4

ELSEVIER

Available online at www.sciencedirect.com

ScienceDirect

Expert Systems with Applications 34 (2008) 578-587

Expert Systems
with Applications

www.elsevier.com/locate/eswa

Prediction model building and feature selection with support
vector machines in breast cancer diagnosis

Cheng-Lung Huang *, Hung-Chang Liao ®*, Mu-Chen Chen ©

& Department of Information Management, National Kaohsiung First University of Science and Technology, Kaohsiung, Taiwan
° Department of Health Services Administration, Chung-Shan Medical University, Taichung, Taiwan
¢ Institute of Traffic and Transportation, National Chiao Tung University, Taiwan

Abstract

Breast cancer is a serious problem for the young women of Taiwan. Some medical researches have proved that DNA viruses are one
of the high-risk factors closely related to human cancers. Five DNA viruses are studied in this research: specific types of HSV-1 (herpes
simplex virus type 1), EBV (Epstein-Barr virus), CMV (cytomegalovirus), HPV (human papillomavirus), and HHV-8 (human herpesvi-
rus-8). The purposes of this study are to obtain the bioinformatics about breast tumor and DNA viruses, and to build an accurate diag-
nosis model about breast cancer and fibroadenoma. Research efforts have reported with increasing confirmation that the support vector
machine (SVM) has a greater accurate diagnosis ability. Therefore, this study constructs a hybrid SVM-based strategy with feature selec-
tion to render a diagnosis between the breast cancer and fibroadenoma and to find the important risk factor for breast cancer. The results
show that {HSV-1, HHV-8} or {HSV-1, HHV-8, CMV} are the most important features and that the diagnosis model achieved high
classification accuracy, at 86% of average overall hit rate. A Linear discriminate analysis (LDA) diagnosis model is also constructed
in this study. The LDA model shows that {HSV-1, HHV-8, EBV} or {HSV-1, HHV-8} are significant factors which are similar to that
of the SVM-based classifier. However, the classificatory accuracy of the SVM-based classifier is slightly better than that of LDA in the

negative hit ratio, positive hit ratio, and overall hit ratio.
© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In Taiwan, breast cancer is the second most occurring
cancer and the death rate from breast cancer is increasing
each year (Cancer Registry Annual Report, 2004; Overview
of Public Health, 1998). Almost 64.1% of women with
breast cancer are diagnosed before the age of 50 and
29.3% of women with breast cancer are diagnosed before
the age of 40 (Cheng, Tsou, Liu, & Jian, 2000). On the
average, the women diagnosed with breast cancer in Tai-
wan are younger than those in the US. Some recognized
factors will increase the risk of breast cancer; however,
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the causes are still unknown. Hence, it is difficult for med-
ical professionals to treat breast cancer with the appropri-
ate preventive methods (Ziegler et al., 1993). Yu, Rohan,
Cook, Howe, and Miller (1992) investigated the risk factors
for fibroadenoma in a case-control study involving 117
fibroadenoma cases in Australia. This study shows that
fibroadenoma shared some risk factors with breast cancer.
It is estimated that DNA viruses, which emerge as major
causal factors, contribute 20% to the occurrence of human
cancers (Dimmock & Primrose, 1994). DNA viruses, as
causes, are closely related to the human cancers as part
of the high-risk factors. These DNA viruses include
specific types of HSV-1 (herpes simplex virus type 1),
EBV (Epstein-Barr virus), CMV (cytomegalovirus), HPV
(human papillomavirus), and HHV-8 (human herpesvi-
rus-8) (Dimmock & Primrose, 1994).
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Wu et al. (2001) studied biological purging of breast
cancer cells using an attenuated replication-competent
HSV-1 in human hematopoietic stem cell transplantation.
Hu et al. (2004) developed a second generation of geneti-
cally modified HSV-1 with paclitaxel in the treatment of
breast cancer in vitro. Wang and Vos (1996) studied a
hybrid herpesvirus infectious vector, pH300, based on
HSV-1 and EBYV for gene transfer to human cells in vitro
and in vivo.

In other studies, Liu et al. (1993) indicated that the EBV
hybridoma technique offers several advantages over the
other hybridoma systems for generating anti-breast cancer
human monoclonal antibodies. Katano et al. (1995) estab-
lished a Breast-M and an EBV-infected B-cell line (Hairy-
BM) from breast tumor tissue. Also, Yip, Hawkins, Clark,
and Ward (1997) used the EBV-transformed peripheral
blood mononuclear cells from individuals with breast can-
cer for the construction of human immunoglobulin gene
libraries. Fina et al. (2001) studied the frequency and gen-
ome load of EBV in 509 breast cancers from various geo-
graphical areas.

Recently, Grinstein et al. (2002) demonstrated EBV in
carcinomas of the breast, lung, and other sites. Xue, Lam-
pert, Haldane, Bridger, and Griffin (2003) also studied the
EBV gene in human breast cancer. Then Huang, Chen,
Hutt-Fletcher, Ambinder, and Hayward (2003) suggested
that sporadic lytic EBV infection might contribute to
polymerase chain reaction based (PCR-based) detection
of EBV in traditionally non-virally associated epithelial
malignancies. In addition, Ribeiro-Silva, Ramalho, Garcia,
and Zucoloto (2004) studied whether there is a relationship
between latent infection with EBV and p53 and p63 expres-
sion in breast carcinomas. Lastly, Baeyens et al. (2004)
compared the radiation response in EBV cell lines derived
from breast cancer patients with or without a BRCAI
mutation and revealed no significant difference.

In the previous studies of CMV for breast cancer, Stren-
der et al. (1981) studied a group of 17 patients who had
undergone modified radical mastectomy for breast cancer.
Lee, Reimer, Oh, Campbell, and Schnitzer (1998) found
that the caveolin expression was significantly reduced in
human breast cancer cells provided that the caveolin
cDNA linked to the CMV promoter was transfected into
human mammary cancer cells. Still, Hamilton, Vince,
Wolfman, and Cowell (1999) indicated that the constitutive
expression of the gene under the control of CMV promoter
in mouse fibroblasts results in cellular transformation and
anchorage-independent growth.

Svane et al. (2002) analyzed the impact of high-dose che-
motherapy on antigen-specific T cells responsive to CMV
immunity in breast cancer patients. Akbulut, Zhang, Tang,
and Deisseroth (2003) studied the cytotoxic effect of repli-
cation-competent adenoviral vectors carrying L-plastin
promoter regulated E1A and cytosine deaminase genes
on cancers of breast, ovary, and colon. A similar vector dri-
ven by the CMV promoter has also been constructed as a
control. This treatment resulted in decreased tumor size

and decreased tumor cell growth rate. Ma et al. (2004)
demonstrated that the inhibition of the PKB-dependent
survival pathway could promote apoptosis and thermosen-
sitization in malignant breast cancer cells, with relative
sparing of their normal counterpart. Zhu et al. (2004)
showed that CXCR4 had a low expression of luciferase
(0.32%) compared to that of the CMV promoter in mice
live in vivo. The CXCR4 was proven to be a good candi-
date as a tissue-specific promoter for cancer gene therapy
for melanoma and breast cancers.

Recent studies have revealed a possible role for HPV in
the pathogenesis of breast cancer, although no definitive
interaction was observed between types of oral contracep-
tives or with any recognized risk factor for breast cancer.
Oral contraceptives may act as a promoter for HPV-
induced carcinogenesis (La Vecchia, Tavani, Franceschi,
& Parazzini, 1996). Chang et al. (1999) demonstrated a
high frequency of abnormalities of this gene in human
breast cancer. They found that there was no genomic dele-
tion or rearrangement in spite of the presence of abnormal
transcripts and no definite relationship between the abnor-
mal transcripts and HPV infection. Liu et al. (2001) showed
that 6 out of 17 (35%) types of breast cancers were identi-
fied as being HPV positive in the PCR/dot blot analysis
with both the HPV E6-E7 and L1 primer sets. Widsch-
wendter, Brunhuber, Wiedemair, Mueller-Holzner, and
Marth (2004) suggested that HPV DNA might be trans-
ported from the original site of infection to the breast tissue
by the bloodstream, and that it possibly existed in the car-
cinogenesis of breast neoplasia in some patients. Finally,
the researches for HHV-8 and breast cancer have few cita-
tions in the literature. Klein and Klein (2005) studied the
surveillance against tumor. HHV-8 is a relevant viral agent
in this context. Andres (2005) found that Kaposi’s sarcoma
had a high incidence in the renal-transplanted population,
and that it was related to HHV-8.

From the literature reviews, it can be seen that it is
important to evaluate the associations among DNA
viruses, HSV-1, EBV, CMV, HPV, and HHV-8 with breast
cancer and fibroadenoma. In order to obtain the relation-
ship between DNA viruses and breast tumors, this paper
uses the support vector machines (SVM) to find the perti-
nent bioinformatics. Support vector machines were first
suggested by Vapnik (1995) and have recently been used
in a range of problems including pattern recognition (Pon-
til & Verri, 1998), bioinformatics (Yu, Ostrouchov, Geist,
& Samatova, 2003), text categorization (Joachims, 1998),
and cancer diagnosis (Lee & Lee, 2003; Lee, Mangasarian,
& Wolberg, 2000; Liu et al., 2003).

When using SVM, two problems are confronted: how to
choose the optimal input feature subset for SVM and how
to set the best kernel parameters. These two problems are
crucial because the feature subset choice influences the
appropriate kernel parameters and vice versa (Frohlich &
Chapelle, 2003). Feature selection is an important issue in
building classification systems. It is advantageous to limit
the number of input features in a classifier in order to have
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a good predictive and less computationally intensive model
(Zhang, 2000). With a small feature set, the explanation of
rationale for the classification decision can be more readily
realized. In addition to the feature selection, proper model
parameters setting can improve the SVM classification
accuracy. The parameters that should be optimized include
penalty parameter C and the kernel function parameters
such as the gamma (y) for the radial basis function
(RBF) kernel.

To design a SVM, one must choose a kernel function,
set the kernel parameters and determine a soft margin con-
stant C. The grid algorithm is an alternative to finding the
best C and gamma when using the RBF kernel function
(Hsu & Lin, 2002).

To explore five DNA viruses — HSV-1, EBV, CMV,
HPV, and HHV-8 - affecting the breast tumor diagnosed
by using support vector machines, this study tried grid
search to find the best SVM model parameters and used
F-score calculation to select input features.

This paper is organized as follows. Section 2 describes
basic SVM concepts. Section 3 describes three SVM-based
strategies used in this research. Section 4 presents the
experimental results from using the proposed method to
diagnose the real world breast cancer data set. Section 5
gives remarks and provides a conclusion.

2. Basic concepts of SVM classifier

In this section, we will briefly describe the basic SVM
concepts for typical two-class classification problems.
These concepts can also be found in (Kecman, 2001,
Scholkopf & Smola, 2000, & Cristianini & Shawe-Taylor,
2000).

Given a training set of instance-label pairs (x;,y;),
i=1,2,...,m where x; € R" and y; € {+1,—1}, SVM finds
an optimal separating hyperplane with the maximum mar-
gin by solving the following optimization problem:

. -
h&%n Ww
subject to: y,((w-x;) +b)—1 =0 (1)

It is known that to solve this quadratic optimization
problem one must find the saddle point of the Lagrange
function:

Lwbn) = 30" 0= > Galwex) +5) =) Q)

where the o; denotes Lagrange multipliers, hence o; > 0.
The search for an optimal saddle point is necessary because
the L, must be minimized with respect to the primal vari-
ables w and b and maximized with respect to the non-neg-
ative dual variable «,. By differentiating with respect to w
and b, and introducing the Karush-Kuhn-Tucker (KKT)
conditions for the optimum constrained function, then is
transformed to the dual Lagrangian Lp(x):

Max

m 1 m
: Lp(a) = Z %= 5 Z o0y - ;)
i=1 ij=1
subject to: o; = 0, i=1,...,m and Zoc,yi =0 (3)
pa
To find the optimal hyperplane, a dual Lagrangian
Lp(o) must be maximized with respect to non-negative o,.
The solution «; for the dual optimization problem deter-
mines the parameters w* and b* of the optimal hyperplane.
Thus, the optimal hyperplane decision function f{x)=
sgn({w" - x) + b*) can be written as

f(x) = sgn <Z 0 (xi,x) + b*> (4)
=1

In a typical classification task, only a small subset of the
Lagrange multipliers o; usually tends to be greater than
zero. Geometrically, these vectors are the closest to the
optimal hyperplane. The respective training vectors having
non-zero o; are called support vectors, as the optimal deci-
sion hyperplane f{x,o",b*) depends on them exclusively.

The above concepts can also be extended to the non-sep-
arable case (linear generalized SVM). In terms of these
slack variables, the problem of finding the hyperplane that
provides the minimum number of training errors (i.e., to
keep the constraint violation as small as possible) has the
formal expression as follows:

. l . “
1>/Ibl£1 W w—i—C;ii
subject to:  Yi((w-x;) +b)+&—-1>0
2 ()
&E=0

where Cis a penalty parameter on the training error, and &;
is the non-negative slack variables. SVM finds the hyper-
plane that provides the minimum number of training errors
(i.e., to keep the constraint violation as small as possible).

This optimization model can be solved using the
Lagrangian method, which is almost equivalent to
the method for solving the optimization problem in the
separable case. One must maximize the dual variables
Lagrangian:

m l m
Maax Lp(a) = Z % =3 Z 00,y - Xj)
i=1 ij=1
Subject to: 0<o; < C, i=1,...,mand Za,-y,:o

NG,

To find the optimal hyperplane, a dual Lagrangian
Lp(o) must be maximized with respect to non-negative o;
under the constraints Zl'.”:loc,-y,. =0 and 0 < o; < C. The
penalty parameter C, which is now the upper bound on
o;, 1s determined by the user. Finally, the form of optimal
hyperplane decision function is the same as (4).

The nonlinear SVM maps the training samples from the
input space into a higher-dimensional feature space via a
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mapping function @. The kernel function k(x;, x;) defines an
inner product as k(x; x;) = ¢(x;) - P(x;).

In the dual Lagrange (6), the inner products are replaced
by the kernel function, and the nonlinear SVM dual
Lagrangian Lp(a) (7) is similar with that in the linear gen-
eralized case

m 1 m
Lp(ax) = Z %= Z o0y, ik (xi - x;)
i=1 ij=1
Subjectto: 0< o, <C, i=1,...,mand Zoc,y,.:O
-1

(7)
Followed by the steps described in the linear generalized
case, we obtain the decision function of the following form:

f() = sen <iy,-oc:<¢<x>, o(x)) + b*)

= sgn (i:yioc;F (k(x,x;)) + b*> (8)

The kernel function we explored in our experiments was
the radial basis function (RBF) which is defined by (9).

k(xi,x;) = exp(—=ylx; — xlI*) ©)

3. Experiments and methodologies
3.1. Data collection and data partition

The source of 80 data points (tissue samples), including
52 specimens of non-familial invasive ductal breast cancer
from women and 28 mammary fibroadenomas, is the
Chung-Shan Medical University Hospital (Tsai et al.,
2005). After using PCR and Southern hybridization to
screen for the presence of S-globin, it was discovered that
the 80 specimens screened were DNA virus positive/nega-
tive for the presence of f-globin, the internal control.

To guarantee that the present results are valid and can
be generalized for making predictions regarding new data,
the data set is further randomly partitioned into training
and independent testing sets via a stratified 5-fold cross val-
idation. Each of the 5 subsets acts as an independent hold-
out test set for the model trained with the rest of the 4
subsets. The advantages of k-fold cross validation are that
the impact of data dependency is minimized and the reli-
ability of the results can be improved (Salzberg, 1997). In

Table 1
The data set is further randomly partitioned into training and independent
testing sets via a stratified 5-fold cross validation

Size of training set Size of testing set

Fold #1 65 15
Fold #2 65 15
Fold #3 65 15
Fold #4 65 15
Fold #5 60 20

addition, the classification models are developed with a
huge portion of the accessible data (80% in this case) and
all the data is utilized to test the trained models.

A pair of training and testing set is called a “fold” or a
“group” in this study. As shown in Table 1, due to the
number of cases (positive: 52, negative: 28) that can not
be divided by 5; the size of each fold is not the same — the
number of cases for fold #5 is 20, and for the others it is 15.

3.2. Feature selection

Feature selection is an important issue in building clas-
sification systems. It is advantageous to limit the number of
input features in a classifier in order to have a good predic-
tive and less computationally intensive model (Zhang,
2000). With a small feature set, the explanation of rationale
for the classification decision can be more easily realized. In
the area of medical diagnosis, a small feature subset means
lower test and diagnosis costs. F-score (Chen & Lin, 2005)
is a simple technique that measures the discrimination of
two sets of real numbers. Given training vectors xj,
k=1,2,...,m, if the number of positive and negative
instances are nyand n_, respectively, then the F-score of
the ith feature is defined as follows (Chen & Lin, 2005):

7 %)+ @ %)’

(l) = n + = +i 2 n - —(—)\2
n+1—1 k;](xl(c,i) —x,(- >) +ﬁ k;1(x1(¢‘,‘> —xf ))

(10)

where X;, )’clm, and )’CIH are the averages of the ith feature of

the whole, positive, and negative data sets, respectively; x,(cy
is the ith feature of the kth positive instance, and x; ;’ is the
ith feature of the kth negative instance. The numerator
indicates the discrimination between the positive and nega-
tive sets, and the denominator indicates the one within each
of the two sets. The larger the F-score is, the more likely
this feature is more discriminative (Chen & Lin, 2005).

3.3. Setting model parameters

In addition to the feature subset selection, proper model
parameters setting can improve the SVM classification
accuracy. The parameters that should be optimized include
penalty parameter C and the kernel function parameters
such as the gamma (y) for the radial basis function
(RBF) kernel. To design an SVM, one must choose a ker-
nel function, set the kernel parameters and determine a soft
margin constant C. With the RBF kernel, there are two
parameters to be determined in the SVM model: C and
gamma (y). The grid search approach (Hsu, Chang, &
Lin, 2003) is an alternative to finding the best C and
gamma when using the RBF kernel function.

In the grid search approach, pairs of (C,y) are tried and
the one with the best cross-validation accuracy is chosen.
After identifying a “better” region on the grid, a finer grid
search on that region can be conducted. To get good
generalization ability, grid search approach uses a
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validation process to decide parameters. That is, for each
of the k subsets of the data set D, create a training set
T =D — k, then run a cross-validation process as follows
(Chen & Lin, 2005; Hsu et al., 2003):

Step 1. Consider a grid space of (C,y) with log,C e
{—5,—4,...,12} and logyy € {—12,-13,...,5}.

Step 2. For each hyperparameter pair (C,y) in the search
space, conduct k-fold cross validation on the train-
ing set.

Step 3. Choose the parameter (C,y) that leads to the low-
est CV (cross validation) error classification rate.

Step 4. Use the best parameter to create a model as the
predictor.

Overall accuracy is averaged across all k partitions.
These k accuracy values also give an estimate of the accu-
racy variance of the algorithms.

3.4. Setting model parameters using grid search and selecting
input features using F-score

To build diagnosis models successfully, this study tried a
SVM-based strategy using grid search to optimize model
parameters and F-score calculation to select input features
(see Fig. 1). The procedure of grid search is the same as

Testing set Training set

I

that shown in Section 3.3. A cross-validation approach
with k =5 was also conducted to avoid overfitting during
training process. The overall testing accuracy is averaged
across all k partitions. That is, for each of the k subsets
of the data setD, create a training set 7= D — k, then
run a cross-validation process as follows:

Step 1. Calculate and sort the F-scores.
Step 2. For the possible number of features f,
fe{l,2,...,m}, where m is the total number of
features in a data set, do the following steps:
(2.1) Keep the first f features according to the
sorted F-scores.

(2.2) For the training set, calculate the average
SVM accuracy using 5-fold cross validation
(5-CV).

Step 3. Choose the f with the largest average 5-CV accu-
racy. Retrain the SVM with the training set, and
predict the test accuracy with the test set.

4. Experimental results and discussion
4.1. Experimental results

In this experiment, the importance of each feature is
measured by F-score, and the SVM parameters are opti-

Generate new data set with the number of feature f
f=1,... ,m, mis the total number of features

| l

Testing set Testing set
with feature with feature
subset f subset f

Initial
Cy

/

Train and predict using k-fold
cross validation

New(C,y)

v

CV accuracy

Generate new parameters
by Grid search

'

Yes

L . No
Termination criteria

algorithm

s

€y

Optimized

Yes

r=f+1

End

Fig. 1. The SVM-based strategy using grid search to optimize model parameters and F-score calculation to select input features.
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Table 2
The relative feature importance with F-score
Feature Fold #1 Fold #2 Fold #3 Fold #4 Fold #5 Average
HSV-1 0.388553 0.646448 0.334284 0.410013 0.615385 0.478937
HHV-8 0.353846 0.292308 0.240615 0.353846 0.272727 0.302668
CMV 0.105321 0.076555 0.033816 0.076555 0.040816 0.066613
EBV 0.002311 0.002311 0.006712 0.000617 0.002268 0.002844
HPV 0.00158 0.000287 0.005803 0.000296 0.001001 0.001793
0-7 T T T T T
]
* —— Fold#1
0.6 ‘ O0- Fold#2
< Fold#3
& Fold#4
05+ s \ # Fold#5
= Average
0.4t :
o
Q
0?0 03¢+
[
0.2+t
0.1+t
0.0t
-0.1 : - - - -
HSVA HHV8 CMV EBV HPV
DNA Virus
Fig. 2. The relative importance of DNA virus based on the F-score.
mized by grid search. Table 2 and Fig. 2 show the relative =~ Table 3
feature importance with F-score for each feature on each ~ The five feature subsets based on the F-score
fold. The average F-score for HSV-1, HHV-8, CMV, Model Number of selected features Features
EBV, and HPV (from high to low) are 0.478937, #1 1 HSV-1
0.302668, 0.066613, 0.002844, and 0.001793, respectively. #2 2 HSV-1 HHV-8
The degree of breast tumor associated with DNA viruses, ZZ i ﬁzzi ggzz gﬁz EBY
from high to low, are HSV-1, HHV-8, CMV, EBV, and 45 5 HSV-1 HHV-8 CMV EBV HPV

HPV. Therefore, five models with a different number of
features are constructed further to obtain the SVM classi-
fication models. As shown in Table 3, the five models with
different feature subsets based on F-score are {HSV-1},
{HSV-1 HHV-8}, {HSV-1 HHV-8§ CMV}, {HSV-1
HHV-8 CMV EBV}, and {HSV-1 HHV-8 CMV EBV
HPV}.

Tables 4 and 5 show the training and testing accuracies
for the five models, each model achieved a high average
overall accuracy of above 80%. Among the five models,
two models with feature subsets, {HSV-1, HHV-8} and
{HSV-1, HHV-8, CMV} achieved the highest training

and testing accuracy. For these two models, {HSV-1,
HHV-8} and {HSV-1, HHV-8, CMV}, Table 6 shows their
details for the best SVM parameters (c and gamma), train-
ing accuracy, and testing accuracy for each fold. Their
average negative, positive, and overall hit rate for model
achieved 0.71, 0.946666, and 0.866666, respectively.

Only two or three attributes, {HSV-1, HHV-8} or
{HSV-1, HHV-8, CMV}, can achieve identical high accu-
racy. It is not necessary to include all features for the sake
of cost saving. For accuracy, the positive hit ratio is higher
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Table 4

Overall training accuracy for each feature subset
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Number of selected features

SVM + GS + FS: Training accuracy

Fold #1 Fold #2 Fold #3 Fold #4 Fold #5 Average Standard deviation
1 78.4615 83.0769 76.9231 78.4615 83.3333 80.05126 2.636905
2 84.6154 87.6923 84.6154 86.1538 88.3333 86.28204 1.534166
3 84.6154 87.6923 84.6154 86.1538 88.3333 86.28204 1.534166
4 84.6154 87.6923 84.6154 86.1538 88.3333 86.28204 1.534166
5 84.6154 87.6923 86.1538 86.1538 88.3333 86.58972 1.306426
Table 5
Overall testing accuracy for each feature subset
Number of selected features SVM + GS + FS: Testing accuracy
Fold #1 Fold #2 Fold #3 Fold #4 Fold #5 Average Standard deviation
1 0.866667 0.666667 0.933333 0.866667 0.7 0.806667 0.104137
2 0.933333 0.8 0.933333 0.866667 0.8 0.866667 0.059628
3 0.933333 0.8 0.933333 0.866667 0.8 0.866667 0.059628
4 0.933333 0.666667 0.8 0.866667 0.8 0.813333 0.088443
5 0.933333 0.666667 0.8 0.866667 0.8 0.813333 0.088443
Table 6

Detail testing accuracy for feature subset of size 2 and 3

Features size =2

Features size = 3

Negative hit ratio Positive hit ratio

Overall hit ratio

Negative hit ratio Positive hit ratio Overall hit ratio

Fold #1 0.8 1 0.93333 0.8 1 0.93333

Fold #2 0.6 0.9 0.8 0.6 0.9 0.8

Fold #3 0.8 1 0.93333 0.8 1 0.93333

Fold #4 0.6 1 0.86667 0.6 1 0.86667

Fold #5 0.75 0.83333 0.8 0.75 0.83333 0.8

Average 0.71 0.946666 0.866666 0.71 0.946666 0.866666

than the negative hit ratio; on average, the overall hit ratio therefore, only two attributes {HSV-1, HHV-8} are

is highly accurate. The results reveal that the SVM model
has a good disarmament performance in diagnosing breast
cancer according to our data set.

4.2. Comparison with linear discriminate analysis

In this experiment, the importance of each feature and
the classificatory accuracy is measured by Linear discrimi-
nate analysis (LDA). Table 7 shows the significance of each
attribute. The feature subset {HSV-1, HHV-8, EBV} is
included in the LDA model except for Fold #2. The attri-
bute EBYV is slightly insignificant in the model of Fold #2;

Table 7
The P-level of each attribute for LDA
HSV-1 HHV-8 EBV CMV HPV

Fold #1 0.000025 0.000192  0.013389  0.071484  0.615577
Fold #2 1.56E—-07  0.000801 0.068939  0.184108  0.309406
Fold #3  2.70E—07  0.000040  0.002272  0.051081 0.096721
Fold #4  0.000002 0.000028  0.027227  0.060013  0.243957
Fold #5  9.12E—-08  0.001157  0.020698  0.289498  0.522833

included. Table 8 shows the details of training and testing
accuracy for each fold. Their average negative, positive,
and overall hit rate for the model achieved 0.71, 0.893,
and 0.833, respectively.

Table 9 shows that the accuracy of SVM is slightly supe-
rior to the accuracy of LDA. For the selected features,
SVM includes {HSV-1, HHV-8, CMV} or {HSV-I,
HHV-8}, while LDA includes {HSV-1, HHV-8, EBV} or
{HSV-1, HHV-8}.

Table 8
Training and testing accuracy for LDA
Training Testing
Negative Positive Overall  Negative Positive Overall
hit hit hit hit hit hit
ratio ratio ratio ratio ratio ratio
Fold #1 69.56522 92.85714 84.61539 0.800 1.000 0.933
Fold #2 73.91304 90.47619 84.61539 0.600 0.900 0.800
Fold #3 86.95652 88.09524 87.69231 0.800 0.900 0.867
Fold #4 71.42857 94.23077 86.25000 0.600 1.000 0.867
Fold #5 70.00000 97.50000 88.33334 0.750 0.667 0.700
Average 74.37267 92.63187 86.30129 0.710 0.893 0.833
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Table 9
Comparison summary between SVM and LDA
Negative Positive Overall Selected features
hit ratio hit ratio hit ratio
SVM 0.710 0.947 0.867 {HSV-1, HHV-8, CMV} or
{HSV-1, HHV-8}
LDA 0.710 0.893 0.833 {HSV-1, HHV-8, EBV} or
{HSV-1, HHV-8}

5. Discussion and conclusion

This paper has explored five DNA viruses — HSV-1,
EBV, CMV, HPV, and HHV-8 - affecting a breast tumor
diagnosed by using support vector machines. In order to
find the correlation DNA viruses with breast tumor, and
to achieve a high classificatory accuracy, F-score is adapted
to find the important features, and the grid search
approach is used to search the optimal SVM parameters.
The results revealed that the SVM-based model has good
performance in diagnosing breast cancer according to our
data set.

The present study’s results also show that the attributes
{HSV-1, HHV-8} or {HSV-1, HHV-8, CMV} can achieve
identical high accuracy, at 86% of average overall hit rate.
Although these two models have an identical high accu-
racy, considering the diagnosis cost and accuracy, this
study suggests simultaneously considering HSV-1 and
HHV-8 is feasible; however, only considering HHV-8 or
HSV-1 is less accurate.

From the SVM model and LDA, the authors found that
the HSV-1 and HHV-8 are the common important features
for breast tumor in distinguishing breast cancer and fibro-
adenoma. The development of an oncolytic viral therapy
for breast cancer with an HSV-1 mutant, HF10 is by Tesh-
igahara et al. (2004); the result also indicated that replica-
tion-competent HSV-1 mutants held significant potential
as cancer therapeutic agents. Allan et al. (2001) detected
two women who developed Kaposi’s sarcoma in the
lymphedematous arm many years after surgery for breast
cancer. Kaposi’s sarcoma-associated herpesvirus (KSHV,
HHYV-8) was suggested to be associated with breast cancer
(Newton et al., 2003). Additionally, from the SVM model,
CMYV has also the important features for breast tumors.
Richardson et al. (2004) investigated the association
between EBV and CMV immunoglobulin G levels and
the risk of breast cancer before age 40 in Australian breast
cancer families. Their results are such that CMV is a risk
factor for breast cancer. Furthermore, Richardson (1997)
suggested that CMYV is a risk factor for breast carcinomas.
The antibody activity against CMV increased in several
seropositive patients. None of these patients, however,
developed signs of a CMYV infection.

The LDA shows EBV is an important feature in breast
tumors beside HSV-1 and HHV-8. The first report of the
positive effect of EBV on breast cancer is Labrecque,
Barnes, Fentiman, and Grifin (1995). Chu, Chen, and
Chang (1998) studied the presence of EBV in breast cancer

and suggested that it may not play a significant role in the
etiology of breast cancers in Taiwan. Glaser, Ambinder,
DiGiuseppe, Horn-Ross, and Hsu (1998) concluded that
the EBV EBER-I1 transcript is not commonly expressed
in breast cancer, based on a broadly representative case ser-
ies. Bonnet et al. (1999) investigated the presence of EBV in
human breast cancers and indicated that EBV might be a
cofactor in the development of some breast cancers.
McCall et al. (2001) researched nine studies of EBV in
breast cancer and found only one of 115 cases that tested
positive for EBV.

Murray et al. (2003) concluded that EBV can be regu-
larly detected in whole sections of breast cancers, but its
viral copy number is very low. Based on SVM model and
LDA, the neglect factor is HPV. This finding is the same
as that of Klein and Klein (2005). Klein and Klein also
showed that HPV has not been associated with breast can-
cer. This report concluded that products of the HPV gen-
ome induce immortalization of human breast epithelial
cells and reduce their growth factor requirement.

The present study shows that the SVM-based classifier
for fibroadenoma or breast cancer diagnosis classification
model is satisfactory both in classificatory accuracy and
in finding the important features to discriminate between
fibroadenoma or breast cancer. The practical obstacle of
the SVM-based (as well as neural networks) classification
model is its black-box nature. A possible solution for this
issue is the use of SVM rule extraction techniques or the
use of hybrid-SVM model combined with other more inter-
pretable models. These issues remain to be solved in future
research.

References

Akbulut, H., Zhang, L., Tang, Y., & Deisseroth, A. (2003). Cytotoxic
effect of replication-competent adenoviral vectors carrying L-plastin
promoter regulated E1A and cytosine deaminase genes in cancers of
the breast, ovary and colon. Cancer Gene Therapy, 10(5), 388-395.

Allan, A. E., Shoji, T., Li, N., Buralge, A., Davis, B., & Bhawan, J. (2001).
Two cases of Kaposi’s sarcoma mimicking Stewart—Treves syndrome
found to be human herpesvirus-8. American Journal of Dermatopa-
thology, 23(5), 431-436.

Andres, A. (2005). Cancer incidence after immunosuppressive treatment
following kidney transplantation. Critical Reviews in Oncology! Hema-
tology, 56(1), 71-85.

Baeyens, A., Thierens, H., Claes, K., Poppe, B., de Ridder, L., & Vral, A.
(2004). Chromosomal radiosensitivity in BRCA1 and BRCA2 muta-
tion carriers. International Journal of Radiation Biology, 80(10),
745-756.

Bonnet, M., Guinebretiere, J.-M., Kremmer, E., Grunewald, V., Benha-
mou, E., Contesso, G., et al. (1999). Detection of Epstein-Barr virus in
invasive breast cancers. Journal of National Cancer Institute, 91(16),
1376-1381.

Cancer Registry Annual Report (2004). Executive Yuan (Taipei), Taiwan.

Chang, J.-G., Su, T.-H., Wei, H.-J., Wang, J.-C., Chen, Y.-J., Chang,
C.-P., et al. (1999). Analysis of TSG101 tumour susceptibility gene
transcripts in cervical and endometrial cancers. British Journal of
Cancer, 79(3-4), 445-450.

Chen, Y.-W., & Lin, C.-J. (2005). Combining SVMs with various feature
selection strategies. Available from http://www.csie.ntu.edu.tw/~cjlin/
papers/features.pdf.


http://www.csie.ntu.edu.tw/~cjlin/papers/features.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/features.pdf

586 C.-L. Huang et al. | Expert Systems with Applications 34 (2008) 578-587

Cheng, S. H., Tsou, M. H., Liu, M. C., & Jian, J. J. (2000). Unique
features of breast cancer in Taiwan. Breast Cancer Research and
Treatment, 63(3), 213-220.

Chu, J.-S., Chen, C.-C., & Chang, K.-J. (1998). In situ detection of
Epstein-Barr virus in breast cancer. Cancer Letters, 124(1), 53-57.
Cristianini, N., & Shawe-Taylor, J. (2000). An introduction to support

vector machines. Cambridge: Cambridge University Press.

Dimmock, N. J., & Primrose, S. B. (1994). Carcinogenesis and tumor
viruses: Introduction to modern virology (4th ed.). London: Blackwell
Science Ltd..

Fina, F., Romain, S., Ouafik, L. H., Palmari, J., Ayed, F. B., Benharkat,
S., et al. (2001). Frequency and genome load of Epstein-Barr virus in
509 breast cancers from different geographical areas. British Journal of
Cancer, 84(6), 783-790.

Frohlich, H., & Chapelle, O. (2003). Feature selection for support vector
machines by means of genetic algorithms. In Proceedings of the 15th
IEEE international conference on tools with artificial intelligence,
Sacramento, California, USA, pp. 142-148.

Glaser, S. L., Ambinder, R. F., DiGiuseppe, J. A., Horn-Ross, P. L., &
Hsu, J. L. (1998). Absence of Epstein-Barr virus EBER-1 transcripts in
an epidemiologically diverse group of breast cancers. International
Journal of Cancer, 75(4), 555-558.

Grinstein, S., Preciado, M. V., Gattuso, P., Chabay, P. A., Warren, W. H.,
De Matteo, E., et al. (2002). Demonstration of Epstein-Barr virus in
carcinomas of various sites. Cancer Research, 62(17), 4876-4878.

Hsu, C. W., Chang, C. C., & Lin, C. J. (2003). A practical guide to support
vector classification. Available from http://www.csie.ntu.edu.tw/
~cjlin/papers/guide/guide.pdf.

Hsu, C. W., & Lin, C. J. (2002). A simple decomposition method for
support vector machine. Machine Learning, 46(1-3), 219-314.

Hu, J., Hallden, G., Shorrock, C., Simpson, G., Coffin, R., Kamalati, T.,
et al. (2004). Combination of a second generation genetically modified
herpes simplex virus type 1 (HSV-1) with paclitaxel in the treatment of
breast cancer in vitro. Molecular Therapy, 9, S105.

Huang, J., Chen, H., Hutt-Fletcher, L., Ambinder, R. F., & Hayward, S.
D. (2003). Lytic viral replication as a contributor to the detection of
Epstein-Barr virus in breast cancer. Journal of Virology, 77(24),
13267-13274.

Joachims, T. (1998). Text categorization with support vector machines. In
Proceedings of European conference on machine learning (ECML),
Chemintz, DE, pp. 137-142.

Katano, M., Kubota, E., Nagumo, F., Matsuo, T., Hisatsugu, T., &
Tadano, J. (1995). Inhibition of tumor cell growth by a human B-cell
line. Biotherapy, 8(1), 1-6.

Kecman, V. (2001). Learning and soft computing. Cambridge, MA: The
MIT Press.

Klein, G., & Klein, E. (2005). Surveillance against tumors—is it mainly
immunological? Immunology Letters, 100(1), 29-33.

Labrecque, L. G., Barnes, D. M., Fentiman, I. S., & Grifin, B. E. (1995).
Epstein-Barr virus in epithelial cell tumors: a breast cancer study.
Cancer Research, 55(1), 39-45.

La Vecchia, C., Tavani, A., Franceschi, S., & Parazzini, F. (1996). Oral
contraceptives and cancer. A review of the evidence. Drug Safety,
14(4), 260-272.

Lee, Y. K., & Lee, C. K. (2003). Classification of multiple cancer types by
multicategory support vector machines using gene expression data.
Bioinformatics, 19(9), 1132-1139.

Lee, Y.-J., Mangasarian, O. L., Wolberg, & W. H. (2000). In Breast cancer
survival and chemotherapy: a support vector machine analysis. DIMACS
series in discrete mathematics and theoretical computer science, Vol. 55,
pp. 1-20.

Lee, S. W., Reimer, C. L., Oh, P., Campbell, D. B., & Schnitzer, J. E.
(1998). Tumor cell growth inhibition by caveolin re-expression in
human breast cancer cells. Oncogene, 16(11), 1391-1397.

Liu, Y., Klimberg, V. S., Andrews, N. R., Hicks, C. R., Peng, H., Chiriva-
Internati, M., et al. (2001). Human papillomavirus DNA is present in
a subset of unselected breast cancers. Journal of Human Virology, 4(6),
329-334.

Liu, H,, Xu, Z.-L., Wang, Y., Yang, L., Feng, O., Li, Y., et al. (1993).
Production of anti-tumor human monoclonal antibodies using differ-
ent approaches. Human Antibodies, 4(1), 2-8.

Liu, H. X., Zhang, R. S., Luan, F., Yao, X. J.,, Liu, M. C., Hu, Z. D.,
et al. (2003). Diagnosing breast cancer based on support vector
machines. Journal of Chemical Information and Computer Sciences,
43(3), 900-907.

Ma, N., Szmitko, P., Brade, A., Chu, 1., Lo, A., Woodgett, J., et al.
(2004). Kinase-dead PKB gene therapy combined with hyperthermia
for human breast cancer. Cancer Gene Therapy, 11(1), 52—60.

MccCall, S. A., Lichy, J. H., Bijwaard, K. E., Aguilers, N. S., Chu, W.-S.,
& Taubenberger, J. K. (2001). Epstein-Barr virus detection in ductal
carcinoma of the breast. Journal of National Cancer Institute, 93(2),
148-150.

Murray, P. G., Lissauer, D., Junying, J., Davies, G., Moore, S., Bell, A.,
et al. (2003). Reactivity with a monoclonal antibody to Epstein-Barr
virus (EBV) nuclear antigen 1 defines a subset of aggressive breast
cancers in the absence of EBV genome. Cancer Research, 63(9),
2338-2343.

Newton, R., Ziegler, J., Bourboulia, D., Casabonne, D., Beral, V.,
Mbidde, E., et al. (2003). The sero-epidemiology of Kaposi’s sarcoma-
associated herpesvirus (KSHV/HHV-8) in adults with cancer in
Uganda. International Journal of Cancer, 103, 226-232.

Overview of Public Health (1998). Department of Health, Executive Yuan
(Taipei), Taiwan.

Pontil, M., & Verri, A. (1998). Support vector machines for 3D object
recognition. [EEE Transactions on Pattern Analysis and Machine
Intelligence, 20(6), 637-646.

Ribeiro-Silva, A., Ramalho, L. N. Z., Garcia, S. B., & Zucoloto, S. (2004).
Does the correlation between EBN-1 and p63 expression in breast
carcinomas provide a clue to tumorigenesis in Epstein-Barr virus-
related breast malignancies? Brazilian Journal of Medical and Biolog-
ical Research, 37(1), 89-95.

Richardson, A. (1997). Is breast cancer caused by late exposure to a
common virus? Medical Hypotheses, 48, 491-497.

Richardson, A. K., Cox, B., McCredie, M. R. E., Dite, G. S., Chang,
J.-H., Gertig, D. M., et al. (2004). Cytomegalovirus, Epstein-Barr
virus and risk of breast cancer before age 40 years: a case-control
study. British Journal of Cancer, 90(11), 2149-2152.

Salzberg, S. L. (1997). On comparing classifiers: Pitfalls to avoid and a
recommended approach. Data Mining and Knowledge Discovery, 1,
317-327.

Scholkopf, B., & Smola, A. J. (2000). Statistical learning and kernel
methods. Cambridge, MA: MIT Press.

Still, I. H., Hamilton, M., Vince, P., Wolfman, A., & Cowell, J. K. (1999).
Cloning of TACCI, an embryonically expressed, potentially trans-
forming coiled coil containing gene, from the 8pll breast cancer
amplicon. Oncogene, 18(27), 4032-4038.

Strender, L.-E., Blomgren, H., Petrini, B., Wasserman, J., Forsgren, M.,
Norberg, R., et al. (1981). Immunologic monitoring in breast cancer
patients receiving postoperative adjuvant chemotherapy. Cancer,
48(9), 1996-2002.

Svane, I. M., Nikolajsen, K., Hansen, S. W., Kamby, C., Nielsen, D. L., &
Johnsen, H. E. (2002). Impact of high-dose chemotherapy on antigen-
specific T cell immunity in breast cancer patients. Application of new
flow cytometric method. Bone Marrow Transplantation, 29(8), 659-666.

Teshigahara, O., Goshima, F., Takao, K., Kohno, S., Kimata, H., Nakao,
A., et al. (2004). Oncolytic viral therapy for breast cancer with herpes
simplex virus type 1 mutant HF 10. Journal of Surgical Oncology,
85(1), 42-47.

Tsai, J.-H., Tsai, C.-H., Chang, M.-H., Lin, S.-J., Xu, F.-L., & Yang, C.-
C. (2005). Association of viral factors with non-familial breast cancer
in Taiwan by comparison with non-cancerous, fibroadenoma, and
thyroid tumor tissues. Journal of Medical Virology, 75, 276-281.

Vapnik, V. N. (1995). The nature of statistical learning theory. New Y ork:
Springer-Verlag.

Wang, S., & Vos, J.-M. (1996). A hybrid herpesvirus infectious vector
based on Epstein-Barr virus and herpes simplex virus type 1 for gene


http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

C.-L. Huang et al. | Expert Systems with Applications 34 (2008) 578-587 587

transfer to human cells in vitro and in vivo. Journal of Virology, 70(12),
8422-8430.

Widschwendter, A., Brunhuber, T., Wiedemair, A., Mueller-Holzner, E.,
& Marth, C. (2004). Detection of human papillomavirus DNA in
breast cancer of patients with cervical cancer history. Journal of
Clinical Virology, 31(4), 292-297.

Wu, A., Mazumder, A., Martuza, R. L., Liu, X., Thein, M., Meehan, K.
R., et al. (2001). Biological purging of breast cancer cells using an
attenuated replication-competent herpes simplex virus in human
hematopoietic stem cell transplantation. Cancer Research, 61(7),
3009-3015.

Xue, S. A., Lampert, I. A., Haldane, J. S., Bridger, J. E., & Griffin, B. E.
(2003). Epstein-Barr virus gene expression in human breast cancer:
protagonist or passenger? British Journal of Cancer, 89(1), 113-119.

Yip, Y. L., Hawkins, N. J., Clark, M. A., & Ward, R. L. (1997).
Evaluation of different lymphoid tissue sources for the construction of
human immunoglobulin gene libraries. Immunotechnology, 3(3),
195-203.

Yu, G. X., Ostrouchov, G., Geist, A., & Samatova, N. F. (2003). An
SVM-based algorithm for identification of photosynthesis-specific
genome features. In 2nd IEEE computer society bioinformatics confer-
ence, CA, USA, pp. 235-243.

Yu, H., Rohan, T. E., Cook, M. G., Howe, G. R., & Miller, A. B. (1992).
Risk factors for fibroadenoma: a case-control study in Australia.
American Journal of Epidemiology, 135(3), 247-259.

Zhang, G. P. (2000). Neural networks for classification: a survey. IEEE
Transactions on Systems, Man, and Cybernetics—Part C: Applications
and Reviews, 30(4), 451-462.

Zhu, Z. B., Makhija, S. K., Lu, B., Wang, M., Kaliberova, L., Liu, B.,
et al. (2004). Transcriptional targeting of adenoviral vector through
the CXCR4 tumor-specific promoter. Gene Therapy, 11(7), 645-648.

Ziegler, R. G., Hoover, R. N., Pike, M. C., Hildesheim, A., Nomura, A.
M., West, D. W., et al. (1993). Migration patterns and breast cancer
risk in Asian-American women. Journal of National Cancer Institute,
85, 1819-1827.



	Prediction model building and feature selection with support  vector machines in breast cancer diagnosis
	Introduction
	Basic concepts of SVM classifier
	Experiments and methodologies
	Data collection and data partition
	Feature selection
	Setting model parameters
	Setting model parameters using grid search and selecting input features using F-score

	Experimental results and discussion
	Experimental results
	Comparison with linear discriminate analysis

	Discussion and conclusion
	References


