIME AND SPECTRAL GAP

This section is dedicated to proving Theorems 1.1 and 1.2. In the first two
subsections, we treat respectively the upper and lower bounds of the total variation
mixing time. This leads to Theorem 1.1. In the third subsection, we provide a



8 G.-Y. CHEN AND L. SALOFF-COSTE

09F 9 09

08f 4 08

0.7 4 0.7

06 9 06

05F 4 05

0.4t 4 0.4

03F 9 03

02f 4 0.2

0.1 4 0.1

FIGURE 1. The curves display the total variation distance of the
chains in Remark 2.2, where the left most curve is for K; and
the right most curve is for K5. The curve consists of the points
(m, dpy (100L9-%70)) with m = 1,2,...,50. The right most point
of each curve corresponds to dpv(t) with ¢ = 101°.

relaxation of the choice of ¢,, in Theorem 1.3. In the last subsection, we introduce
a bound on the spectral gap which includes Theorem 1.2.

3.1. An upper bound of the mixing time. Let (2, K,7) be an irreducible
birth and death chain, where Q = {0,1,...,n} and K has birth rate p;, death
rate ¢; and holding rate r;. Let (X,,)2_, be a realization of the discrete time
chain. Obviously, if V; is a Poisson process with parameter 1 and independent
of (Xm)o_p, then (Xn,)i>0 is a realization of the continuous time chain. For
0 €10,1), if (B7(ff))$n‘°=1 is a sequence of independent Bernoulli(1 — ¢) trials which
are independent of (X,,)2°_,, then v = XB§5’+.-.+B$,‘E) is a realization of the

6-lazy chain. For 0 <4 < n, we define the first passage time to i by
(3.1) 7= inf{t > 0| Xy, =i}, 7°:=min{m >0|Y,, =i},

and simply put 7; = Ti(o) = min{m > 0/X,, = i}. Briefly, we write P;() for
P(-|Xo = i) and write E;, Var; as the expectation and variance under P;. The main
result of this subsection is as follows.

Theorem 3.1 (Upper bound). Let (2, K, ) be an irreducible birth and death chain
with Q@ = {0,1,....,.n}. Let i, = Ti(o) be the first passage time to i defined in (3.1).
Fore€ (0,1) and 6 € [1/2,1),

(3.2) max {T{(6), (1 = )T (e) } < -
where ig € {0, ...,n} satisfies w([0,ip — 1]) < 1/2 and w([ip + 1,n]) < 1/2.

Q(E()Tio + EnTio)

2 )

Remark 3.1. The authors of [6] obtain a slightly improved upper bound similar to

(3.2), which says that
max {TT(;) (€), (1 — 5)TT(§/)(€)} < (Ve+ \/ﬁ)\ggono +E,7i,) '

Comparing with (3.2), the above inequality has an improved dependence on e.

To understand the right side of (3.2), we introduce the following lemma.
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Lemma 3.2. Referring to the setting in (3.1), it holds true that, for i < j,
Ei(r;")) = Bi(r;)/(1 =) and Bi(r;) = Ei(7;) = Y45 m((0, )/ (per(R)).

Proof. The proof is based on the strong Markov property. See [2, Proposition 2]
for a reference on the discrete time case, whereas the continuous time case is an
immediate result of the fact {7; >t} = {7, > N;}. O

Remark 3.2. By Theorem 3.1 and Lemma 3.2, the total variation mixing time for
the continuous time and the d-lazy, with 6 > 1/2, discrete time birth and death
chain on {0,1,...,n} are bounded above by the following term up to a multiple
constant. -
10— n
Z W([()?k]) + Z T‘—([kvn})7
= pem(k) o A= anm(R)
where i € {0, ...,n} satisfies 7([0,79 — 1]) < 1/2 and 7([ig + 1,n]) < 1/2.
Remark 3.3. In Theorem 3.1, i is unique if 7([0,7]) # 1/2 for all 0 < i < n. If
([0, 4]) = 1/2, then iy can be j or j + 1, but the right side of (3.2) is the same in
either case using Lemma 3.2.

Remark 3.4. Let K be an irreducible birth and death chain with birth, death and
holding rates p;, g;, r; and stationary distribution 7. Let A be the spectral gap of
K. As a consequence of Lemma 2.1 and theorem 3.1, we obtain, for € € (0,1/2),

Clog(1/20) (2 (0.K) | & wllka))
Az 9 (kZO (k) Jrk:iz(]H qkw(k:)) ’

where g is such that 7([0,499 — 1]) < 1/2 and 7([ip +1,n]) < 1/2. The maximum of
€2 log(1/(2¢€)) on (0,1/2) is attained at € = 1/(2/e) and equal to 1/(8¢). A similar
lower bound of the spectral gap is also derived in [7] with improved constant.

As a simple application of Lemma 3.2, we have

Corollary 3.3. Referring to Lemma 3.2, for i < j,

Biry < (= — 1) B

Proof. By Lemma 3.2, one has

=) LAl L) R (k1))

]EZT] = kz::z pkﬂ'(k‘) y ]En(Tz) - kz::l qk-‘,—lﬂ-(k + 1) o Pt pkﬂ'(k) .
The inequality is then given by the fact 7 ([0, k])/7([k+1,n]) = 1/7([k+1,n])—1 <
1/m([j,n]) = 1 for k < j. -

The following proposition is the main technique used to prove Theorem 3.1.
Proposition 3.4. Referring to the setting in (3.1), it holds true that, for j <k,
A (i,1) < Pi(max{7;, 7} > 0) +1 = n([j, k),
and
di? (i t) < Pamax{r] ", 7/} > t) + 1 = =([j, k),
In particular,
< EoTr + En’?]

did(t) < =

+ 1 —m([j,k])
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and

2(Eor/? + E, 7P
ayP ) < 280 — D= n(lja)

In the above proposition, the discrete time case is discussed in Lemma 2.3 in
[15]. Our method to prove this proposition is to construct a no-crossing coupling.
We give the proof of the continuous time case for completeness and refer to [15]
for the discrete time case, where a heuristic idea on the construction of no-crossing
coupling is proposed.

Proof of Proposition 3.4. Let (Y;):>0 be another process corresponding to H; with

Yo L 7. Set T := inf{t > 0|X; = Y;} and Z; := Yilgery + Xilgsgy. Clearly,
(X, Zi)i>0 is a coupling for the semigroup H; and must be no-crossing according
to the continuous time setting. Note that T' = inf{t > 0|X; = Z;} is the coupling
time of X; and Z;. The classical coupling statement implies that

(3.3) A6, t) < P(T > t).
See e.g. [1] for a reference. Note that X, = j, X;, =k and
]P)i(X'Fj < Y?j) = W([j’ Tl]), Pi(X?k > Y?k) = 77([07]6])

As X;,Y; can not cross each other without coalescing in advance, this implies
Pi(T < max{7;, 7% }) > P;(min{7;, 7} < T < max{7;,7})
> Pi(Xz <Yz, X5 > Y5) > n([j, k).
Putting this back to (3.3) gives the desired result.
For the last part, note that if ¢ < j, then 7; < 7 and, by Markov’s inequality,
this implies
Pl(max{?],?k} > t) < ]P)o(%k > t) < Eo?k/t
Similarly, for ¢ > k, one can show that
P;(max{7;, T} > t) < P, (7; > t) < E,7;/t.
For j < i < k, we have
~ ~ ~ ~ E,7; + EoTs
Pi(max{7;, T} > t) <Py(7; > t) + Pi(Th > t) < —
O

Proof of Theorem 8.1. Set j. = min{i > 0| ([0,4]) > ¢/3} and k. = min{i >
0|7 ([0,4]) > 1 — €/3}. By Proposition 3.4 and Lemma 3.2, the choice of j = j. and
k = k. implies that

3(]E07_k6 + EnTj‘)

€

T49(e) <
By Corollary 3.3, one has
3
Eoti, = Eomiy + Eigm, < Eomiy + ( — 1) E,7i,
€
and
3
EnTje = EnTio + EioTje < EnTig + < — 1) EOTio'
€

Adding up both terms gives the upper bound in continuous time case. The proof
for the (1/2)-lazy discrete time case is similar and, by Proposition 3.4, we obtain
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T2 (€) < 18(Eom, + Enmy,)/€?. For & € (1/2,1), note that Ks = (Kas-1)1/2.
Since the birth and death rates of K351 are 2(1 — §)p; and 2(1 — d)qg;, the above
result and Lemma 3.2 lead to TT((z,)(e) < 9(Eo7i, + Enti)/((1 = 8)e€?). O

3.2. A lower bound of the mixing time. The goal of this subsection is to estab-
lish a lower bound on the total variation mixing time for birth and death chains.
Recall the notations in the previous subsection. Let (X,,)5°_, be an irreducible
birth and death chain with transition matrix K and stationary distribution 7. Let
N; be a Poisson process of parameter 1 that is independent of X,,,. For 0 < i < n,
let 7, = min{m > 0|X,, = i} and 7, = inf{t > 0|Xy, = i}. Then, the total
variation mixing time satisfies

(3.4) drv(0,t) > Kt(O, [0, —1]) — 7([0,4 — 1]) > Po(7; > t) — w([0,7 — 1])
and
(3.5) d(TC\),(O,t) > H(0,[0,i — 1)) — w([0,¢ — 1]) > Po(7; > t) — 7([0,7 — 1]).

Brown and Shao discuss the distribution of 7; in [3], of which proof also works for
the discrete time case. In detail, if —1 < g1 < --- < B; < 1 are the eigenvalues of
the submatrix of K indexed by {0, ...,4 — 1} and A\; = 1 — 3}, then

i A t
(3.6) Po(r; > 1) ZZ H (1=2X)

=1 kg MmN

and
i

(3.7) Po(7i > 1) =)

i=1 \k#j
Note that, under Py, 7; is the sum of independent exponential random variables
with parameters Aq, ..., \;. If 81 > 0, then 7 is the sum of independent geometric
random variables with parameters Aq, ..., A;. In discrete time case, the requirement
B1 > 0 holds automatically for the d-lazy chain with 6 > 1/2. The above formula
leads to the following theorem.

Ak

Aj
Ak — Aj '

e—t

Theorem 3.5 (Lower bound). Let K be the transition matriz of an irreducible
birth and death chain on {0,1,...,n}. Let ; = Ti(o) be the first passage time to i
defined in (3.1). For § € [1/2,1),
max{Eo7;,, EnTio }

6 )
where iy € {0, ...,n} satisfies w([0,i0 — 1]) < 1/2 and w([ip + 1,n]) < 1/2.

min{T{Y) (1/10), 2(1 - §) T4 (1/20)} >

Proof of Theorem 3.5. First, we consider the continuous time case. Let Aq,..., \;
be eigenvalues of the submatrix of I — K indexed by 0, ..., — 1 and 7; 1, ..., 7;,; be
independent exponential random variables with parameters Ay, ..., \;. By (3.7), 7;
and 7; 1 + - - - + 7;; are identically distributed under Py and, by (3.5), this implies

d(0,8) > PFiq + -+ 74 > t) — m([0,7 — 1)).
It is easy to see that

~ 1 1 . 1
EOTi:)\il—’—...—’—)\ii’ VarO(Tz):Ai%'i_“‘)\*g
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Let a € (0,1) and consider the following two cases. If 1/A\; > aEq7; for some
1 <j <14, then

Po(7 > t) > P(F; > t) > e~ t/(aBoTo),
If 1/X\; < aEo7; for all 1 < j < i, then Varg(7;) < a(Eo7;)? and, by the one-sided
Chebyshev inequality, we have

TR )2 _ .72 — b2
S (-1 P () N ()
Varo(n) + (t — EoTi)Q G(EoTi)Q + (t — EoTi)Q a—+ (1 — b>2

for t = bEg7; with b € (0,1). Combining both cases and setting i = iy in (3.5)
yields that, for a,b € (0,1),

1—-10b)? 1
(3.8) d(TC\)/(Oz bEoT;,) > min {6b/aa a—(&—(l—)b)Q} Ty
Putting @ = 1/3 and b = 1/6 gives T(0,1/10) > Eo7;, /6.

For the discrete time case, note that the eigenvalues of the submatrix of I —
Ky = %(I — K) indexed by 0,...,i — 1 are A\1/2,...,A;/2. Let 7;1,...,7; be
independent geometric random variables with success probabilities A1/2, ..., A;/2.
Replacing K with K/ in (3.4), we obtain

d2(0,8) > Po(rin + -+ + 74 > t) — x([0,7 — 1]).

Note that, under Py, 7_1_(1/2) has the same distribution as ;1 + --- + 7;; and this
implies
i

2 2 Lo4(1 =), /2) 4
E,7 Y% = 2 4 42 Varg (VP = P i) Y
07 A1 * + i’ aro(7; ) )\? - = )\?

j=1

1/2)

Using the same analysis as before, one may derive, for 1 /EoTZ-( <a<1and

t < Egr{t/?

2
(1~ B2

t
1
IP’O(T.(I/z) > t) > min (1 - 7 )
7 - ) ’ 2 2
aEqr a <E07‘i(1/2)> n (t _ ]EoTia/z))

By Lemma 3.2, Eor'"/? > 2i. Obviously, if iy = 0, then T%/?(0,1/20) > 0 =
]EoTi(Ol/Q). For iy > 1, EOTi(Olﬂ) > 2 and the setting, a =2/3 and t = \‘EoTi(ol/2)/l2J,
implies

2
(1/2) (1/2) o i Jom1/s _ (11/12) o1
drv (0’ PEOT% /12J) = mm{2 231 (11/122) 2 20°

where the first inequality use the fact that slog(1 —3/(2s)) is increasing on [2, 00).
Hence, we have T&,/Q)(O,l/QO) > ]E()Ti(ol/Q)/].Q = Eg7,/6. For 6 > 1/2, the com-
bination of the above result and the observation K5 = (Ka5-1)1 /2 implies that
Ti3(0,1/20) > Eor;, /(12(1 - 6)).

The analysis from the other end point gives the other lower bound. This finishes
the proof. O



ON THE MIXING TIME AND SPECTRAL GAP FOR BIRTH AND DEATH CHAINS 13

3.3. Relaxation of the median condition. In some cases, it is not easy to
determine the value of 7,, in Theorem 1.3. Let ¢,, be the constants in Theorem 3.1.
For ¢ € (0,1), let in(c) € {0,...,n} be the state such that 7, ([0,i,(c) — 1]) < ¢
Tn([in(c) +1,n]) <1 —c and let t,(c) be the following constant

in(c) n
0 k k,
=0 pn k ki ()1 ™ Adn.k
Assume that ¢ > 1/2. In this case, if 4,, is the smallest median, then 4,, <1i,(c) and
in(c)— in(c)
3 W([O,k]) S ™ ([0, k —1])
(k’) Tn (k?)qu

DPn,k

k=i, k=i,+1
Note that, for i, < k <i,(c),
1 om0,k — 1)) 1 1
— < < < < .
3 Smll0inl) s =TT S ) S 1o

This implies t,,/2 < t,(c) < t,/(1 — ¢). Similarly, for ¢ < 1/2, one can show that
tn/2 < tn(c) < t,/c. Combining both cases gives

(3.9) tn/2 < tn(c) < t,/min{ec, 1 — c}.
As a consequence of the above discussion, we obtain the following theorem.
Theorem 3.6. Referring to Theorem 1.3. For n > 1, let j, € {0,1,...,n} and set

Jn—1 n

) = max Z Z

=0 k= + Qn k

pnk:

Suppose that
0< 1inl>inf T ([0, Jn]) < limsup 7, ([0, jn]) < 1.

n—oo

Then, Theorem 1.3 remains true if t,, is replaced by t!,.

Proof. The proof comes immediately from (3.9) with ¢ = m, ([0, jn])- O

We use this observation to bound the cutoff time in the following theorem.

Theorem 3.7. Referring to Theorem 1.3. Suppose that F. has a total variation
cutoff. Then, for any € € (0,1),

T(C) T(C)
2log 2 n,TV(G) < limsup tv( ) <9

n n—oo n

< liminf

n—oo
Proof of Theorem 3.7. The upper bound is given by Remark 3.1 and the fact,
max{s,t} > (s + t)/2, whereas the lower bound is obtained by applying a = 2/5
and b = alog(2/(1 + 2¢)) in (3.8) with € — 0. O
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3.4. Bounding the spectral gap. This subsection is devoted to poviding bounds
on the specral gap for birth and death chains. As the graph associated with a birth
and death chain is a path, weighted Hardy’s inequality can be used to bound the
spectral gap. We refer to the Appendix for a detailed discussion of the following
results. See Theorems A.1-A.3.

Theorem 3.8. Consider an irreducible birth and death chain on {0,...,n} with
birth, death and holding rates p;,q;,r; and stationary distribution w. Let A be the
spectral gap and set, for 0 <i<mn,

C(i) = max max.i“[o’m e S 701D

j:j<zk:j 7 (k)px ’j;j>ik=i+1 w(k)qr
Then, for 0 < m < n,
! <A< 1
4C(m) == = min{n([0,m]), 7([m,n])}C(m)

In particular, if M is a median of w, that is, w([0, M]) > 1/2 and w([M,n]) > 1/2,
then

1 <A< 2
Ay =" = oy

Theorem 3.9. Consider an irreducible birth and death chain on {0,...,n} with
birth, death and holding rates p;,q;,r; and stationary distribution w. Let X be the
spectral gap and set N = [n/2]. Suppose that p; = qn—; for 0 <i <n. Then,

Learel
where
L= -
C= onBx | ([0, ]) j; )y if n is even,
and
N2 .
C = ogrir%%iq ([0, 4]) ; )rs + (N — Do if n is odd.

Remark 3.5. In [18], the author also obtained bounds similar to Theorem 3.9 for
the case m(i) > w(i + 1) with 0 < i < n/2 using the path technique. For more
information on path techniques, see [11, 12, 14] and the references therein.

4. EXAMPLES

In this section, we will apply the theory developed in the previous section to
examples of special interest. First, we give a criterion on the cutoff using the birth
and death rates.

Theorem 4.1 (Cutoffs from birth and death rates). Let F = {(Qy,, Ky, m)In =
1,2,...} be a family of irreducible birth and death chains on Q, = {0,1,...,n} with
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birth rate, p,;, death rate q,; and holding rate ry, ;. Let A, be the spectral gap of
K,. Forn>1, let j, € {0,...,n} and set

Jn—1 n
t, = max E g
k=0 pn k [r— Qn k

and

{,, = max max]”ZM max i mn([4, n])

Ji<in £ (k)pn,k 3:3>n Mt 70 (K)Gn i

Suppose that
0 < liminf 7, ([0, j,]) < limsup 7, ([0, j,]) < 1.
n—roo

n—oo

Then, for e € (0,1/2) and § € (0,1),
Ao = U/, T (€) = tn = TS0 (e).

Furthermore, the following are equivalent.

(1) Fe. has a cutoff in total variation.

(2) Ford € (0,1), Fs has a cutoff in total variation.
(3) Fe has precutoff in total variation.

(4) For § € (0,1), Fs has a precutoff in total variation.
(5) tn/ln — 0.

The above theorem is obvious from Theorems 2.2, 3.6 and 3.8. We use two
classical examples, simple random walks and Ehrenfest chains, to illustrate how to
apply Theorem 4.1 to determine the total variation cutoff and mixing times.

Ezample 4.1 (Simple random walks on finite paths). For n > 1, the simple random
walk on {0, ...,n} is a birth and death chain with p,, ; = gn 41 =1/2for 0 <i<n
and ry, 0 = ryn, = 1/2. It is clear that K, is irreducible and aperiodic with uniform
stationary distribution. Let ¢,, ¢, be the constants in Theorem 4.1. It is an easy
exercise to show that £, =< n? < t,,. By Theorem 4.1, neither F, nor Fs has total
variation precutoff, but T,S?)Tv(e) =n? = Tff%\,(e) for e € (0,1/2) and 6 € (0,1). In
fact, one may use a hitting time statement to prove that the mixing time has order
at least n2, when € € [1/2,1). This implies that the above approximation of mixing
time holds for € € (0, 1).

Ezample 4.2 (Ehrenfest chains). Consider the Ehrenfest chain on {0, ...,n}, which
is a birth and death chain with rates p,; =1 —i/n and g¢,; = i/n. It is obvious
that K, is irreducible and periodic with stationary distribution m, (i) = 27" (7).
An application of the representation theory shows that, for 0 < i < n, 2i/n is an
eigenvalue of I — K,,. Let A, s,, be the constants in Theorem 2.2. Clearly, A,, = 2/n
and s, < nlogn and, by Theorem 2.2, both F. and Fs have a total variation cutoff.
Note that, as a simple corollary, one obtains the non-trivial estimates

) () AL L
0 i) _ -
4 (’?) = nlogn, 0;137)5/2 Eﬁ (j) X .E,. <z) =n.
=0 ¢ j=0 j=i

For a detailed computation on the total variation and the L2-distance, see e.g. [9].

In the next subsections, we consider birth and death chains of special types.
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4.1. Chains with valley stationary distributions. In this subsection, we con-
sider birth and death chains with valley stationary distribution. For n > 1, let
2, ={0,1,...,n} and K, be an irreducible birth and death chain on ,, with birth,
death and holding rates, py i, ¢n,i, 'n,i- Suppose that there is j, € Q,, such that

(41) pn,i S qn,i+17 VZ < jn7 pn,i Z Qn,i—i-la VZ 2 ]n

Obviously, the stationary distribution m,, of K, satisfies 7, (i) > m,(i+1) for i < j,
and m, (1) < 7, (i + 1) for i > j,.
Let t,, ¢, be the constants in Theorem 4.1 and write

¢, = max { max Z ([0, 5]) max SM

<jn k > k
79<n S T (k)" 5:5>in & — Tn(K)Pnk
Set
Mp = max ¢n;, mr = min ¢,;, Mrp= max pn; mgr= min p,;.
0<i<gn 0<i<jn Jn<i<n Jn<i<n
Clearly,
]71

¢, < max O .]n Z - 7Tn .]na Z
n

=0 =

Let j!, be such that m,([0,j.]) > ([0 ]n])/Z and wn([jn,jn]) > 7rn([ in])/2. Note
that if j,, > 1, then j, > max{2j/,j/, + 1}. By (4.1), this implies

(0,0 - ma([00dal) 1 ma([0,a]) &5 1
k-§+1 k) = 4 k_zj O ;wn(k)'

One can derive a similar inequality from the other end point and this yields

(0> 2 min ”"([O’jn])i L ma(lnn]) g~ 1

8 My, — ™ (7) Mpg = )
For t,,, note that
. jr—1 jn—1 n—1
Fﬂ([oajn_ 1])J 1 <J Wn([oak]) ([O j 1])J 1
2 - & e ’ 2 )
and
T ([jn + 1,71]) & 1 - T ([k, n]) - 1
_ - < — =< 1
2 2 w2 T Sl 3 o
k=jn+1 k=jn+1 k=jn+1

This implies

and

L ml05) 95 1 mlln)) g1
th > —
8 ) T ; (i) Mg ; 7 (i)
The following theorem is an immediate consequence of the above discussion and
Theorem 4.1.
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Theorem 4.2. Let F = {(Qp, Ky, mn)|n = 1,2,...} be a family of birth and death
chains satisfying (4.1). Assume that m,([0, jn]) < Tn([jn, n]) and

max g < mm i max pp; < min p,,
0<i<n T 0<igge Y jasient PP jacicnt M

Then, there is no cutoff for .7-'5,.7:5 and, for e € (0,1/2) and § € (0,1),

n

Jn
5 1 1 1 1 1
Try(€) = Tyity(e) < — = max -, .
An 4n,jn 25 (1) Pnjy, i (1)
- 7]’?’1,
For an illustration of the above theorem, we consider the following Markov chains.
For n > 1, let ,, = {0,1,...,n}, m, be a non-uniform probability distribution on
Q,, satisfying (4.1) and M, be a transition matrix given by

1/2 for j =i —1,i < jp,

1/2 for j =i+ 1,4 > j,,
(4.2) M, (i, ) wn(z +1)/(2m,(2)) fOI"j: = Z + 1,2: < ]:n,

(i — 1)/ (2m, (7)) for j=i—1,i> jn,

1/2 = m,(i 4+ 1)/(2m, (i) for j =i < jn,

1/2 — (i — 1)/ (210 (i) for j =i > jn.

Note that M, is the Metropolis chain for m,, associated to the simple random walk
on §,. For more information on the Metropolis chain, see [8] and the references
therein. The next theorem is a corollary of Theorem 4.2.
Theorem 4.3. Let F = {(Qn, My, m)|n = 1,2,..} be the family of Metropolis
chains satisfying (4.1)-(4.2). Suppose 7, ([0, jn]) < 7n([jn,n]). Then, neither F.
nor Fs has a total variation precutoff but, for e € (0,1/2) and § € (0,1),
c . 1 5
Tr(z,%v(e) = Z 5 = 'r(L,%V(e)'

i=0 (1)

Ezample 4.3. Let a > 0 and 7y, o, 7n,q be probability measures on {0,+1, ..., £n}
given by

(4.3) Tn,a(i) = Cna(lil + 1) Fnal(i) = éna(n — il +1)°,

where ¢, o, € o are normalizing constants. Let F, F be families of the Metropolis
chains for 7, q, 7,4 associated to the simple random walks on {0, £1, ..., £n}, that
is,

Mn,a(iaj) = Mn,a(_i7 _j)a Mn,a(ivj) = Mn,a(_i7 _])

and
1 ifj=i+1,i€[0,n—1]
. i if j=i—1,i€[l,n]
Mn,a(i7j) = Hil‘z— oo ..
(12427#)%1) 7'a lf] =11 ¢ {0,71}
1 = 55y ifi=j=n
and

N|—

if j=i—1,i¢l[l,n]
(n—i)® $i e . B
. St j=i+1,i€[0,n—1]
Mia(i:§) = 4 (bt iy o .
e - fi=i#0
1*7@11)& ifi=j=0
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Let ;\n,m S\n,a and Tma, T,W be the spectral gaps and total variation mixing times
of Mn,a, M, .. It has been proved in [7, 18] that there is C' > 1 such that, for all
a>0andn>1,

L e (<1+i)a+”> (1+v(n,a)) < AC

1+a n.a

and

2
1 S(n—f—a) SAC,

Chna ~ (1402 7 K0
where v(n,1) = logn and v(n,a) = (nt=% —1)/(1 — a) for a # 1. By Theorem 4.2,
F. and Fs have no cutoff in total variation but, for fixed a > 0, € € (0,1/2) and
0 €(0,1),

n? if a €(0,1)
Véfg(e) = Tffa(@ =< n?logn ifa=1
ntte ifa € (1,00)

The above result in continuous time case is also obtained in [18].
To see the cutoff for F, let

— Ty o[-, = + K]) -
tn, = k™
Cop TR DD Zﬂ
k=0 ’
By Theorems 3.1-3.5, we have
2t

=5 < T (1/10) < 3600t,,.
Note that, for k > 1 and a > 0,

ke (k + a) z’“: 2k (k + a)
2(1+a) = 1+a

This implies
n(n+a) 14400n(n + a)
— L < T(1/10) < ———TL.
6(1+a) — na(1/10) < 1+a
We collect the above results in the following theorem.
Theorem 4.4. Forn > 1, let a,, > 0 and 7y, q,, , Tn,a, be probability measures given
by (4.3). Let F, F be the families of Metropolis chains for Tnans Tn,a, 6S above with
total variation mizing time Ty oy, Tpry. Then, for e € (0,1/2) and § € (0,1),
~(e - (6 n(n + a,)
Tﬁ,%v(e) = r(L,%V(G) = 1ta,

and

1+a,
where v(n, 1) = logn and v(n,a) = (n'=* —1)/(1 — a) for a # 1.
Moreover, neither F. nor Fs has a total variation cutoff. Also, ]-} and ]:5 have
a total variation cutoff if and only if a, — oo.

T (0 = T (0 = (14 ) ") (1 v,
(
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4.2. Chains with monotonic stationary distributions. In this subsection, we
consider birth and death chains with monotonic stationary distributions. For n > 1,
let 2, = {0,1,...,n} and K, be a birth and death chain on ,, with birth, death
and holding rates, py i, Gn,i; Tn,i- Suppose that

(4.4) Prji 2 qnit1, VO <i<n.

If K, is irreducible, then the stationary distribution 7, satisfying 7, (i) < m,(i+1)
for 0 < i < n. Let j, € Q, and t,, ¢, be the constants in Theorem 4.1. Assume
that 7, ([0, jn]) < 7 ([Jn, n]) and

(4.5) max pp; < M0 pp;, MaX pp; < mMin pp;.
0<i<jn 0<i<jn In<i<n Jn<i<n

Using a discussion similar to that in front of Theorem 4.2, one can show that

122 m(0k]) 1 & 1
B ([0, k)

t, < max
" Pn 7"'n(k) ’pn,jn k=j ﬂ'n(k)

k=0

and

1 — j 1
{, < max { — max , E
Pn,1 0=5<in =y (k) " Prja ™

This leads to the following theorem.

Theorem 4.5. Let F = {(Q, Ky, mn)n = 1,2,...} be a family of irreducible
birth and death chains with Q, = {0,1,...,n} and birth, death and holding rates
DrisQn,isTnyi- Let Ap, Ty, v be the spectral gap and total variation mizing time of
K, and set

Jn—1 (10, k Jn—1 (0, ] n 1
m= 3 T s e ST w= Y
n( ) S9<J =) n( ) =jn n( )

k=0

Assume that 1,([0, jn]) <X Tn([jn,n]) and (4.5) holds. Then, for e € (0,1/2) and
5 €(0,1),

B v w : 5) Uy, Wn
A 1xmax{” n} T (€) < T (e)xmax{ }
" Put Png, S Y Y Pr1’ Prjn

Moreover, F. and Fs have a total variation cutoff if and only if

Un/Vp = 00,  (UnPn,j,)/(WnDn,1) —= 00.

For n > 1, let f, be a non-decreasing function on [0,n] and set F,(x) =
Jy fa(t)dt and Gy (z,m) = [ 1/f,(t)dt. Note that if there is C' > 1 such that

C ()7 (0) < 1, (1) < Chnl(i)ma(0), YO<i<m, n>1,

then
1 Fn(k) 7771([0716]) 2 Fn(k)
22 (fn(k) “) N (fn(k) “)
and
1 . 1 | o 1
2C (G”“’J”’ * fn(j)> <ml0) 2 g =€ (G"“"”") * f@)) |

k=j
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This implies

1 . .
o) )+ £

704 3 i <0 (Gutiin) + 5

and
. 1 . 1 . .
([0, 5]) z_:] ) T (Gn(ijn) + fn(j)> (Fn(g) + fa(d)) -

Let uy,, v,,w, be the constants in Theorem 4.5 and assume that

min p,; < max pp; =< l.
0<i<n” 0<i<n”

Consider the following cases.

Case 1: f,(r) = exp{a,2’"} with inf, a,, > 0 and inf, 3, > 1. In this case,
F.(z) = O(fn(z)) and G, (x,m) = O(1/f,(x)) for 1 < x < m. By setting j, = n,
we obtain

Tn([0,4n]) X T ([ns 1)), wn Xn, vy Xwp < 1.
By Theorem 4.5, A, < 1 and, for € € (0,1/2) and § € (0,1),

1)
T 9 (€) = Th () < n.

There is a total variation cutoff for F,. or Fs.
Case 2: f,(r) = exp{a,z’} with 0 < inf, o, < sup,a, < oo and 0 <
inf,, 8, <sup,, 3, < 1. Note that, for « € R and 8 € (0,1),

% (.’[1766(1:”13) _ (Oéﬂ+ (1 _ 6)1.7[3) 604:1:3.

This implies that, uniformly for n/2 <z and 1 +x <m <mn,
xl_ﬁn ml_ﬁn>

Fo(z) < :I:l_’B"fn(x), Gn(z,m) =< (

Letting j, = |n — n'=P | yields

2—fBn

7771([07.]71]) = ﬂ-n([jnan])a Up XN vy X n2_2ﬁn =

Wy,
By Theorem 4.5, F. and Fs have a total variation cutoff and
Ao = 020720 T (@) = TOh(6) = n® P, Ve e (0,1/2), 6 € (0,1).

Case 3: f,(z) = exp{ay[log(z + 1)}’ } with 0 < inf, a,, < sup,, a, < o0 and
1 < inf,, B, < sup,, Bn < 0o. Note that, for « € R and 8 > 1,

d [ (z+ 1)604[10g($+1)]/j B 1—(B=1)/log(x+1)\ apog+1))?
dx ( [log(z + 1)]8-1 B <O¢ﬂ+ [log(z + 1)]~1 ) e

This implies that, uniformly for n/2 <z <m < n,

(x+1) i B
Fn ~ QAn og(aerl)]
)= loglw + DP1°

and

G (l‘ m) - (m + 1)e—an[log(x+1)]5n ~ (m + 1>e—an[10g(m+1)]6n
R [log(z + 1)~ [log(m + 1)]P=—1
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Set j, = n[l — (logn)*~A»]. The above computation leads to
Wn([oa.jn]) = Wn([jnv n]), Up = nQ(IOg n)liﬁnv Up X n2(10g n)272ﬁn = Wp.

By Theorem 4.5, both F,. and Fs have a total variation cutoff and, for ¢ € (0,1/2)
and d € (0,1),

_ _ c _ )
Ao =02 (logn) 202 T (e) = n2(logn)'=Pn < T} (e).

Case 4: f,(z) = exp{ay[log(z + 1)]%*} with sup, a,, < oo and sup,, B, < 1.
Observe that, for a > 0 and g <1,

d
di ((x_’_ 1)ea[log(w+l)]ﬁ> _ (1 —|—aﬁ[log(x—|— 1)]ﬁ71) ea[log(erl)]E'
xXr

This implies that, uniformly for n/4 <i <m < mn,

N = (i an[log(i+1))Pn . - t+1 - m+1
Fo(i) < (i +1)e , Gp(i,m) = <6an[log(i+1)]5n o Tog(mr DI

Letting j, = |n/2] implies
70 ([0, 4n]) X Tn([Gnsn])y  Un X v X wy, < 2.
By Theorem 4.5, we have
T (€) = T 0 (6) = Ayt = n?, Ve e (0,1/2), 6 € (0,1),
and there is no total variation cutoff for F. or Fg.

4.3. Chains with symmetric stationary distributions. This subsection is ded-
icated to the study of birth and death chains with symmetric stationary distribu-
tions. Let K be an irreducible birth and death chain on {0, ...,n} with stationary
distribution 7. Note that 7 is symmetric at n/2, that is, m(n — i) = 7 (i) for
0 <i < n/2,if and only if

PiPn—i—1 = Qit1qn—i,» V0 <i<n/2.

By the symmetry of 7, we will fix j,, = |n/2] when applying Theorem 4.1.

Consider a family of irreducible birth and death chains, F = {(Q,,, K, m,)|n =
1,2,...} with Q, = {0,1,...,n}. Let p, i, qni, n,: be respectively the birth, death
and holding rates of K,, and t,, ¥, be constants in Theorem 4.1. Assume that m,
is symmetric at n/2. Continuously using the fact (¢ +b)/2 < max{a,b} < a+b for
a > 0,b >0, we obtain

_ ([0, 4)
Py

min{pn,k ) Qn,nfk}

k:k<n/2
d (10,4))
T ([0, J
£, < max - .
jii<n/2 Z (k) min{pp &, Gnon—k

k:j<k<n/2 &
Theorem 4.1 can be rewritten as follows.
Theorem 4.6. Let F = {(Q, K, m,)|n =1,2,...} be a family of irreducible birth

and death chains with 0, = {0,1,...,n}. Let A\, and D, qni,Tn,i be the spectral
gap and the birth, death and holding rates of K,,. Assume that

Pn,iPnn—i—1 = qn i+14nn—i, V0 <i < n/2
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Then, for e € (0,1/2) and § € (0,1),

Ao =1/l T (€) = TN (€) = tn,
where -
kik<n/2 T (k) min{pn,k, Gnn—k}
and

lo= max {m(0,5) 3 1

j:i<n/2 kjohen/2 T (k) min{py, &, gn,n—k }

Moreover, the following are equivalent.

(1) Fe has a cutoff in total variation.

(2) Ford € (0,1), F5 has a cutoff in total variation.

(3) Fe has a precutoff in total variation.

(4) For d € (0,1), Fs has a precutoff in total variation.

(5) tn/ly — o00.

The next theorem considers a perturbation of birth and death chains which has

the same stationary distribution as the original chains. The new chains keep the
order of mixing time and spectral gap unchanged.

Theorem 4.7. Consider the family in Theorem 4.6 and assume that
Pn,iPnn—i—1 = 4n,i+19n,n—i, V0 <i < 77//2

Forn > 1, let A, C {0,...,n—1}, ¢y € [0,1] fori € A, and K,, be a birth and
death chain on Q,, with birth and death rates, pp. i, qn,i, satisfying

ﬁn,i = Cn,iPn,i + (]- - Cn,i) min{pn,i7 qn,nfi} fOT’ 1€ Ana

gn,zﬁrl = Qn,i+15n,i/pn,i fOT‘ 1€ An7

Dnyi = Pnjs  Gnitl = Gn,itl fori¢ A,
Let ,\,L,Xn and TmTv(e),fn,TV(e) be the spectral gaps and total variation mizing
times of K, K,. Then, given € € (0,1/2) and § € (0,1),

3 = (5 6

A= Ay Tiirg(€) = T (6) = Tl (€) = T (o),
where the approximation is uniform on the choice of Ay, Cn ;.
Proof. The approximation of the spectral gap and the total variation mixing time

is immediate from Theorem 4.6, whereas the uniformity of the approximation is
given by Theorems 3.1, 3.5 and 3.8. O

Ezample 4.4. For n > 1, let K, be a birth and death chain on {0,1,...,2n} given
by

1/2 for even i

1/(2n) for odd i =

By Theorem 4.7, the mixing time and spectral gap of K,, are comparable with those
of K, where K, (i,i+ 1) = K,(i +1,i) = 1/(2n) for 0 < i < 2n. Let F be the
family consisting of K,. By Theorem 4.6, neither F. nor F;s has a total variation
precutoff and T};%V(E) = T,(f%v(e) = At =< n3 forall e € (0,1/2) and § € (0,1),
which is nontrivial.

Ko(ii+1) = Kn(i+1,i) = {
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Next, we consider simple random walks on finite paths with bottlenecks. For n >
1,let k, <nand xy,,1,..., Tnk, be positive integers satisfying 1 <z, ; < 2piv1 <1
fori =1,...,k, — 1. Let K, be the birth and death chain on {0,1,...,n} of which
birth, death and holding rates are given by

e = s {1/2 for i & {Zn1,.r T, }

(4.6) ‘ . :
€n,j fori=umxy,;, 1 <5<k,

where €, ; € (0,1/2] for 1 < j < k,. Clearly, K, is irreducible and the stationary
distribution, say 7y, is uniform on {0, 1, ...,n}. The following theorem is immediate
from Theorems 4.6.

Theorem 4.8. Let F be a family of birth and death chains given by (4.6) and A\,
be the spectral gap of K,,. Forn > 1, set

k, .
““min{x, ;,n+1—x,,}
o=ty : :

€n,i

i=1
and
2+1—34
0y =n?+ max 3 n2+1-j
JUS”/2 iZ‘wn,'i—n/Q‘Sj en,z

Then, for all e € (0,1/2) and 6 € (0,1),
T (€) = TN (€) =ty An = 1/0y.
Furthermore, the following are equivalent.

(1) Fe. has a cutoff in total variation.

(2) Ford € (0,1), Fs has a cutoff in total variation.
(3) Fe has precutoff in total variation.

(4) For § € (0,1), Fs has a precutoff in total variation.
(5) tn/ln — 0.

Remark 4.1. Let t,, ¢, be the constants in Theorem 4.8. Then,

Ty i n+1—x,,;

to=n? 4y Tl N BT T
€n.i €n.i
j€Ln ™) jER, .

and

T i n+1—x,;

Enan—l—m%x E : —i—m]a%x E _
i€ €n.i i€ €n.i
" jeLyj>i " jER,:<i e

where L, = {i: z,; <n/2} and R, = {i : z,,; > n/2}.

Theorem 1.4 considers a special case of Theorem 4.8 with €, ; = €, for 1 <i < k,,.
It is clear from Theorem 1.4 that if k, is bounded, then no cutoff exists for F. or
Fs. The following example shows a case of cutoffs for the family in Theorem 1.4.

Ezample 4.5. Let F be the family in Theorem 1.4, with k,, = [n'/3] — 1 and

nl/3 —

5/6
Tni = {"J L V1< < k.
Clearly, for n large enough, x, ; # =, ; when i # j. Let an, b, be the constant in

Theorem 1.4. It is not hard to show that

an = n®/6 logn, b, < n°/6,
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By Theorem 1.4, F. and Fj, with § € (0,1), have a total variation cutoff if and
only if €, = o(n~7/6logn). Furtheromre, if ¢, = o(n~"/®logn), then

Ty (e) = =T) (6), Ve, e (0,1).

The following two theorems treat special cases of Theorem 4.8.

Theorem 4.9. Let F be a family of birth and death chains satisfying (4.6). Let N
be a positive constant. Suppose, for n > 1, there are constants Jl(n), e J](\;l) and a
partition of {1,...,kn}, say I{"), ...,I](\?), such that, for 1 <k < N,

max {xp; A(n+1—2,,)} =< min){xn,i ANn+1—xz,,)} = Jlgn),

ier(™ iel("

where a A'b = min{a,b}. Then, neither F. nor F5 has a total variation cutoff.
Moreover,

T (€) = T (€) = Ayt < t,, Vee (0,1/2), 6 € (0,1)

where

1
tn =n? 4+ max Jk”) g —
1<k<N €n.l

ter{™

The next theorem gives an example that no total variation cutoff exists for F., Fs
even when the constant N in Theorem 4.9 tends to infinity.

Theorem 4.10. Let F be a family of birth and death chains satisfying (4.6). Sup-
pose that min; €, ; < max; €, ; and Tp,; = |in/k,]| with k, < n/2, then neither F,
nor Fs has a total variation cutoff, but

T (€) = T 0 (€) = A7' = max{n?, nky /e, 1}, Vee (0,1/2),6 € (0,1).

Remark 4.2. Note that the assumption regarding the birth and death rates in this
section can be relaxed using the comparison technique in [11, 12].

APPENDIX A. SPECTRAL GAPS OF FINITE PATHS

This section is devoted to finding the correct order of spectral gaps of finite paths.
Let G = (V, E) be the undirected finite graph with vertex set V = {0, 1,2,...n} and
edge set £ = {{i,i+1}:¢=0,1,....,n —1}. Given two positive measures 7, on
V, E with (V) = 1, the Dirichlet form and variance associated with v and = are
defined by

n—1
E(f,9) =Y _[f()) = Fi+ D]lg(i) — g(i + D (i,i +1)
i=1
and
Var (f) := w(f?) — 7 (f)?,
where f, g are functions on V. The spectral gap of G with respect to 7, v is defined
as

)\fv,/ = min {m ’f is non—constant} .
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To bound the spectral gap, we need the following setting. Let C1 (i) and C_(7)
be constants defined by

L L a(lj,n) L (0,4
(A-1) C (i) = max ;H vk —1, k)’ C‘(Z)_?ﬁ’i okt 1)’

where max () := 0.

Theorem A.1. Let G = (V, E) be a path on {0,1,...,n} and 7, v be positive mea-
sures on V, E with w(V') = 1. Referring to (A.1), set C(m) = max{C,(m),C_(m)}.
Then, for 0 < m < n,
1 <6 < 1 .
4CGm) =% = ([0, m]), () O (m)
In particular, if M is a median of w, that is, ([0, M]) > 1/2 and 7n([M,n]) > 1/2,
then

1 o 2

1000 =M S Gy

Remark A.1. Referring to the setting in Theorem A.1, the authors in [7] obtained
)\f,y > 1/C’, where

"= min max 5 0.k ; (k)
(A-2) ¢ = 0<j<n 1;) vk k+1)’ k;rl vk —1,k)

Let Cy(m),C_(m) be constants in (A.1) and C(m) be the constant in Theorem
A.1. Then, for 0 < j <mn,

= " n([k,n])
(i ; > N
S ,k+1 >C-(j) Z Tk oLe 2O
k=0 k=j+1
This yields C' > min,, C(m). In particular, if M is a median of 7, then
M-1 n
ro L ([0, k) m([k, n]) C(M)
- B R VAN > .
=3 (;zo UES) +kz Vi—1.k) | = 2

=M+1

\%

The lower bound of Theorem A.1 is at least of the same order than /C’ and some-
times significantly better.

The proof of Theorem A.1 is based on the following proposition, which is related
to weighted Hardy’s inequality on {1,...,n}.

Proposition A.2. Fixn > 1. Let u, 7 be positive measures on {1,...,n} and A be
the smallest constant such that
2

(A.3) Z Zg n(i) < AY g (ui), Vg#0.
i=1 j=1 i=1
Then, B < A < 4B, where
B = max L
1<i<n w(y)

J:1



26 G.-Y. CHEN AND L. SALOFF-COSTE

Remark A.2. Miclo [16] discussed the infinity case {1,2,...} using the method in
[17], which was introduced by Muckenhoupt to study the continuous case [0, 00).
For more information on the weighted Hardy inequality, see [16] and the references
therein.

Proof of Theorem A.1. We first consider the lower bound of XY ,. Let f be any
function defined on V and set f1 = [f—f(m)|1(,.. ny and fo = [f=f(m)]1(0,. m}-
Then,

SN o &N &)+ E- )

Varx(f) — x(f = f(m))? m(f3) +7(f2)

Set g(j) = f(m+j)—f(m+j—1)for 1 < j <n—mand h(i) = f(m—i)—f(m—i+1)
for 1 < i < m. Note that

(A.4)

5V(f+)f+) = i 92<j)y(m+j - 1’m+j)7 ﬂ-(fi) = i: <Z

j=1 j=1 \k=1
and
Efo o) =D R (wm—im—it1), 7(f2)=>_ <Z h(k)) m(m — 7).
i=1 j=1 \k=1

By Proposition A.2; the above computation implies that

8l/(f+7f+) > 1 8l/(f—’f_) > 1
m(f3) T ACL(m)  w(f2) T 4C_(m)
Putting this back to (A.4) gives the desired lower bound.

For the upper bound, we first consider the case C = C(m). By Proposition
A2, Cy(m) < A, where A is the smallest constant A such that, for any function ¢
defined on {1,2,....,n —m + 1},

2

3 (ZW)) r(m+) <A GGl +i—1,m+ 7).
j=1 \k=1 j=1

Let ¢ be a minimizer for A, which must exist, and define ¢ by setting

¢(i):{§(l)+---+¢(i—m) iorm<'i§n.
or0<i1<m

Clearly, 1/Cy(m) > 1/A = &,(1,v)/m(¥?). Without loss of generality, we may
assume further that ¢ is nonnegative. Note that n({¢p = 0}) > «([0,m]). By
the Cauchy-Schwartz inequality, this implies 7(1)? < w({1) > 0})m(¥?) < 7([m +
1,n])m(¥?) and, then, Var, () > 7([0, m])m(¢)?). This leads to 1/C = 1/Cy(m) >
7([0,m])AS . Similarly, if C = C_(m), one can prove that 1/C > w([m,n])AS .
This yields the upper bound of the spectral gap. ([

Proof of Proposition A.2. The proofs of Theorem A.1 and Proposition A.2 are very
similar to those in [16]. Note that A is attained at functions of the same sign and
we assume that g is non-negative. As A is attainable, the minimizer g for A satisfies
the following Euler-Lagrange equations.

(A.5) Ag(ip(i) =D (g(1) + -+ g(i)n(j), Y1<i<n,

j=i
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This is equivalent to the following system of equations.

Alg(D)u(@) — i+ Dp(i+1)] = (9(1) + -+ +9(@))7 (i), VI<i<n,

with the convention that u(n + 1) := 0. Inductively, one can show that g > 0.
Summing up (A.5) over {1, ..., ¢} yields

4 4
A g(i) = 30 o Do(a(1) + -+ 9(i)) ()
L n
(g(1) +---+90()7()
= 2 ; (i)
4 4 1
> (Zgu)) (Z <>> (16, )

This leads to A > B.
To see the upper bound, we use Miclo’s method in [16]. Set N(j) = ] _1 1/p(3).
By the Cauchy inequality, the left side of (A.3) is bounded above by

%

- 1/2 L
ZT{' Zg N/()Zm

i=1 =1

Note that, for s > 0,¢ > 0, t1/2 — /2 > (t — 5)/(2t}/?). This implies 2(N'/2() —
NY2(1—1)) > 1/(u(1))N'/?(1)) with the convention that N(0) := 0. Consequently,

we have
AB 1/2
<2J\71/2 )< | ——
; ORET 0= ()
and, thus,
) 2 .
[ (i) - N .
S gty | ) <V4BZ Dl/QZQQOM(J)N”Q(J)
i=1 \j=1 j=1
<VIBY ()N () S D
< ;g (7)) (J); RINE
Again, the inequality for s,t implies
(i) . e V4B
— <2 < .
2 2y < 20D < g
This gives the desired upper bound. (I

Next, we consider a special case. Let m, v are measures on V = {0,1,....,n}, E =
{{i,i+1}|0 <4 < n} with 7(V) = 1. Suppose

(A.6) m(i)=7n(n—1), v(,i+1)=v(n—i—1,n—1), V0<i<n/2
By the symmetry of 7 and v, if ¢ is a minimizer for )\fu with 7(¢) = 0, then ¢
is either symmetric or anti-symmetric at n/2. The former is set aside because v is
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known to be monotonic and this leads to the case ¢¥(n—i) = —(i) for 0 < i < n/2.
If n is even with n = 2k, then ¥(k) = 0 and this implies

x;_.f{ZﬁﬂﬂU—f@—DVWVJJ)
™Y T n k—1 2/ .

Zi:o f2()m(2)
Equivalently, if one sets g(i) = f(k—i)— f(k—i+1) and p(i) = v(k—i,k—i+1)
for 1 <i <k, then 1/\¢  is the smallest constant A such that

f(k)=07f740}-

k 7 2 k
(A7) DD gG) | wlk—i) <AY g*(uli), Vg #0.
i=1 \j=1 i=1

Similarly, if n is odd with n = 2k — 1, one has

@ :mm{zﬁhﬂn—f@—w%ﬁ—Lo+zﬂw—UMk—LmV#O}
" DS HOLIO
and this leads to (A.7) with g(1) = f(k—1), p(1) =2v(k—1,k) and, for 2 < i <k,
g(@)=f(k—1i)— f(k—i+1) and p(i) =v(k—i,k—i+1). A direct application of
Proposition A.2 implies the following theorem.

Theorem A.3. Let G = (V, E) be the graph with V- = {0,1,....n}, E = {{i,i +
1}i =0 <i < n} and let w,v be positive measures on V, E satisfying 7(V) =1 and
(A.6). Set N =[n/2]. Then, 1/(4C) < ¢, <1/C, where

N-1

1
C = OISnla<}§v W([O,ZD ; m an 8 even,
and
N-2 1 1
C:O?iagv ([0, 4]) ]2 ST D +21/(N71,N) if n is odd.

Remark A.3. The symmetry of 7, v in Theorems A.3 can be relaxed using the
comparison technique.
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COMPARISON OF CUTOFFS BETWEEN LAZY WALKS AND
MARKOVIAN SEMIGROUPS

GUAN-YU CHEN! AND LAURENT SALOFF-COSTE?2

ABSTRACT. We make a connection between the continuous time and lazy dis-
crete time Markov chains through the comparison of cutoffs and mixing time
in total variation distance. For illustration, we consider finite birth and death
chains and provide a criterion on cutoffs using eigenvalues of the transition
matrix.

1. INTRODUCTION

Let Q2 be a countable set and (Q, K, ) be an irreducible Markov chain on  with
transition matrix K and stationary distribution 7. Let

Hy = e tU-K) — Ze‘ttiKi/i!
=0

be the associated semigroup which describes the corresponding natural continuous
time process on Q. For § € (0,1), set

(1.1) Ks=0I+(1-0)K,

where [ is the identity matrix indexed by ). Clearly, K; is similar to K but with an
additional holding probability depending of §. We call Ky the d-lazy walk or é-lazy
chain of K. It is well-known that if K is irreducible with stationary distribution m,
then

Jim K3 (z,y) = lim Hy(z,y) =7(y), VYz,yeQ 0e(0,1).

In this paper, we consider convergence in total variation. The total variation
between two probabilities u, v on § is defined by ||u— v||rv = sup{u(A)—v(A)|A C
Q}. For any irreducible K with stationary distribution 7, the (maximum) total
variation distance is defined by

(1.2) dpy(m) = SUB K™ (z,-) = 7Tv,
€

and the corresponding mixing time is given by
(13) TTV(G) = lnf{m 2 O|dTv(m) S 6}.

We write the total variation distance and mixing time as d(TC\),, TT(i,) for the continuous

semigroup and as d(T(;\),7 T ;f,) for the §-lazy walk.
A sharp transition phenomenon, known as cutoff, was introduced by Aldous and
Diaconis in early 1980s. See e.g. [8, 5] for an introduction and a general review of

2000 Mathematics Subject Classification. 60J10,60J27.

Key words and phrases. Markov chains, cutoff phenomenon.
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2Partially supported by NSF grant DMS-1004771.
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cutoffs. In total variation, a family of irreducible Markov chains (Q,,, K, )52, is
said to present a cutoff if

T,

(1.4) i Lnezv(€)
n—oo n,TV(n)

The family is said to present a (¢,,b,) cutoff if b, = o(¢,) and
Tpv(€) = ta| = O(by), YO <e<L.

The cutoff for the associated continuous semigroups is defined in a similar way.
This paper contains the following general result.

=1, V0<e<n<l

Theorem 1.1. Consider a family of irreducible and positive recurrent Markov
chains F = {(Qn, Kn,mp)|n = 1,2,...}. For § € (0,1), let Fs be the family of as-
sociated §-lazy walks and let F. be the family of associated continuous semigroups.
Suppose T,Sf)Tv(eo) — 00 for some €9 € (0,1). Then, the following are equivalent.
(1) Fs has a cutoff in total variation.

(2) Fe. has a cutoff in total variation.
Furthermore, if F. has a cutoff, then

i Ty (9
m ——

=00 7O (€)

Theorem 1.2. Let F be the family in Theorem 1.1. Assume that t, — co. Then,
the following are equivalent.

(1) F. has a (tn,by) cutoff.

(2) Ford € (0,1), Fs has a (t,/(1 —0),by,) cutoff.

We refer the readers to Theorems 3.1, 3.4, 3.5 and 3.7 for more detailed discus-
sions.

For an illustration, we consider finite birth and death chains. For n > 1, let
Q, ={0,1,...,n} and K,, be the transition kernel of a birth and death chain on Q,
with birth rate p,, ;, death rate g, ; and holding rate ry, ;, where p,, , = gn,0 = 0 and
Dni + Gn,i + Tn,; = 1. Suppose that K, is irreducible with stationary distribution
7n. For the family {(Qy,, Kp,7,)|n = 1,2,...}, Ding et al. [10] showed that, in
the discrete time case, if inf; ,, 7, > 0, then the cutoff in total variation exists if
and only if the product of the total variation mixing time and the spectral gap,
which is defined to be the smallest non-zero eigenvalue of I — K, tends to infinity.
There is also a similar version for the continuous time case. The next theorem
is an application of the above result and Theorem 1.1, which is summarized from
Theorem 4.10.

Theorem 1.3. Let F = {(Qp, Ky, m)|n =1,2,...} be a family of irreducible birth
and death chains as above. Forn > 1, let 0, A, 1, ..., A\ n be eigenvalues of I — K,
and set

=1-4, Vee(0,1).

n
_ : . _ —1
Ap = min A, ,;, s, = E >‘n7i'
i=1

1<i<n

Then, the following are equivalent.
(1) Fe has a total variation cutoff.

(2) Ford € (0,1), Fs has a total variation cutoff.
(3) spAn — oc.
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The remaining of this article is organized as follows. In Section 2, the concepts
of cutoffs and mixing times are introduced and fundamental results are reviewed.
In Section 3, a detailed comparison of the cutoff time and window size is made
between the continuous time and lazy discrete time cases, where the state space is
allowed to be infinite. In Section 4, we focus on finite birth and death chains and
provide a criterion on total variation cutoffs using the eigenvalues of the transition
matrices.

2. CUTOFFS IN TOTAL VARIATION

Throughout this paper, for any two sequences s,,t, of positive numbers, we
write s, = O(t,,) if there are C' > 0, N > 0 such that |s,| < C|t,| for n > N. If
$n, = O(ty,) and t, = O(sy,,), we write s, < t,. If t,,/s, — 1 as n — oo, we write
tn ~ Sp.

Consider the following definitions.
Definition 2.1. Referring to the notation in (1.2), a family F = {(Qpn, Ky, m)|n =
1,2,...} is said to present a total variation
(1) precutoff if there is a sequence ¢,, and B > A > 0 such that

lim dnv([Bt]) =0, liminf dyav(|Ata]) > 0.
(2) cutoff if there is a sequence t,, such that, for all € > 0,
Jim. dn,ov([(1+€)tn]) =0, Jim dn,ov([(1 = €)tn]) = 1.
(3) (tn,byn) cutoft if b, = o(t,,) and
lim F(c)=0, lim F(c)=1,

c— 00 c——oco

where

F(c) = limsup dprv([tn +cbn]), F(c) =liminfd, wv([t, + cby]).
n—o0 n—oo
In definition 2.1, ¢,, is called a cutoff time and b,, is called a window for t,,. The
cutoffs for continuous semigroups is the same except the deletion of [-] and [-].

Remark 2.1. In Definition 2.1, if ¢,, — oo (or equivalently T;, rv(€) — oo for some
e € (0,1)), then the cutoff is consistent with (1.4). This is also true for cutoffs in
continuous semigroups without the assumption ¢, — oc.

The following lemma characterizes the total variation convergence using specific
subsequences of indices and events, which is useful in proving and disproving cutoffs.

Lemma 2.1. Consider a family of irreducible and positive recurrent Markov chains
{(Qn, Kpymn)|n = 1,2,...}. Lett, be a sequence of nonnegative integers. Then, the
following are equivalent.
(1) dn,rv(tn) = 0.
(2) For any increasing sequence of positive integers ny, any Ap, C Qn, and
any Tp, € Qy, , there is a subsequence my such that

Hm | Kol (2, Amy ) — Ty (A )| = 0.

k—o0



4 G.-Y. CHEN AND L. SALOFF-COSTE

Proof of Lemma 2.1. (1)=(2) is obvious. For (2)=-(1), choose A, C €, and
T, € Q, such that d, vv(t,) < 2|KL (2, An) — mn(Ay)|. Let ny be an increasing
sequence of positive integers and choose a subsequence my, such that

i | Kol (s Ay ) = Tong (Amy )| = 0.

k—o0

This implies dp,,, v (tm,) — 0, as desired. O

Remark 2.2. Lemma 2.1 also holds in continuous time under the release of ¢,, to
positive real numbers. See [4, 5] for further discussions on cutoffs.

3. COMPARISONS OF CUTOFFS

In this section, we establish the relation of cutoffs between lazy walks and con-
tinuous semigroups. Let §2 be a countable set and K be a transition matrix indexed
by Q. In the notation of (1.1), the §-lazy walk evolves in accordance with

t

(Ks)' =) (f) §"H1—6)'K', V€ (0,1),t>0,

i=0
whereas the continuous time chain follows
0o ti )
_ —t(I-K) _ —tY i
H;,=c¢ —Z(@ i!)K'
i=0
Observe that I — K = (I — K;s)/(1 — ¢). This implies

6. a5yt < -0 3 A0y
=0 :

Concerning the cutoff times and windows, we discuss each of them in detail.
3.1. Cutoff times.

Theorem 3.1. Let F = {(Qp, Ky, m)|ln = 1,2,...} be a family of irreducible
Markov chains on countable state spaces with stationary distributions. For § €
(0,1), let F5s = {(Qn, Kpns,mn)n =1,2,...} and Fo = {(Qp, Hy i, )0 = 1,2, ...}
Suppose there is €g > 0 such that T,S?%V(eo) — 00 or TT(L?)FV(E()) — oo. Then, the

following are equivalent.

(1) Fs has a cutoff (resp. precutoff) in total variation.
(2) Fe has a cutoff (resp. precutoff) in total variation.

Furthermore, if F. has a cutoff, then

Té?’)I‘V(E)
4
nee Té,%v(e)

The above theorem is in fact a simple corollary of the following proposition.

=1-46, Vee (0,1).

Proposition 3.2. Let Fj5, F. be families in Theorem 3.1 and t,,r, be sequences
tending to infinity. Fix 6 € (0,1).

(1) 1f dhy ([ta]) = 0, then
lim d'y (1= 8)t, + cby) = 0,

n—00

for all ¢ > 0 and for any sequence by, satisfying \/t, = o(by,).
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(2) If dry(rs) = 0, then
im A% ([ /(1= 8) + cbu]) = 0,
for all ¢ > 0 and for any sequence by, satisfying \/rn, = o(by,).
(3) If dry(ra) = 1, then
lim dy ([ /(1 = 8)]) = 1.

n—

(4) Ifdh([ta]) — 1, then
lim d' (1= 6)t,) = 1.

n—oo

Proof. We prove (1), while (2) goes in a similar way and is omitted. Suppose
dif)TV([ t,|) — 0. Since v/t, = o(by), it is clear that

(3.2) ILm dff,)Tv([tn +cbp + V) =0, Ve>0,c €R.

Fix ¢ > 0 and let =, € Q,, A, C Q,. Given any increasing sequence n;, we may
choose, according to Lemma 3.8, a subsequence m; such that 7,,,(4,,,) = a € [0,1]
and, for all ¢/ € R,
mytCbm, +c'\/tm
hm K[ rebm l](xml,Aml

my,8

(z—c')? /26)f( )

F

and
712/2
lli>m Hy,y (1 5)(tml+cbmz)(z"”’Aml \/ﬂ/ flw)de

where f is nonnegative and bounded by 1. By (3.2) and Lemma 3.9, f equals to «
almost everywhere and, by Lemma 2.1, this implies dgf’)Tv((l — )ty +cby) — 0 as
n — oo for all ¢ > 0.

The proofs for (3) and (4) are similar and we only give the details for (4). First,
we choose sequences z,, € {2, and A,, C £, such that
lin;o Tn(An) = 1, nh_)rr;o K}zgj(a:n,An) =0.

n—

Let m; be a sequence tending to infinity. Applying Lemma 3.8 with ¢ = 0 and
Gn,m = K" (2, Ay), we may choose a subsequence, say my, such that

2
l1—1>m Hop(1=6)tm (xml,Aml \/ﬂ/ e~z /2 g(x)dx

and

Ltm, ] g
hm K- " (2, A e /) g(z)dx,

ml5

m) = V2md
where ¢ is nonnegative measurable function bounded by 1. This leads to g = 0
almost everywhere and

Jim i o (1= 8)tm,) = 1.
The following is a simple corollary of Proposition 3.2 (1)-(2).

Corollary 3.3. Let Fj,F. be families in Theorem 3.1 and t,,r, be sequences
tending to infinity. Fiz § € (0,1).
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(1) If d¥ oy ([ta]) = 0, then
lim Ay (14 €)(1 = 8)t,) =0, Ve > 0.
(2) If dhy(rn) = 0, then
lim d ([(L+€)rn/(1—8)]) =0, Ve> 0.

n
n—o0 ’

8) c)

Proof of Theorem 3.1. Set r,, = ,(L,Tv(eo) and s, = ,(L,Tv(eo). Suppose r, — 0.

By Corollary 3.3 (2), if
lim inf d'7p (1 = 8)r/2) = 0,

n—oo
then
hmioréfdi;f)Tv(m +)ra/2]) =0, Ve>O0.

n—

But, taking e = 1/2 implies that, for n large enough,
A ([(1 4 Ora/2]) = diry(ra = 1) > @ > 0.
This makes a contradiction and, hence, if 7, — oo, then
lim inf d'hy (1 = 6)rn/2) > 0.
n— 00 ’
In a similar way, if s,, — 0o, then Corollary 3.3 (1) implies
lim inf d") ([sn]) > 0.
n—00 ’
This proves the following equivalence.
T,(f%v(eo) — oo forsomeeg >0 & TT(L?%V(E()) — oo for some ¢ > 0.

For the equivalence of (1) and (2), the proof for precutoffs is given by Corollary
3.3 (1)-(2), while the proof for cutoffs also uses Proposition 3.2 (3)-(4). O

3.2. Cutoff windows. This section is devoted to the comparison of cutoff windows
introduced in Definition 2.1.

Theorem 3.4. Let F be a family of irreducible positive recurrent Markov chains
and Fs,F. be associated families of lazy walks and continuous semigroups. Let
tn,bn be sequences of positive reals and assume that t, — oco. If Fs (resp. Fe)
presents a (tn,by) cutoff in total variation, then \/t, = O(b,).

Remark 3.1. There are examples with cutoffs but the order of any window size must
be bigger than /¢,. Consider the Ehrenfest chain on {0,...,n}, which is a birth
and death chain with rates p,; = 1 —i/n, ¢,; = i/n and r,; = 0. It is obvious
that K, is irreducible and periodic with stationary distribution , (i) = 2’”(?).
An application of the representation theory shows that, for 0 < i < n, 2i/n is an
eigenvalue of I — K,,. Let A, =2/n and s,, = ;" ; n/(2i) = gnlogn + O(n). By
Theorem 4.1, since A,s, tends to infinity, both F. and Fs have a total variation
cutoff. For a detailed computation on the total variation and the L?-distance, see
e.g. [7]. It is well-known that F. has a (inlogn,n) total variation cutoff. By

Theorem 3.5, Fs has a (Z(llofgs,n) total variation cutoff for 6 € (0,1), which is
nontrivial. For the continuous time Ehrenfest chains, Theorem 3.4 says that the

window size is at least \/nlogn, while n is the correct order.
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Proof of Theorem 3.4. We prove the continuous time case. The lazy discrete time
case can be treated similarly. Assume the inverse that the sequence /%, /by, is not
bounded. By considering the subsequence of v/, /b, which tends to infinity, it loses
no generality to assume that b, = o(y/f,). According to the definition of cutoffs,
we may choose C > 0, x,, € Q,, and A,, C ,, such that

lim inf \Hnt +Cb, (T, Ap) — mp(Ap)| > 0.

n—oo

By Lemma 3.8, one may choose a sequence n; tending to infinity such that m,, (Ay,)
converges to a € [0, 1] and

lli}n Hnl,tnl-i-Cbnl (J:n”Anl \/ﬂ/ /2f )dl‘ 7é Q,

where f is positive and bounded by 1. Let ¢ € R. For any € > 0, choose N > 0
such that, for n > N,

— c tyn + Cbn ‘ i
Hyp by tcb, (@n, An) — Z (e (tn+ bn)(i!)) K (20, Ay)| < e.
irli—tn [ <NV,
Note that
N ) tn + Cby)
e_(tn"l‘(/bn,)( +c ) —e (t”+Cb")y(l+o(l)) as n — 0o,

il i
where o(1) is uniform for | — t,,| < N+/t,,. This implies
lim Ha, ot 4cboy (T, Any) = \ﬁ/ e~ /2 f(z)dz, VceR.

l—o0

Since F. presents a (t,, b,) cutoff, the right-side integral is equal to a, a contradic-
tion. ([l

Theorem 3.5. Let Fs, F. be families in Theorem 8.4 and t, — oo. Then, the
following are equivalent.

(1) Fs has a (tn,by) cutoff.

(2) Fe has a ((1 —0)ty,by) cutoff.

To prove this theorem, we need the following proposition.

Proposition 3.6. Let Fs, F. be as in Theorem 3.5 and t,,r, be sequences tending
to infinity.
(1) If Fs has a (tn,bn) cutoff, then F. has a (1 — 8)tn,dy) cutoff for any
sequence satisfying d,, = o(t,) and b, = o(d,).
(2) If F. has a (ry,by) cutoff, then Fs has a (rn/(1 = 68),dy,) cutoff for any
sequence satisfying d, = o(ry) and b, = o(d,).

Proof. Immediately from Theorem 3.4 and Proposition 3.2. O

Proof of Theorem 3.5. We prove (1)=-(2), while the reasoning for (2)=-(1) is sim-
ilar. Suppose that Fs has a (¢,,b,) cutoff with ¢, — oo. Fix ¢ € (0,1) and
set ¢, = |T,(L%)V(e) — (1 = 0)tn]. By [5, Proposition 2.3], it remains to show that
¢n, = O(by,). Assume the inverse, that is, there is a subsequence £ = {n|l = 1,2, ...}
such that ¢, /by, — 00 asl — oo. Let F5(§), Fe(§) be families of Fy, F, restricted to
€. This implies F5(€) has a (ty,, by,) cutoff, but F. (&) has no ((1 — 8)tn,, /bn,n,)
cutoff, a contradiction with Proposition 3.6. (]



8 G.-Y. CHEN AND L. SALOFF-COSTE

3.3. Chains with specified initial states. For any probability u on a countable
set €, we write (u, 2, K,7) as an irreducible Markov chain on  with transition
matrix K, stationary distribution 7 and initial distribution p. The total variation
distances for the associated d-lazy walk and continuous time chain are defined by

5 n 3
(3.3) A (pyn) = |uKP —wlloy,  do(u,t) = ||pH; — 7|y

Denoted by Téf,) (1, €), TT(i,) (1, €) are the corresponding mixing times and the concept
of cutoffs can be defined similarly as Definition 2.1 according to (3.3). It is an easy
exercise to achieve a similar version of Lemma 2.1 for cutoffs with specified initial
distributions. The proofs for Propositions 3.2-3.6 and Corollary 3.3 can be adapted
to the case when the initial distribution is prescribed. This gives the following
theorems.

Theorem 3.7. Let F = {(tn, Qn, Kn,m)n = 1,2,...} be a family of irreducible
Markov chains and Fs,F. be families of associated §-lazy walks and continuous
time chains.

(1) Fs has a cutoff (resp. precutoff) iff F. has a cutoff (resp. precutoff).
(2) If Fs5 has a cutoff, then T,Sf)Tv(un, €) ~(1— 5)T,(L,%V(un, €) as n tends to 0o
for all e € (0,1).

Let t,, — oo and b, > 0.

(3) Fs has a (tn,by) cutoff iff Fo has a ((1 — 0)tn,by) cutoff.

(4) If Fs has a (tn,by) cutoff, then \/t, = O(by).
3.4. Proofs. This subsection collects required techniques for the proof of theorems
in Sections 3.1-3.2.

Lemma 3.8. Let aym € [0,1], t, > 0 and ¢ € R. Suppose that t, — co. Then,
there is a subsequence ny of positive integers and a nonnegative measurable function
f bounded by 1 such that

lim 6,,57%,0\/ tny, (tnk+c— thk) Apyom = i / ef(xfc)2/2f(l‘)d$,
m! ’ V2T J oo

for allc e R, and
lim Z ([(t"" * C\/tT’“)/(l N 6)]> (1— 5)m5[(tnk+cﬁ)/(1—6)}—man
m

k,m

1 e 2
_ —(z—c)*/(26) d
= e x)dz,
V 27'('5 /—oo f( )
for allc € R, 6 € (0,1), where 2] is any of [2], |z].
Proof. For n > 1 and any Borel set A C R, set

1
pn(A) = F Z An,m-

n

S mim—t, /T, €A
Let ng be a subsequence of N such that

(3-4) i, ((a,0]) = p((a, b)), Va,beQ a<b.

Clearly, u((a,b]) < b—a for a < b and a,b € Q. This implies the convergence in
(3.4) holds for all @ < b and p((a,b]) < b—a. As a consequence of the Carathéodory
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extension theorem, p can be extended to a measure on R. It is obvious that u is
absolutely continuous with respect to the Lebesgue measure and we write f as the
Radon-Nykodym derivative.

Let € > 0 and choose M > 0 such that, for n > M,

Z e~ tn 76\/7(15 +C\/7)

< €.
m)

mi|m—tn|/v/tn¢(—M,M]

For any integer N > 1, set ; = iM/N and A,,; = {m > 0||m — t,|/Vt, €
(4, xi+1]}. By Stirling’s formula, it is easy to see that

tn )™ 1+o0(1 1 /m—t, 2
e tn—eVin (bn + C\F) = +o(l) exXp§ —= = —cC as n — oo,
m! 27ty 2\ Vi,

where o(1) is uniformly for m € A,,; and —N < ¢ < N. This implies

—tn—c tn c SMznAn,z \/%4‘01
Z( v (b e/E)™ )m{ pn(Ani)/ (1)

m! > miﬂn(An,i)/‘/% +o(1) 7

meEAy,

where U; = sup{e=®=9"/2|z € (2;,2,41] and L; = inf{e~ 9" /2|2 € (z;, 3:44]}.
Summing up 4 and replacing n with ny yields

N-1
n V t’ﬂ m
hmsup Z ( tnk ( : re k> > Any,m < MZM xzaxwrl]) +e

m!
k— o0 i—_ N

-

m=0
and
N-1
_ e F )™ 1
lim inf by, e/ (s VT )" ngm 2 == k(T4 Tit1]) —
3 e 7 3 (s =
Letting N — oo and then ¢ — 0 gives the desired limit. The proof of the second

limit is similar and omitted. O

Lemma 3.9. Let f be a bounded nonnegative measurable function and set F(t) =
ffooo ef(m’t)Zf(x)dx. If F' is constant, then f is constant almost everywhere.

Proof. Set A= F(t), B™' = [~ e~ /2 f(z)dx and write
2 2 ]_ 2 2
e (==t/2) f(z) = B~'2re! /4 <77Te(tx) /2) (Be”" /zf(z)) )

Note that AB/(v2me!’/4) is the density of X + Y, where X has the standard
normal distribution, Y is continuous with density function Be~'/2 f(z) and X, Y
are independent. This implies AB = 1/4/2 and

2

et = ]E(eiu(X+Y)) _ e—uz/QE(eiuY)7 Vu € R.

Clearly, Y has the standard normal distribution and, thus, f is a constant a.e. O
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3.5. A remark on the spectral gap and mixing time. In this subsection, we
make a comparison of spectral gaps between continuous time chains and J-lazy
discrete time chains. Let (£, K, 7) be an irreducible and reversible finite Markov
chain with spectral gap A, the smallest non-zero eigenvalue of I — K. First, we
consider the continuous time case. Since (K, ) is reversible, there is a function f
defined on {0,1,...,n} such that K f = (1 — A\)f. This implies

1 I(Hy — ) flloe e~
TV( ) 2” t 7TH —00 = 2||fHoo 9
where ||Allco—oo = sup{||49|| : |glloc = 1}. Consequently, we obtain
—log(2e)

T > 10829,

For the lazy discrete time case, a similar discussion yields

log(?e)J
log Bs |’

where (s is the second largest absolute value of all nontrivial eigenvalue values of
K. By setting §g = inf{d € (0,1)|85 = 1 — (1 — )}, it is easy to see that oy < 1/2
and, for § € [dg, 1), Bs =1 — (1 —3d)A. As a function of §, 8s is decreasing on (0, §p)
and increasing on (dg, 1). Note that |1 —(1—9)\| < 85 < max{1—2§,1—(1—9)A}.
The first inequality implies 1 — 35 < (1 — §)A. Using the second inequality, if
Bs >1—20, then 1 —8s = (1 =)\ If Bs < 1—26, then 1 — 85 > 25 > A,
where the last inequality uses the fact A < 2. We summarize the discussion in the
following lemma.

a0t > pij2, T (o) > [

Lemma 3.10. Let K be an irreducible transition matriz on a finite set ) with
stationary distribution w. For 6 € (0,1), let Ks be the §-lazy walk given by (1.1).
Suppose (m, K) is reversible, that is, m(x)K(x,y) = w(y)K(y,x) for all z,y € Q
and let X be the smallest non-zero eigenvalue of I — K and (s be the largest absolute
value of all nontrivial eigenvalues of Ks. Then, it holds true that

mn{l -6 A<1—-6<1—-|1—(1 =A< (1= WVie(0,1).

Furthermore, for e € (0,1/2),

¢ —log(2¢ 5
70> 752 100> |

e log(2€)J > { —log(2¢) J ,

log S35 2max{1 — §,1og(2/5) } A
where the last inequality assumes |2 > 2/4.

Proof. It remains to prove the second inequality in the lower bound of the mixing
time for the d-lazy chain. Note that if A < 1/2, then

—log 85 < —log(1 — (1 —0)A) < 2(1—0)A,

where the last inequality uses the fact log(l — x) > —2z for x € (0,1/2). For
A > 1/2, let 01(0),...,0)q/(0) be eigenvalues of Ks. Then, 6;(5) = 6 + (1 — 6)0;(0)
and ELZII 0;(0) > 0. See [12] for a reference on the second inequality. This implies
12
L+ (19 = 1)Bs = > 0;(8) > |95
i=1
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Assuming || > 2/4, the above inequality yields

Q6—1 _ 6

2
p L S| < (2log < | A
Baf|m_1f2, ogﬁs( og5>

4. FINITE BIRTH AND DEATH CHAINS

In this section, we consider the total variation cutoff for birth and death chains.
A birth and death chain on {0, 1, ...,n} with birth rate p;, death rate ¢; and holding
rate r; is a Markov chain with transition matrix K given by

(4.1)  K(,i+1)=p;, K@,i—-1)=gq, K@i,i)=r, Y0<i<n,

where p; + ¢; +r; = 1 and p,, = qo = 0. It is obvious that K is irreducible if and
only if p;q;+1 > 0 for 0 < i < n. Under the assumption of irreducibility, the unique
stationary distribution 7 of K is given by (i) = ¢(po---pi—1)/(q1 - - ¢:), where ¢
is a positive constant such that Y., 7(i) = 1.

In the next two subsections, we recall some results developed in [9, 10] and make
an improvement on them using the result in Section 3. In the third subsection,
we go back to the issue of cutoffs and make a comparison of total variation and
separation cutoffs.

4.1. The total variation cutoff. Throughout this subsection, we let

(4.2) F ={(Qn, Kpn,mn)n=1,2,...}

denote a family of irreducible birth and death chains with €, = {0,1,...,n} and
transition matrix

(4.3) Kup(i,i+1)=pns: Kn(i,i—1) =g Kn(i,0) =rn:, Y0<i<n,

where pp, i + ¢ni + 70 =1 and p, ., = gn,0 = 0. Write A\, = A(K,,) as the spectral
gap of K,,. As before, F. denotes the family of associated continuous semigroups
and, for 6 € (0,1), F5 denotes the family of -lazy chains. Recall one of the main
results in [10] as follows.

Theorem 4.1 (Theorems 3-3.1 in [10]). Consider the family in (4.2). Forn > 1,
let A, be the smallest nonzero eigenvalue of I — K,, and let B, s be the second
largest absolute value of all nontrivial eigenvalues of K, 5. Then, F. (resp. Fs

with § € (0,1)) has a total variation cutoff if and only if T,(L,C%V(l/él))\n — 00 (resp.
Tfj%v(l/ll)(l — Bns) — 00). Moreover, if F. (resp. Fs) has a cutoff, then the

window has size at most T,(f%v(l/él)//\n (resp. \/T((S)V(l/él)/(l — Bn.s))-

n7

Remark 4.1. By Lemma 3.10, the total variation cutoff in discrete time case is
equivalent to T,gf%v(l/ll)/\n — 00. By Theorems 3.1-4.1 and Lemma 3.10, if F, or Fj

has a cutoff, then the window size is at most \/T,(L?)Tv(l/4)/An or \/T(ﬁ)v(1/4)/)\n.

n)

Remark 4.2. There are examples with cutoffs, but the order of the optimal window

size is less than \/T,(f)v(l/ll)/\n. See Remark 3.1.

The combination of the above theorem and Theorem 3.1 yields

Theorem 4.2. Referring to Theorem 4.1, the following are equivalent.
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(1) Fe. has a total variation cutoff.

(2) Fs has a total variation cutoff.

(3) Fe has a total variation precutoff.

(4) Fs has a total variation precutoff.

(5) )-

(6) T,(L?%V(e))\n — oo for some e € (0,1).

Proof of Theorem 4.2. Tt remains to show (3)=-(5) and this is given by the inequal-
ity d\hy (£) > et /2. O

Theorem 4.3. Consider the family in (4.2). It holds true that T,(L?%V(e/2) =
T,(L‘f%v(n/Q) for all €,m,6 € (0,1). Furthermore, if there is ¢g € (0,1) such that
T (€0/2)An or TSy (€0/2)An is bounded, then T ) (€/2) = 1/A, and T}y (¢/2)
1/ A for all €,8 € (0,1).

Proof of Theorem 4.3. Assume that there is a subsequence ny and €, € (0,1/2)

such that either Téi),TV(E)/Trg,i),TV(n) — o0 or Téi),TV(n)/Té?,TV(E) — o0. By
Lemma 3.10, we have T,(L(;),Tv(e)/\nk — 00 or T,(li{TV(n)/\nk — 00. In either case,
Theorems 3.1-4.1 imply that the subfamily indexed by (nj)32; has a cutoff in both
continuous time and J-lazy discrete time cases. As a consequence of Theorem 3.1,

we obtain Téi),Tv(G) ~ (1 —5)T7(li)7TV(77), which contradicts with the assumption. O

Concerning the window size, a combination of Theorem 3.4 and Theorem 4.1
yields

Theorem 4.4. Let F, A, be as in Theorem 4.1. Suppose that F. or Fs has a total
variation cutoff and A\, < 1. Then, for any e¢,n € (0,1) with € # n,

c c c §
T (€)= T\ )] = T (€)= T (€)= Ty ()]

4.2. The separation cutoff. In this subsection, we apply the results obtained in
the previous subsection to the separation cutoff. First, we give a definition of the
separation in the following. Given an irreducible finite Markov chain K on 2 with
initial distribution p and stationary distribution 7, the separation distance at time
m is defined by

K™(z
dsep(ﬂvm) = IP?&%( {1 - /jlﬂ_(x())} .
Aldous and Diaconis [2] introduce the concept of the strong stationary time to
identify the separation distance. Set dsep(m) = max; dsep(i,m). A well-known
bound on the separation is achieved by Aldous and Fill in Lemma 7 of [1, Chapter

4], which says
(4.4) d(m) < deep(m), dsep(2m) <1 — (1 —d(m))?,

where d(m) := max; ; [[K™ (i,-) — K™ (j,-)||rv. It is clear from the definitions that

drv(m) < d(m) < 2drv(m). Let Tyep(€) be the separation mixing time. The above
inequalities imply

(45) TT\/(E) S j_:qep(e) S 2TTV(€/4)7 VE S (0, ].)

Note that the above discussions are also valid for the continuous time case. As the

separation distance is between (0,1), the separation cutoff is similar to the total
variation cutoff as in Definition 2.1. By (4.5), we obtain the following lemma.

-~
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Lemma 4.5. Let F be a family of finite Markov chains in either discrete or con-
tinuous time case. Assume that T,, tv(€) = 00 or T}, sep(€) — 00 for some € € (0, 1)
in discrete time case. Then, F has a total variation precutoff if and only if F has
a separation precutoff.

For birth and death chains, the application of (4.5) to Theorem 4.3 leads to the
following theorem.

Theorem 4.6. Theorem 4.3 also holds in separation. Furthermore, for e,n €
(0,1/2), Ty () = Tiden ().

Let K be an irreducible birth and death chain on {0,1,...,n} with stationary
distribution 7. The authors in [10] obtain the following fact
Ht(o?n) § Kgn(07n)
—=, dQ(m) =1— =2 s e [1/2,1).

m(n)

© () =1 —
() dgm=1-="0

The authors in [9] provide a criterion on the separation cutoff for continuous time
chains and monotone discrete time chains. The result says that a separation cutoff
exists if and only if the product of the spectral gap and the separation mixing time
tends to infinity. The next theorem is a consequence of this fact and Theorems 4.2
and 4.6, which is also obtained in [10].

Theorem 4.7. Let F be a family of birth and death chains given by (4.2). The
following are equivalent.

(1) Fe. has a cutoff in total variation.

(2) Ford € (0,1), F5 has a cutoff in total variation.

(3) Fe has a cutoff in separation.

(4) For d € [1/2,1), Fs has a cutoff in separation.

The next theorem is a simple corollary of Theorems 4.2-4.7 and Lemma 4.5.
Theorem 4.8. Theorem 4.2 also holds in separation distance with § € [1/2,1).

4.3. The cutoff time in total variation and separation. In this subsection, we
introduce a spectral representation of the total variation mixing time. Let K be the
transition kernel of an irreducible birth and death chain on {0,1,...,n}. Suppose
that K is irreducible with stationary distribution 7 and let 0 < Ay < --- < A, be
the eigenvalues of I — K. Consider the continuous time case. Using [9, Theorem
4.1] and [10, Corollary 4.5], we have
dO@)y=1—-="22 1 20820 PS> ),

where S is a sum of n independent exponential random variables with parameters
A1, ..., An. By the one-sided Chebyshev inequality, one has

ES — /Var(S)/(1/e — 1) < T{)(e) <ES +/(1/e — 1)Var(S), Ve € (0,1).

Note that

"1 1
ES =) 1 Var(§) =) 5 < (ES)2.
i=1 "% i=1 "

Clearly, this implies

(1_6_\/E)ES c
Y i < T (e) <

(4.7)
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The above equation says that, given e € (0,1/2), the separation mixing time is
bounded by 3>, A;! up to universal constants. The above discussion is also valid
for discrete time case with the assumption that K(i,i + 1) + K(i + 1,i) < 1 for
0 < i < n. See [9] for the details. The next proposition is an application of (4.5)
and (4.7).

Proposition 4.9. Let K be an irreducible birth and death chain on {0,1,...,n}.
Let 0, A1, ..., A, be eigenvalues of K and set s =Y | )fl, Then,

(V¥&¥:1f@> <TE)(e) < (VF+§;1_6)5, Ve € (0,1/2),

and
1 (VT—4e— Ve © Vet+VI—¢
3 < ﬁ) s<Trvle) < (\ﬁ

The above also holds in discrete time case with the assumption that K(i,i + 1) +
K(i+1,i) <1 for0<i<n.

) s, Vee (0,1/8).

Applying Proposition 4.9 to Theorems 4.2-4.7 yields the following theorem, where
the result in separation is included in [9] and the result in total variation is implicitly
obtained in [10].

Theorem 4.10 (Cutoffs from the spectrum). Let F be the family in (4.2). For
n>1, let Ay, ..., An,n be non-zero eigenvalues of I — K,, and set

1 1
ST VD W

Then, the following are equivalent.

(1

) Fe has a total variation cutoff.
) Ford € (0,1), Fs has a total variation cutoff.
) Fe has a total variation precutoff.
) For d € (0,1), Fs has a total variation precutoff.
) SnAp — 0.

The above also holds in separation with § € [1/2,1). In particular, if (5) holds,
then, for e € (0,1),

(c) (c)

% < liminf Lﬂ’TV(e) < lim sup L”TV(e)

n—00 Sn n— 00 Sn

(
(
(
®

<1

The last result establishes a relation between the mixing time and birth and death
rates. Consider an irreducible birth and death chain (X,,)%_, on {0,1,...,n} with
transition matrix K and stationary distribution 7. Let /Ny be a Poisson process of
parameter 1 that is independent of X,,, and set, for 0 < i < n,

= inf{t > 0| Xn, = i}.

Brown and Shao discuss the distribution of 7; in [3] and obtain the following result.

PMM>Q:Z:II%%% —

j=1 \k#j
where P; is the conditional probability given X¢ = ¢ and 64, ..., 6,, are eigenvalues
of the submatrix of I — K indexed by {0,1,...,n — 1}. Let E; be the conditional
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expectation given Xy = ¢. Clearly, this implies Eg7,, = Z?:l 1/6;. Note that Egr,
can be formulated by the birth and death rates using the strong Markov property.
This leads to

(4.9 Eorn Z 7 -y )

k=0 (k)px
where 7(A) 1= >, 4 7(i).
Fix 0 <14y < n. By (4.8), we have

io 1 n— lo
E()Ti = E — E Tin = E
0 17 mn'io //7
P by /\

where A7,..., \j and A7,... )\” _,, are eigenvalues of the submatrices of I — K in-

dexed respectively by {0, ...,59 — 1} and {ip + 1,....,n}. Let \; < --- < A, be a
rearrangement of A7,..., A} Xl’, s Ao+ Clearly, Ai,...; A, are eigenvalues of the
submatrix obtained by removing the ig-th row and the ig-th column of I — K. Let
A1 < -+ < A\, be nonzero eigenvalues of I — K. By Theorem 4.3.8 in [11], we have

i < )\ < /\1+1 and this leads to

=2

where the first equahty uses ( . By Proposmon 4.9, we obtain, for € € (0,1),

(© (@ Vet vi—e\ [ w(0k) g~ 7(lkn)
T () < T (e) < ( e >0§"f"{kzzo i > W(k)qk}.

k=i+1

The above discussion also holds in discrete time case with the assumption that
pi + ¢ip1 < 1 for all 0 < ¢ < n. This includes the d-lazy chain for 6 € [1/2,1) and
we apply it to get the following corollary.

Corollary 4.11. Let F = {(Qp, Kn,mn)|n = 1,2,...} be a family of irreducible
birth and death chain in (4.2) with birth, death and holding rates pn. i, qn i, Tn,i- For

n>1, set
i—1 n
: mn ([0, K]) ™ ([k, 7))
tn = min L InAB AR
0<i<n {];) Fn(k)pmk k;'+1 Tn k’)qu
If F. or Fs has a total variation cutoff, then, for e € (0,1) and § € [1/2,1),
(c) ©)
T’I’L se . T’n, se 1
limsupﬂ <1, limsup— p(9 <

and, for e € (0,1),

c §
o Tia(e) T 1
limsup ———— <1 limsup <

Remark 4.3. In [6], the constant ¢, in Corollary 4.11 is proved to be of the same
order as the constant s,, in Theorem 4.10 and the following term

in—1 n
— ([0, k n (K,
SETNE
h—p M Dn,k k=i, 41 ™ Adn,k
where 4, satisfies 7, ([0,4,]) > 1/2 and 7, ([in, n]) > 1/2.



16

G.-Y. CHEN AND L. SALOFF-COSTE

Remark 4.4. The bound in Corollary 4.11 is also be obtained implicitly in [10] using
a coupling argument.
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