, : L Ry &
17 Fola Bl gl B4 73t
FREREATPFELR R EHFATE B % 2

FTElARE A BB TR AN s PR

vay clReARE FeAE

34 s - NSC99-2221-E-009-110-MY3
NEYPEF 2010# 082 01 p 2 2003# 072 310

PR AEFA TR
LRaifFA L a
FESEAR A B CHIRE MR R T

P A A L A . R |

4 = 3 W 102# 9% 5 p

=
(g

&@@3

%%%\’limf*ﬁ FHR AR AFERT PR angorl 2 5 1AL
ik s Hiepai? ﬁs\bﬁa—%%ﬁf&mﬁwwf’—PUMJ—]k
lﬁim(yf]a_al’?r@n)w%ﬂsk’ﬁ—fl;ﬁf@;?——k 4\«..1—1931}?] # & 4% et
3“‘“?{)34'13%’?1?&’4—& Tr-+HFlg FHALEEHFT 3258
Sl e M A FhFgT o 2F Baﬂﬁgqymr;/%#kLJmmg(#% [F] * #&
MA 25 B) AFTHR AMAFEFRT > TRAHAEBWDEZLF BT F AR

¥ o rﬂp%‘ﬁ% Ty B 8 F %‘rl? T L b e [{] R & R TR O B 4

1o Fm G HEWNE L AN AT ll;ﬁd g [l engopl B B %o
Lo AFT Y BB LA 5V F B 2 (meta-heuristic methods) & <f# gt R %\ o KTy I
Bd e F] AFT IR T ool PP OREcEAFTY T
W™ 1 el 2850 WA AP 1 SR AR AL j\p{;{?_ ®
AN d AR > P REAE T B, o T BRAE | 55 B o 1R
BABELNFEE D AT KD T % X 2 (GA, Tabu, GA-Tabu, SA,

M-MMAX, PACO, PSO) » ‘5§ % #l:# > GA-Tabu 7 &/ > H s 7 5% -

R4S © R AR s s s RN 4 A NE AT N \ér]/ﬁa ER N S EE

Abstract

This research project addresses a job scheduling problem for steppers, which are
bottleneck machines in a semiconductor fab, in order to increase the fab throughput. A
stepper externally is equipped with four ports; each port is used to accommodate a job
(i.e, a wafer container that contains up to 25 wafers). A stepper internally is composed
of a sequence of chambers; each of which undergoes an operation on a wafer. Each
wafer, originally located in job container, must individually pass through the sequence
of chambers and go back to its original container. In a low-yield environment, some
chambers in a stepper may unexpectedly become idle due to the limited capacity of
external ports, which in turn results in the capacity loss of the stepper. We found that
such a capacity loss can be alleviated by scheduling methods. This research project
develops several meta-heuristic algorithms to solve the problem. We first consider
only the single stepper-problem and extend to investigate the multiple-steppers
problems. The multiple-steppers problem is concerned with two decisions: (1) job
assignment decision, (2) job sequence decision. We propose a novel chromosome
representation to model the two decisions and develop seven meta-heuristic
algorithms (GA, Tabu, GA-Tabu, SA, M-MMAX, PACO, PSO) to solve scheduling
problem. Numerical experiments indicate that GA-Tabu outperforms the other
meta-heuristic algorithms.

Keywords: Scheduling, in-line Steppers, Flow Shop Scheduling, Meta-heuristic
Algorithms, Genetic Algorithms, Tabu Algorithm.

1. Introduction

In semiconductor manufacturing, in-line steppers (or simply called steppers) are
the most expensive machines, which may cost up to 40 million dollars per tool and
usually become the bottleneck of a fab (semiconductor factory). Effective scheduling
for steppers is very important because it could significantly affect the fab throughput,
cycle time, and on-time delivery.

Most prior studies on scheduling stepper are developed under a high-yield
assumption (Chern and Liu, 2003; Dabbas and Flowler, 2003; Duwayri et al., 2006;
Sha et al. 2006; Morrison and Martin, 2007; Wu and Chang, 2006; Wu et al.,2007,
2008; Chen, 2009). That is, they implicitly assumed the production yield is 100% and
no wafer will be scrapped. Each wafer lot (a container for transporting wafers) is
always a full-lot (typically carrying 25 wafers). Under this assumption, they took a
stepper as a single machine and a wafer lot as a job for scheduling. This implies that a
stepper will not be idle as long as it has wafer lots waiting to be processed.

Recently, a few studies (Wu and Chiou, 2010; Chiou and Wu, 2009) noticed that
a stepper in a low-yield scenario may become idle even though it has many wafer lots
waiting to be processed. They modeled the interior configuration of an in-line stepper
as a special-featured flow shop, which comprises a series of chambers and each piece
of wafer has to travel through the flow shop. They discovered that some chambers of
the flow shop might become idle due to the inclusion of small-lots (i.e., carrying less
than 25 wafers) and developed some scheduling algorithms to alleviate such chamber
idleness in order to increase the throughput of steppers. These algorithms were
developed in the context of scheduling a single in-line stepper.

However, in practice, there are multiple in-line steppers to be scheduled. This
paper enhances the prior scheduling algorithms to deal with the scheduling for

multiple in-line steppers. Such a scheduling problem involves two decisions: (1) how

to allocate jobs to each stepper, and (2) how to sequence the allocated jobs for each
stepper.

In this research, given N jobs to be allocated and scheduled on multiple steppers,
a sequence of the N jobs is called a chromosome. We developed a novel
chromosome-decoding scheme that can unveil the two decisions suggested by a given
chromosome. Then, various enhanced versions of meta-heuristic algorithms (GA,
Holland (1975), Tabu, GA-Tabu, SA, M-MMAX, PACO, PSO) were proposed and
tested. Of the tested algorithms, numerical experiments indicate that the GA-Tabu
outperforms the others in most cases.

The remainder of this paper is organized as follows. Section 2 explains the
research problem in more detail. Section 3 describes how to compute the performance
of a scheduling solution. Section 4 presents the chromosome-decoding scheme.
Section 5 describes the solution architecture of the GA-Tabu algorithm. Numerical

experiments are reported in Section 6 and concluding remarks are in the last section.

2. Problem Statement

The research problem is introduced by first describing the interior configuration,
the exterior interfacing equipments, and the transportation mechanisms of an in-line
stepper. Then, we use an example to illustrate such an in-line stepper may suffer a
capacity loss in a low-yield scenario. Finally, the problem for scheduling multiple
in-line steppers and its performance metric are presented.

The interior configuration of an in-line stepper comprises a sequence of
manufacturing stages, each of which involves one or more than one functionally
identical chambers (Quirk, 2001). Each chamber processes one piece of wafer at a
time. To undergo the operation at the stepper, a piece of wafer has to travel through all
the manufacturing stages. Of these chambers, a particular type (called the aligner
chamber) may need a setup. The aligner chamber is typically the bottleneck chamber
and involves only one chamber at this manufacturing stage. Such a configuration can
be seen as a flow shop if we consider each stage as a workstation and each chamber as
a machine in a workstation (Yang, 1999; Pinedo, 2008). A simplified illustration of an
in-line stepper is shown in Figure 1, where each manufacturing stage involves only
one chamber.

See Figure 1, the exterior of an in-line stepper is directly interfaced with a dock
area which generally involves four ports. Each port serves as a one-job-buffer for the
in-line stepper, which can accommodate only one job at a time. A job (or a wafer lot)
IS a container, which involves at most 25 pieces of wafers. Apart from the dock area, a
large-sized stocker (also called the WIP area) is equipped to store the wafer jobs that
are to be transported to the dock area.

The transportation mechanisms of an in-line stepper are explained below. See
Figure 1, a wafer job has to undergo a round-trip travel. A job first moves from the

WIP area to the dock area, placed on a free port. Then, each piece of wafer will

sequentially exit the job (a container), go through the in-line stepper, and back to the
job. Finally, the job is triggered to move back to the WIP area, while all its wafers
complete operations. In summary, there is a transportation incompatibility in the
round-trip travel. That is, the transportation unit between the WIP area and the dock
area is a job, while that between the dock area and the chamber area is a piece of
wafer.

Notice that the buffer capacity at the dock area is quite limited. Suppose the dock
area involves only four ports. Then, the dock area can simultaneously accommodate at
most four jobs. That is, we cannot move an additional job to the dock area if each of
the four ports is currently occupied or not free.

Due to limited buffer capacity in the dock area, we may face a capacity-loss of
chambers in a low-yield scenario, as explained by the following example. Consider a
simplified case where an in-line stepper comprises 22 stages and each stage involves
only one chamber, four jobs (A, B, C, and D) are on the dock area, and one job (E) is
waiting in the WIP area. Job A contains 25 wafers and jobs B, C, and D in total carry
only 17 wafers. Suppose the processing sequence is A>B->C->D. Following the
sequence, the (25 +17) wafers of the four jobs will successively travel through the
chambers and back to the ports. While the last wafer of job A just finishes its
operations, job A must still stay on the port in order to get this wafer back. At this
instant, the 17 unfinished wafers of jobs B, C, and D will occupy the last 17 chambers
of the stepper. The remaining five chambers then become idle because jobs A, B, C,
and D now occupy the dock area, and no more port is available for job E to access.

Yet, such a capacity-loss in chambers may be alleviated if a different job
sequence (B>C—>D > A) is applied. Suppose job B now contains 8 wafers. While the
last wafer (8th one) of job B finishes its travel, we still have 34 unfinished wafers. Of

these unfinished wafers, 22 ones reside in the chamber area and 12 ones stay in the

ports. This implies that no chamber will be idle while the port originally for job B
becomes free to accommaodate job E. Thus, the capacity-loss of an in-line stepper may
be alleviated by applying an appropriate job sequence.

The research problem is concerned with the scheduling of multiple in-line
steppers in a low-yield scenario. Such a scheduling problem involves two decisions:
(1) how to allocate jobs to each stepper, and (2) how to sequence the allocated jobs for
each stepper. That is, given N jobs to be scheduled for m in-line steppers. The N jobs

have to be categorized into m groups, and the jobs of each group have to be sequenced.

The performance metric of the scheduling problem is defined as C” = max{C,.,...,C,_},

where C, is the makespan of i-th stepper. That is, Cis the makespan required to

complete the N jobs, and N/C"could be used to denote the total throughput rate of
the m steppers. In the scheduling, we aim to maximize total throughput rate (N/C"),

which also implies the minimization of C”.

3. Makespan Evaluation for Job Sequences

Given a job sequence to be processed by the i-th stepper, this section describes
how to compute C, (the makespan), adapted from Ruiz and Maroto (2006). The
makespan evaluation procedure adopts an emulation-based approach. We virtually
sent each wafer in order (following the job sequence) into the in-line stepper and look
for an available chamber that can finish the job at the earliest time. The completion
time of each wafer at each stage is progressively recorded, which ultimately yield the
makespan.

To undergo an operation at an aligner chamber, a mask (an auxiliary device) is
needed. A particular mask denotes a particular operational recipe. Different jobs may
require different operational recipes. If so, we need a setup time to change masks at

the aligner chamber; otherwise no setup is needed. .

Notation

j: index of job

k: index of wafer

i: index of stage

I: index of chamber

a: index of the aligner chamber which requires setup

o : total number of ports in the dock

n: total number of jobs to be processed by the in-line stepper
M: total numbers of stages in the in-line stepper

m. : total number of chambers at stage i

Puy - Processing time required by chamber | at stage i to process wafer k in job j
7. ajob sequence for the n jobs, 7 =[x(),...7(n)]
w(z(])): the job in the jth position of sequence =

7z(j) : total number of wafers in job j

t, : transportation time for uploading a job to the dock area

t, : transportation time for downloading a job from the dock area

Sitx(k - SEtUp time required by chamber | in stage i to process wafer k in job 7 (j)

ifizaork=1then S, =0,

otherwise, Si,l,fr(j),k = 5”(1.)‘”“71)

5”(1.)'”(]_1) : setup time required for the aligner chamber to switch production from job

z(j-1)to job z(j); &

2(i)(j-0)

s, iIf 7(j—1) and =(j) use different

masks, and &

(i =0, otherwise

A .- the time epoch when chamber I in stage i just turns to be available; that is, while
the chamber (i,l) is free at t, A, is the last wafer-completion-epoch
before t; while the chamber (i,I) is in operation at t, A, is the first

wafer-completion-time after t.

Ci-(j)« - the completion time of wafer kin job 7(j) at stage i

C(r): the makespan of job sequence =

The makespan evaluation procedure is governed by the following equations.

Ci,;r(j),k = min{maX{A,l,t + Si,l,zr(j),k’Ci—l,ﬂ(j),k}+ pi,l,zz(j),k}

1<I<m

where t=C_, ., for 1<i<M 1)
Conapun = Cumatpwtiy +la (2)
Coariywee(y o = Cortismn for 1<j<n-p (3)
C(r)= CM+1,;r(n),W(7r(n)) (4)

Eq. (1) expresses the completion time of a particular wafer at each stage i. The

term A, +S;, .« denotes the time epoch when chamber | at stage i is ready for
processing wafer k in job 7(j), and the term C, , ., , denotes the time epoch when
the wafer is available to be processed at the chamber.

Eq. (2) describes the completion time of job z(j) at stage M+1 (i.e., the dock
area). Eq. (3) expresses the job arrival/departure relationships for the dock. The
equation indicates that only when job 7(j) in the dock has been moved away, can
job z(j+ p) in the WIP buffer be transported to the dock (i.e., stage 0). Eq. (4)

computes the makespan C(z), the completion time of the last wafer in the last job.

4. Chromosome Representation and Decoding

As stated in Section 1, the scheduling problem involves two decisions: (1)
allocation decision—how to allocate jobs to each stepper, and (2) sequencing
decision—how to sequence the allocated jobs for each stepper. That is, given N jobs
to be scheduled on m steppers, we first need to categorize the N jobs into m groups,
each of which is processed by a particular stepper. Then, we need to determine the job
sequence for each stepper.

Let a particular sequence of the N jobs be called a chromosome. In this research,
we develop a chromosome-decoding scheme. By the decoding scheme, a chromosome
can be interpreted as a particular scheduling solution, which involves two
decisions—one is the allocation decision and the other is the sequencing decision.

To introduce the chromosome-decoding scheme, some notation is described
below. Denote a chromosome by 7 =[z(1),..7(N)], where 7z(j), called a gene,

represents the job in the jth position of sequence =. For job 7z(j), represent the

number of wafers in the job by w_;, and its processing time for a piece of wafer at
the aligner chamber (the bottleneck chamber) by p,;, . Then, denote the total

processing time at the aligner chamber for job 7z(j) by t ;) =W, - P, - The

procedure for interpreting the job allocation decision from a given chromosome is

described below.

Procedure Job_Allocation

Step 1: Compute the threshold for forming a job group

N
T= Zt”(j) ; [*total processing time of the N jobs*/

j=1

h=T/m; /[* processing time threshold for forming a job group*/

Step 2: Form the job groups
k =1, /*index of job group or stepper*/

Fori=1toN
T = Ztnm ; [* compute total load of the first i jobs*/
j=1

If (T, >k-h) then [*criterion for forming job groups*/

Ck)=i; [*form a new job group*/

k=k+1; [* update the indexing of job group*/
Endif
If (k=m) then

go to Step 3 [*check if job group formation finished*/
Endif

Endfor
Step 3: Output job allocation results

Output C(k), 1<k<m-1

Given the job allocation decision C(k), the procedure for determining the job
sequence decision for each stepper is relatively easy. The job sequence for stepper k
(1<k<m)is =z, =[x(s),..7(e)], where s=C(k-1)+ 1and e=C(k), in which we
denote C(0)=0 and C(m)=x(N).

The chromosome-decoding scheme is illustrated by a three-stepper example as
shown in Figure 2. See the figure, there are 9 jobs to be scheduled on 3 steppers. The
total processing time is T = 1.6 hours and the threshold is h = 0.53 hour. The set of
jobs allocated to stepper 1 and their job sequence are 7z, ={J,,J,J;}, and those for

the other two steppers are 7, ={J,,J,} and 7, ={J,,J;, 34,5}

5. GA-Tabu Algorithm

To solve the scheduling problem, we developed seven meta-heuristic algorithms
(GA, Tabu, GA-Tabu, SA, MMAX, PACO, and PSO) These algorithms adopt the
algorithmic architectures published in prior studies as referenced below, but are
distinguished in embedding the novel chromosome decoding scheme we proposed. Of
these seven enhanced algorithms, the GA-Tabu performs the best and is presented

here.

5.1 Chromosome Fitness

As stated in Section 4, given a chromosome 7z =[x (1),...7(N)], we can use the
chromosome decoding scheme to extract its two decisions— jobs allocation among
steppers and job sequencing for each stepper. Then, given a job sequence
7, =[7(s),..7(e)] for each stepper k, 1<k <m, we can compute its makespan C,

by the procedure in Section 3. In turn, the scheduling performance (also called fitness)
of the chromosome =z =[z(1),..7(N)] is C"=max{C,,..,C_}, which is also

denoted by C"(z) hereafter.

5.2 Algorithmic Procedures

The GA-Tabu algorithm is composed of three procedures. The main one is called
procedure GA-Tabu which calls two sub-procedures GA(t) and Tabu(z;,, 7,). There
are two sets of chromosomes. One is called the GA-pool P(t), which include N
chromosomes and iteratively evolve by procedure GA(t). The other set is called
Seed_Set, which involves only one chromosome (called seed) and iteratively evolve

by procedure GA-Tabu. The procedure GA(t) is designed to evolve from P(t) to

P(t+1) to possibly include better chromosomes and identify its best four ones. The

procedure Tabu(z;,,7,,) IS intended to search the neighborhood of a given
chromosome 7, to find the best chromosome (z,,) in the searched neighborhood.
Notice that 7, is selected either from the GA-pool or from the Seed_Set.

In procedure GA(t), we use four types of crossover operators and three types of
mutation operators to create new chromosomes. A crossover operator is designed to
create a new pair from an existing pair, while a mutation operator is to create a new
one from an existing one. The four types of crossover operators are C1 (one point
crossover) by Reeves (1995), LOX (linear order crossover) by Croce et al. (1995),
PMX (partially mapped crossover) by Goldberg (1989), and NABEL operator by Bac

and Perov (1993). The three types of mutation operators are Swap, Inverse, and

Insert (Wang and Zheng, 2003; Nearchou, 2004).

In procedure Tabu(z;,, 7,), @ pairwise interchange of two genes (jobs) is called
a tabu_move. For example, given a n-gene chromosome 7z, =[J,,Js,J;,J,,J5....]. By
interchanging the two genes J, and J,, we can create a new chromosome
7, =[3,,35,3;,3,,Js,...]. The tabu_move for causing such an interchange can be
denoted by move (J,,J;) or move(J,,J;). To facilitate the following presentation of
procedure Tabu(z,,,7,,), we represent a tabu_move by move (z,, » 7), which
denotes an interchange of two particular jobs that transform 7z, into =.

Accordingly, the total number of tabu_moves for a chromosome
7 =[x@),..7(n)] is n(n—-1)/2. Let the set of all these tabu_moves be represented
by Move_Set. By applying each tabu_move in the Move_Set to the chromosome =,

we can create n(n—-1)/2 new chromosomes. The set of these newly created

chromosomes are called the neighborhood of 7z, which is denoted by Neighbor () .

Notation

GA-Tabu: the main procedure

7™ the current best solution ever found by procedure GA-Tabu

GA(t): a sub-procedure designed to evolve P(t)

P(t): a set of N chromosomes, called the GA-pool. .

Teny © the best chromosome in P(t)

zZ0et: the 2™ best chromosome in P(t)

Tans™ : the 3" best chromosome in P(t)

Teet: the 4™ best chromosome in P(t)

Tabu (7, 7,,): a procedure designed to search the neighborhood of rz;,, where 7,

in?
is the best chromosome found in the searched region.
Tabu_list: a limited set of tabu_moves, where a tabu_move represents an interchange

of two particular jobs.

Seed_Set: a set of one chromosome, which iteratively evolve by procedure GA-Tabu

7°: the present chromosome (called seed) in the Seed_Set

Procedure GA-Tabu

Initialization: Randomly select a chromosome as 7™

For each iterationt (0<t<T,)

Step 1: Call GA(t) to find 7gyi.1, Zontas Tomrss Tenrn i P(t+1)

best

Step 2: If 7oy, is better than 7z
best best

(] Update ﬂbeStby ”gf}wl (Ie! T (_”GA,Hl

® Call Tabu (7™, x,,) to search the neighborhood of 7™ for

if 7z,

possibly improving 7°(i.e., update z**'by 7

out

is better)

Step 3: If 7oy, keepsworse than z** for exact k (k < 45) iterations

® Whilek=20 /*theageof 7° is 20 iterations*/

Call Tabu (737, 7,) for possibly improving 7™

® Whilek=30 /*theage of 7™ is 30 iterations*/

Call Tabu (73,15, 7o,) for possibly improving 7™

® Whilek =40 /*theageof z™" is 40 iterations*/

Call Tabu (7gx 1, 74,) for possibly improving

Step 4: If 7y, keepsworse than 7°* for k =40 +5n (n =1, 2...) iterations

I* If 7" cannot be improved by P(t+1) for over 40 iterations*/

seed

/* Try to improve z**'by using 7°**, the chromosome in Seed_Set*/

® Call Tabu (#**,r,,) for possibly improving 7z

® Update the chromosome in Seed_Set (i.e., 7° «)

Step 5: Put 7°* in P(t+1);

Next iteration until t > T

Procedure GA(t)

Step 1: If t = 0, randomly create N chromosomes to form the initial GA-pool P(0).

If t=0, input the GA-pool P(t).

Step 2: Use crossover and mutation operators to create N(P ¢ +Pmy) new chromosomes,

where 0<P_,P_ <1.Place the new chromosomes in a set S.

cr!'’mu —

Step 3: Use the resolute wheel screen method (Michalewicz, 1996) to select N

chromosomes out of the set S P(t). Place the selected N chromosomes in

the GA-pool P(t+1)

Step 4: Output the best four chromosomes in P(t+1): 7zgs.., Zoarn, Toaru:

4—best
GAt+1*

Procedure Tabu(z, ,7,,)

Step O: Initialization 7, = 7.
Step 1: Create a set of new chromosomes, Neighbor (7z,,)
Step 2: Try to improve 7,

® Identify the best q chromosome 7*,...z% from Neighbor (z,)

® If 7' isbetter than 7™, then =, =7';

Step 3: Update tabu_list /*Try to add a new tabu_move to the tabu_list*/

Fori=1,q

If move(r, — z') etabu_list, then go to Next i

If move(r, — z') ¢tabu_list,

Then
® Update the tenure of each tabu_move in the tabu_list
[* Each tabu_move’s tenure starts at 1 and is added by 1 while a new
tabu_move is found*/

® Remove the tabu_move with longest tenure from the tabu_list;

® Put move(r, — x')in the tabu_list;
® |f (ﬂ-in — ﬁseed)’ set ”seed :7Z'i

® GotoStep4
Next i

Step 4: Return

6. Experiments and Discussion

Numerical experiments and the uniqueness of this research are to be discussed in
this section. In numerical experiments, we compare seven meta-heuristic algorithms
in solving the multiple-steppers scheduling problem. These algorithms are chosen
because their algorithmic flows have been widely applied to solving scheduling
problem. Referring to some prior studies, we adapted these algorithmic flows by
embedding the novel chromosome interpretation scheme.

These prior related studies include GA-Tabu by Chiou and Wu (2009), simulated
annealing (SA) by Osman and Potts (1989), genetic algorithm (GA) by Wu and Chiou
(2009), Tabu search (TS) by Widmer and Hertz (1989), particle swarm optimization
(PSO) by Liao et al. (2007), and two ant colony algorithms (ACO) by Rajendran and
Ziegler (2004)—respectively called MMAX and PACO.

Personal computers equipped with PENTIUM Dual-Core 2.8 GHz CPU and 1
Gb memory are used to run the programs, coded in Visual C++. The parameters of the
six meta-heuristic algorithms are designed by referring to prior studies accordingly.
In the three algorithms (GA-Tabu, GA, and Tabu), we set N = 100, P, = 0.8, Py =
0.2,g =7, K=3,000, T=100,000 (Chiou and Wu 2009, Widmer and Hertz 1989). In
the SA, we set Temperature = 500 (Osman and Potts 1989); and we set p = 0.75
(Rajendran and Ziegler 2004) in the ACO where (1- p) is called the evaporation rate.
In the PSO, we set Vimax =4, Vmin =-4, @ =0.8,¢c1 =2,¢c, =2, T =100 (Liao et al.
(2007), where Vmax denotes the upper limit of the velocity, Vi, denotes the lowest
limit of the velocity, c; is the cognition learning factor, ¢, is the social learning factor,

and @ is the inertia weight.

6.1 Experiment Design

In the experiments, the configuration and operation of the in-line steppers are so

defined. Each in-line stepper has 4 ports, 14 stages and 21 chambers. See Table 1, of
the 14 stages, two stages model the interfaces among the WIP buffer, the dock area,
and the stepper; and the other 12 stages model the interior chambers of the stepper.
Note that one stage may include one or more chambers. The operation time at each
stage i of each in-line stepper is a uniform distribution [a;, bi]. At each stepper, a mask
setup is always needed for the aligner chamber while it turns to process a new job’s
wafer, and the mask change time is a constant (1.0 min.). The process yields are
modeled by truncated binomial distributions, which denote that the job size is first
generated by a binomial distribution, and then those jobs that carry no wafer are
“truncated” (removing them from the fab).

We use (M, N, Y) to represent a test case, where M represents the number of
in-line steppers, N represents the number of jobs, and Y represents the average yield.
We design 100 test cases, in which M has two options (with 2 or 3 steppers) and N has
5 options ranging from 20 to 100 jobs and Y includes 10 options ranging from 15% to
90%. In practice, the complexity of a typical multiple-stepper scheduling problem is
M =2and N = 60.

In each test case, we run 15 replicates and the average makespan of the 15
replicates is taken as the performance measure of the tested algorithm. The average
makespan of each algorithm x is designated as Cy. For example, Cg, ., represents
the average makespan of the GA-Tabu. Likewise, the average CPU time used in each
algorithm x is defined as t, ; for example, that used in the GA-Tabu is represented by
Lon-tabu -

Pilot experiments indicate that the GA-Tabu essentially outperforms the other six

algorithm. To compare the solution quality of the seven algorithms, we define a

performance gap as follows: y, =(C, =Cg, 1apu)/Coa_1ans - A POsItive y, indicates

X

that the GA-Tabu outperforms the x algorithm, while a negative y, denotes that the

GA-Tabu is inferior to the x algorithm.

6.2 Experiment Results

Tables 2-11 show the experiment results of » and t .The GA-Tabu
outperforms the other six algorithms in terms of y,. Of the 100 test cases, y,
ranges from 0% to 22% but the average of y, isonly 1.19%. See Figure 3, the lower
is 'Y (average process yield), the higher is the average of »,. While Y decreases to
15%, the average of y, even reaches up to 8.06%. This is due that the number of
small lots in a high-yield scenario is fewer which in turn results in less capacity-loss.
Therefore, the GA-Tabu outperforms the other algorithms substantially in low-yield
scenarios and slightly in high-yield scenarios.

Of the 100 test cases, the average of y, for each algorithm is shown in Figure 4,
which indicates that the Tabu algorithm is the second best—the average of ., IS
only 0.16%. However, the value of y,, may reach up to 5.31% in a low-yield
scenario (Table 3). The average of t, for each algorithm is shown in Figure 5, which
indicates that the Tabu algorithm is computationally faster than the GA-Tabu. The
maximum value of tg, .., 1S 4,379 sec. (about 1.2 hour). In practice, the scheduling
decision is made on every working shift (12 hours); solving such a scheduling

problem 1.5 hours before the shift is acceptable to practitioners.

6.3 Research Uniqueness

The uniqueness of this research, in comparison to the prior studies on the
single-stepper scheduling problem, is explained from the following three perspectives:
(1) the scheduling context, (2) the chromosome-decoding, and (3) the chromosome
solution quality of meta-heuristic algorithms.

The scheduling context of multiple steppers is more complicated than that of
single stepper. Namely, the scheduling context of multiple steppers involves two types

of decisions: (1) stepper allocation: how to allocate jobs to each stepper, and (2) job

sequencing: how to sequence the allocated jobs for each stepper. In contrast, the
scheduling context of single stepper involves only one type of decision—how to
sequence all the jobs for the stepper.

Such an increased complexity in the scheduling contexts leads to a
chromosome-decoding issue. As stated, a chromosome originally represents a
sequence of all the jobs. Such a chromosome can be directly interpreted as a
scheduling solution for the single-stepper context. However, to interpret such a
chromosome as a scheduling solution for the multiple-steppers context, we need to
develop a decoding scheme—for decoding a chromosome into two types of decisions
(stepper allocation and job sequencing). In summary, for a given chromosome, even
though its appearance is exactly the same in the two scheduling contexts, its two
implied scheduling decisions are far different.

In this research, several meta-heuristic algorithms are examined in the
multiple-steppers context. These algorithms, in terms of algorithmic flow, are
essentially the same as those prior ones addressed in the single-stepper
context—except the inclusion of the chromosome-decoding mechanism. Noticeably,
such an inclusion leads to far different semantics in interpreting a chromosome. This
lead to that the best-solution chromosome in the single-stepper context is most likely
not the best one while it is in the multiple-steppers context. We therefore have to
examine the effectiveness of these meta-heuristic algorithms in the multiple-stepper

context.

7. Concluding Remarks
In-line steppers are the bottleneck of a semiconductor wafer fab. This study
examines a problem for the scheduling of N jobs on M in-line steppers in a low-yield

scenario. Such a scheduling problem involves two decisions: how to allocate jobs to

each stepper, and how to sequence jobs for each stepper. The longest makespan of the
M in-line steppers is taken as the performance measure.

A scheduling solution (called a chromosome) is represented by a sequence of N
jobs. We develop a novel chromosome-decoding scheme to interpret a chromosome
into its two associated scheduling decisions—job allocation and job sequencing. Such
a decoding result can be used to compute the performance (also called fitness) of the
chromosome.

Based on the chromosome representation and decoding schemes, seven
meta-heuristic algorithms adapted from prior studies are developed. These seven
algorithms include GA, Tabu, GA-Tabu, SA, M-MMAX, PACO, PSO. Numerical
experiments indicate that the GA-Tabu outperforms the other six algorithms in terms
of solution quality; and this merit is particularly impressive in low-yield scenarios. In
practice, such a scheduling decision is made on every working shift (12 hours). The
computation time of the GA-Tabu, ranging from a few minutes to less than 1.5 hours,
IS acceptable to practitioners.

One extension of this research is examining the optimal design of port number.
The larger is the port number, the higher is the tool expenditure and the tool operation
costs; yet the less is the capacity loss of steppers. Therefore, stepper vendors may

need to customize the port design based on the process yields of their customers.

Acknowledgements
This research is financially sponsored by National Science Council, Taiwan,

under a research contract NSC 99-2221-E-009-110-MY 3.

References

Bac F.Q. and Perov V.L. (1993), ‘New evolutionary genetic algorithms for
NP-complete combinatorial optimization problems’, Biological Cybernetics, 69,
229-234.

Chen T. (2009), A fuzzy-neural knowledge-based system for job completion time
prediction and internal due date assignment in a wafer fabrication plant,
International Journal of Systems Science, 40:8, 889-902.

Chern C.C. and Liu Y.L. (2003), ‘Family-based scheduling rules of a
sequence-dependant wafer fabrication system’, IEEE Transactions on
semiconductor manufacturing, 16(1), 15-25.

Croce F.D., Tadei R. and Wolta G. (1995), ‘A genetic algorithm for the job shop
problem’, Computation Operation Research, 22(1), 15-24.

Chiou C.W. and Wu M.C. (2009), ‘GA-Tabu Algorithm for Scheduling In-line
Steppers in Low-Yield Scenarios’, Expert Systems with Applications,
36,11925-11933.

Dabbas R.M. and Fowler J.W. (2003), ‘A New Scheduling Approach Using
Combined Dispatching Criteria in Wafer Fabs’, IEEE Transactions on
Semiconductor Manufacturing, 16, 3.

Duwayri Z., Mollaghasemi M., Nazzal D. and Rabadi G. (2006), ‘Scheduling setup
changes at bottleneck workstations in semiconductor manufacturing’, Production
Planning & Control, 17(7), 717-727.

Goldberg D.E. (1989), Genetic algorithms in search, optimization and machine

learning. Addison-Wesley, Boston.

Holland J.H. (1975), Adaptation in neural and artificial systems, Ann Arbor, MI: Univ.
Michigan Press.

Liao C.J., Tseng C.T. and Luarn P. (2007), ‘A discrete version of particle swarm
optimization for flowshop scheduling problems’, Computers & Operations
Research, 34, 3099 — 3111.

Michalewicz Z. (1996), Genetic algorithms + data structures = evolution programs,
3rd ed. Springer, Berlin Heidelberg New York.

Morrison J.R. and Martin D.P. (2007), ‘Performance evaluation of photolithography
cluster tools’, OR Spectrum, 33, 375-389.

Nearchou A.C. (2004), ‘The effect of various operators on the genetic search for large
scheduling problems’, International Journal of Production Economics, 88,
191-203.

Osman I.H. and Potts C.N. (1989), ‘Simulated annealing for permutation flow-shop
scheduling’, OMEGA, The International Journal of Management Science, 17(6),
551-557.

Pinedo M. (2008), Scheduling:theory, algorithms, and systems. 3rd ed., Springer New
York.

Quirk M. (2001), Semiconductor manufacturing technology, Prentice Hall.

Rajendran C. and Ziegler H. (2004), ‘Ant-colony algorithms for permutation
flowshop scheduling to minimize makespan/ total flowtime of jobs’, European
Journal of Operational Research, 155, 426-438.

Reeves C.R. (1995), ‘A genetic algorithm for flowshop sequencing’, Computation
Opereration Research, 22(1), 5-13.

Ruiz R. and Maroto C.(2006), ‘A genetic algorithm for hybrid flowshops with

sequence dependent setup times and machine eligibility’, European Journal of

Operational Research, 169, 781-800.
Sha D.Y.,, Hsu S.Y,, Che Z.H. and Chen C.H. (2006), ‘A dispatching rule for
photolithography scheduling with an on-line rework strategy’, Computers &

Industrial Engineering, 50, 233-247.

Wang L. and Zheng D.Z. (2003), ‘An effective hybrid heuristic for flowshop
scheduling’, International Journal of Advanced Manufacturing Technology, 21(1),
38-44.

Widmer M. and Hertz A. (1989), ‘A new heuristic method for the flow shop
sequencing problem’, European Journal of Operational Research, 41, 186-193.
Wu M.C. and Chang W.J. (2007), ‘A short-term capacity trading method for
semiconductor fabs with partnership’, Expert Systems with Applications, 33,

476-483.

Wu M.C. and Chang W.J. (2008), ‘A multiple criteria decision for trading capacity
between two semiconductor fabs’, Expert Systems with Applications, 35,938-945.
Wu M.C. and Chiou C.W. (2010). ‘Scheduling semiconductor in-line steppers in new
product/process introduction scenarios’, International Journal of Production

Research, 48(6), 1835-1852.

Wu M.C., Chiou S.J. and Chen C.F. (2008), ‘Dispatching for make-to-order wafer
fabs with machine-dedication and mask set-up characteristics’, International
Journal of Production Research, 46(14), 3993 - 4009.

Wu M.C., Huang Y.L.,, Chang Y.C. and Yang K.F. (2006), ‘Dispatching in
semiconductor fabs with machine-dedication features’, International Journal of
Advanced Manufacturing Technology, 28, 978-984.

Wu M.C., Jiang J.H. and Chang W.J. (2008). ‘Scheduling a hybrid MTO/MTS

semiconductor fab with machine-dedication features’, International Journal

Production Economics, 112, 416-426.
Yang W.H. (1999). * Survey of scheduling research involving setup times’,

International Journal of Systems Science, 30:2, 143-155.

Job-based Wafer-based

A A
r N N\

e

Port 1 22 | 21 | 20 19 18 | 17 16 15 14 | 13 12
WIP
Port 2 *
area
Port 3
1 2 3 4 5 6 7 8 9 10 11
Port 4
Dock area
N -~ J N - J
Job-based || Wafer-based
Figure 1. Configuration of a simplified in-line stepper.
J2 J5 J7 J4 Ji J6 J3 J9 J8
(a). Chromosome representation
J2 J5 J7 J4 Ji J6 J3 J9 J8
Processing time in aligner chamber 0.1 0.2 0.15 0.3 0.15 0.2 0.1 0.2 0.2
(min.) ’ ' ’ ' ' ' ’ ' '
Accumulated processing time in aligner 0.1 03 0.45 0.75 0.9 11 12 14 16
chamber (min.) C .
0.53 min. 51.06 min.
Qutting point iCutting point
(b). Calculating the accumulated processing time
J2 J5 J7 Ja Ji J6 N3] J9 J8
—_—
Job sequence Job sequence Job sequence
In machine 1 In machine 2 In machine 3

(c). Decoding result

Figure 2. GA-Tabu chromosome for three in-line steppers.

I'x

I'x

9.0%

8.0%

7.0%

6.0%

5.0%

4.0%

3.0%

2.0%

1.0%

0.0%

2.5%

2.0%

1.5%

1.0%

0.5%

0.0%

8.06%

.
4.46%
.
2.01%
.
1.28%
1.03% o
0.55% 0s6% 06s% 07 .

0.45% : . .

V'S * *

90% 80% 70% 60% 50% 40% 30% 25% 20% 15%

Yield
Figure 3. Average of y, at various yields.
2.80%
)
2.33%
°
0.60% 0.60% 0.65%
° ° o
0.16%
)
Tabu GA PACO MMAX SA PSO
Algorithms

Figure 4. Average of

7, atvarious algorithms.

Computation times(sec.)

2000
1800 -
1600
1400
1200 -
1000 1
800
600 -
400 -

200

Figure 5. Computation times comparison for the type of algorithms.

1831
[]
863 811
[
[
628
[J
460
[
17
[) [W)
GA-Tabu Tabu GA PACO MMAX SA PSO
Algorithm

Table 1. Process times of in-line stepper chambers

Process WIP buffers to dock|Dock area to Soft- wafer edge Hard |High
HMDS|Cooling|Coater Cooling|Aligner PEB |Cooling|Develop

sequence area track bake exposure bake cooling
Chamber

1 1 2 2 2 2 2 1 1 2 2 2 2 1
number
Process time

2.5 0.1 1.2 1.2 1.2 ([1.2,2.8] 1 [0.75,1.65] 1 [1.2,2.8] 1 [1.2,2.8] | [1.2,2.8] 0.5
(min)

Table 2. Performance comparisons of algorithms in scenarios with (M, N) = (2, 20)

I] ” I I
| —_ | , | |
I |9] I I
| g3 N @ A4 | 4 1 4 A e T T R B B R
I ~ I
| bt I X ” ”
) | , | |
)] I | I [
pa SR %W%%%”W
| S 1 049 | 9 | b ! © 4 | m | o9 | o @ 3
” m9.”90.1_,ﬁ N ™oy 9o o | =
” WL AR B A A N ® o s~ 0§
,
S A) T A e Fommmee R
” £2 ” ” ” ”
| gl © I~ | v | 1 ! < < 0 0®m® | N | N N
! - ” | | ”
P G N Lo B SN IS I R I B E Lo I
I I I I
@ g8l g g gl g8l 88y
| & N X | @ ¥ A ¥ ® | © | ¥ @ O™
! — < | & o © © 1 o | < 1 o 1 Q9
| ST R R B A B 4 | 4 | ™o | ;v o~
| | . | |
W W ! W |
I \ﬂW] ” I I
o 1 ® | 9 » o | ™
| £z, 2 %8 & & 3 91 8| @ | © | w
-2 ” , ” ”
] T ,r T T
2 gl glg g 888888
, © ! ® | ® | © i © o o | o | & ' o
| ® 4 N5 0 M S A SO R R A - R)
, — o ' o | o | o , o o ' o | o | « ' «
R A SR IS S . I R I I o]
)
” ” ! ” ”
I \AIL/ I ! I I
” g2, & 3 S 303 S @ © oo
e} —- , ! , |
I | ! I L
o O (T e R e
2”A c I e | e | e ' e c I e | e | e I e
L a S s s s R S - - T N
| > 1 0 | d N O o I 9« | © | © I N
” w N S 0 M wn @ | Qo | & 9
, — | o | o | o ' o c | o | o | o | «
I I I I
| | m | |
| 213 ¢ 81585 88 &8 @9
| + & 8 N] N | N R
I < W ! W ,
I] ! I I
| © D S T S S T
| & |8 1 31 3188 © I o | 4 | © I o
” o e I <4y <9 | o A ® N N e 0
| o | o | 8 | ©o ' o c | o | © | o | +
I | | | |
| | J | |
” m@o.”o.o.g.”i © | 9 | 4| 9o 9
! g o ' o | © | N~ | I~ N Y | w1 1w oo
! =2~ I~ |~ S~ [N I T S o
| 3 1 ” 1 7
,w I ” I I
| El/8 /318 /8 5| 31838 &
” —_ © |, o | o | o ' o o, o | o | o , o
e EERECEOtE CEEEEEE s LOGECE SEETEEE o R o oe R Ihaet e
” I P T ” ”
—_ O I
| T O | © | ® . uw | © | N | I~
”m..lmm(b\ﬂ__”mw_mﬁg 6”644”3
,
e e e e I —
= |
P< mmwﬁm M MHM %W% - N W
| [| | H s Al
© s E © v | 41 © | © ® o | g1 2 g
” IS NN N = S !
L | ! | B
| | | | |
(] |
2 = gl 81888/ 8/ 8/ 8| 8"!%
o | 3] S | © | © | © ' o © | o | m | © | b
S | = & | ® | & | © ' b < 0 0 ® | 8 | Q& 0«
I I I I
| | , | |

Table 3. Performance comparisons of algorithms in scenarios with (M, N) = (2, 40)

, i , i
), I i I
,
8 81~ ~ | © © © | © n | T} T}
) /.\” | | |

O \ I i]

()] | | | I o =)

a - 2R = S R SR 2 N
LN @ o o a4 |~ N ™ N 3

B /o | ® R | 8 49| 8| & 3 .]
- I R N a o IR]]
| , , ,
” , , ,
~ , , ,
§91 o a4 | o 0 © | < N o o
PR m | ® N NN N AN « —
|] §]

% m o) F, <))) L, o (=) ,r =} X X
EIE BB 8 5 81818 &

5 S |« o N | © N & 0 o
I o B “ S N ™] q
b e [S I IR SR [I S
! | ” ”
I
> 1 © | ™ ™ o | © ,
2 o | 9/ Q| NI B 4d 88”89
2, N N I\ — = “

VA +— I | | |

< b [L S IS S L I
I

= S T S S T S S B S T S
O o | o © © | o O N) ©
[N | N — — | « < | o o) ©

= | o c | o o o | o S | o — ™
! I § I
) A
” T 1 T
I i I
oo o | oM I\ © |
21 2 81 Q N g | « m % ® <
I
=) M T ” T ”

o = S R S S =R S R % X
e S I o © © | O n 0N o) ©
rod NN 8, < | A S)W o ©

- o c | o o o | o c | o — ™
, | ,
, “““““““ I | I T
@.\m/, N n | < ™ o | O T | o © o
EREN Mo 10 ® | WO ® | o ® <
- E 1~ © | © T S | ® ® < ™ ©
< f S . S B R —— ! O S —
] i]
rm) o | S S | - | I @
I o c | o o c | o c | o [N o
I
! i ” i
\ I §]
o) o T R © m | © m 9 o <
g3, @ 9 | o < ¥ | o M@ N N

5 - < - = O - o | - - — —
,

2 - i ! ”

[X S X S S X S S X

g | b ~ | ®© ™ ® | 9 ~ < — o

L o | 9 Q © | 9 o | 9 ™ ™~

O © | © o © | © © | © [To) N

.......... m ”,,
, , ,

oA ™ < © l o o o © <

5 T8 ® o ~ © | © m | D N IS

2 ST o o N N N = o — —

T J E— I B r.----- B I R e

< £ 2 @ < 0 o o < o | o o 0

0 T8 ¥ Q | @ oe) o | < o | W o) ©

s E o© ® | M ~ ® | W S |~ N -
Q w < 0 < (4] ™o | « N — —

N I §]

T T T

!] i]

I

3 T | ¥ SR X X X SRR X X
) T | o S | O o) S | O S | D o) i)
S s 05 o | K o r B ® |« « =

! | I |

! I I

1.9)
(sec)
17

PSO

60 jobs

tM\IAX
(sec)
876

Jobs

Table 4. Performance comparisons of algorithms in scenarios with (M, N) = (2, 60)

Table 5. Performance comparisons of algorithms in scenarios with (M, N) = (2, 80)

,,] T 1]
,,\D/ I] I]
””mw4 M ™ NN o - | o o o
A SRR ®m o om ™ 5 om o ® m o ®] ® | ®
o R S — s R R booooo s - e SEE T oo oo
”S, 00,0 0_0,0 0,00/0
]
oo S xR S)X o/”o/o/M.
[n | o ' O ~ 1o © 2,196
o Bl el 2@ ey H 0 dH L ® .
L e s B R N I B S
L | | ” |
— , _ , ,
N , _ | ,
N TR) ~N oo o | © | o o | © | < |
I (R < < ® | ™ 1 ™ N | N] & ! W
L , _ , ,
I i " ” ”
]
B Ll 2 I 21818 81 81 818z
- SR A< A = R o) ® | © ' © ~ o | b | &~
[N ~N o) @)@ 0w | N | © L e I I
b © | o ! © A I B < < | . | o
s N S i S P R Ee S R S
- B~ N~ 0 ™ o |
. E3l 2l gl g lgeig 2 ¥ 2 g 8
]
”M”T.(Z - | - e ~N o) M
,, \\\\\\\\\\\\\\\\\\\\\\\ i - U S e
I I] I I
= £ .85 3 ® | N 9 8§ b} ® | 9
N o | o | o o | o , o o | o | +H 1 <
e ; " ; ”
,, 49,8] I I
L 9D , o | s ' 9 - ' ©o | < | o
o Bl s 8 315138 8 ¢ 58
O R T R s B | ” |
,
%”m, 00”0 0"0”0 0”000
& $ 0§ 508 50858 %5 5%
]
W”miz.”i N oq® I A
= o | o ! © o | o ! o o ! 4 | & | 0~
| L S AN — | L A
o | ” i " ! ” |
=S TR N B S N A B o ~N Lo o a 1w |~]
I SEiR | YIEBIEIREI8 EIEg]S
]
R g B N N R\ “ | 4 d — | 4 | +d | «
”%” S A — . S A — SR R S —
I I] I]
b SR X S X R S 8 R
,,@39,6 © | L | m N -
. © | 9 . ©9 © | 9 .« A N @ | O | o
b o | o ! o o | o ! o o ! o | ad | ©
,, [}] [} I
L o | ¢ | o 0w | <+ | < |
o |
 Fr s 512185 818188 B
o, P2 | | l o ' o | o | o
m.w”t A L B S = - !
,, [l] I []
g lg g iglg g gl g8l
b - | © ' & d I N ' b S ' +H | K | ®
[e = A B = B A = S | 9 | © S | @ 1 9 1 ©
b c | o © S | o © o 1 o | S | o
I
— mm I T I S B
st B s 281831818211y
, s2| «© N © ® | 4 | 5 K I © | ;v | 9 ®
I 81 S — o L B |
”T, IIIIIIIIIIIIIIIIIIIIIII B U S e N N A e e
I , _ T ,
< B 2 YN o |~ 19 0o < | o
C o0 T ElQ S g S I ¥ 09 NSl s g
S e o | ~ | © | W N N N
O - | a4 @ ® ! ! !
H, T T T T
,” 00”0 0"0”0 0”000
8 3 |EIlE B8 & 8 £ %8 %
e & | ©® ' K © | ©» ' < ® | & | &] o«
.J”,Vl | | | |
,, I _ I W

Table 6. Performance comparisons of algorithms in scenarios with (M, N) = (2, 100)

ebs
GA_Tabu Tabu GA PACO MMAX SA r PSO
vield | Corran EIGA_WE (e | Len o '@ hg | o M i o [t | o teo
(min) | (e0) | (sec) (i) (se0) o (s0) e
90% | 1398.8 §3402 0.02% | 2328 | 0.06% | 4002 | 0.15% | 2851 016%1 4053 | 0.76% | 31 | 1.03% 58
ot | 1z50 | 3340 | 0o | 2201 | coume | w250 | oe | 25 | e | seae | 07ow | 28 | oo | s
70% | 1120.1 §2734 0.03% | 2193 | 0.03% | 3459 | 0.15% | 2253 0.18%3 3229 | 0.78% | 25 | 0.97% 57
60% | 959.0 52294 0.04% | 2117 | 0.10% | 2389 | 0.25% | 1920 030%3 2769 | 1.04% | 22 | 1.38% 57
Caow | w52 e | ook | 2o | 00w | 2ase | 02 | 1566 | 026 2257 | 11| 18 | Lews | s
40% | 658.1 51711 0.03% | 1988 | 0.19% | 2183 | 0.28% | 1308 037%3 1886 | 1.44% | 16 | 2.14% 55
o | sona 1291 | ooo% | 1900 | 0| 10 | 0| sms | oawe s | 27w | 12 | 2owe | s
25% | 451.2 {1153 0.51% | 1870 | 0.66% | 1760 | 0.91% | 882 029%? 1258 | 2.60% | 11 | 2.20% 55
0% | 3042 | oe1 | oame | 1025 | 300 | 2052 | a0 | 70 | 290 | 085 | 75k | o | 77me | s4
Cisw | sos1 | esL 00w was | s7we| wis | eews| Su | sawe 740 |1ao% 6 | Lo 54

Table 7. Performance comparisons of algorithms in scenarios with (M, N) = (3, 20)

” | ” ”
!] §]
81 o N — - - - - - -
N | I |
o) - ! | | |
N ! ” ” ”
o X S 1 X S S X S 0 X X X
R - O~ N~ ~ | O ® | ® o) =
B ' & © |~ 0 o | A © | @ o)
- “ - “ oo ol m < o
IIIIIIIIIIIIII ,IIIIIIIIIIIIII,IIIIIII S D S S SN S S
] o ” i ” ” |
g o INTR Y — ~ oS - | O
.T_%(%\ L@ NN N o - o ~
| I I I
< b R S I S S ISR S [I S
I
o S T S T T S S T S T
& @ 0K sl M Q o o n | Q ™ o
o 0o ! © © | @ @ | 1 < 1
| — - ” — — - ” — - ” N ™ n
|
[}
, , , ,
, , ,
gl o |] o | - !
£ 8] N N - | - | ® ~ ©
M 5 ! | , |
] § I
= gl i sl 8 88888
- a4 | b) o N 4 | b = ™
Lo ™ | o 10 © | L o® = 10
— o o | © o o | © o | © — —
I [S I S S I S L I S
| I 1}
|] § I
\ﬂ'b/, I i]
sl d a9 ¥ 2 2~ 0|0 v
O - | | |
I I I
C \\\\\\\\ 4+ — T T | B T —
Q < | o o | o o o | o o | o o o
SIS LS SRS S L 0 2 R S S
- o | O o) © | b S | ® © o)
oS 0o o © ~N oo © e 1_ 2
— O o | © o o | © o | — -
I
, L ,
I I I I
= 1 © © | o © © | o) o ©
6 | ~ N ~ o | b m | © o 1%
- E | @ N | o o o | ° © | o N 2
Te) < < ®m 3 N | ® N N
< , , ,
G ” (=] (=] ” (=} (=] (=] ” (=] (=] ” (=} (=] (=]
S SO 2 N S 2 N
& | 3 ®m | A« o) ~ S o | o o) ™
O 9 < | N ® 0 S W o @ @ 10
) S | o o c | o c | o o -
| | I |
| [} 1 [}
—_] §]
g2 9 o | © Q o | © o | © Q Q
-2 © wo < o A N - “
| | ” ”
=} L
! ” | ” ”
[P SR = S S 0R X X
3 - o N - | O) o) N~
B 4 4 9| 4 4 9 9| 4| @0
—) © | © o © | © © | © o o
,
” I " T I
Es5 o o | Te) o | © o I~ To) ©
5 TY K ~ | @ ~ n | g | 0~ ™ S
2 s o o | ™ S | o n | ™ 1 S
3 5 P » | ™ ™ N« = -
T IIIIIIII e = S U S | . . e e e e
_ = _ | | | |
< g2 @ ~N R @ ~N D @ SV o N
O < m, [y © | o = © | (@] N | m 0 0]
S 2 g 4 3 8 | © @ | © 0 <
N] §]
| T T T
|] §]
a T I ¥ S R = X S 0 X X
) T | S S | ©) S | O S | @) i)
S s 10 ® | K o ro B ® | N N =
| | I |
! I I

Table 8. Performance comparisons of algorithms in scenarios with (M, N) = (3, 40)

”
X
o .= a ”
n ,]
o ,r | :
W] -
rm ” m/w | :
R | w | % : ,
........ ” L . % © ” ”
%) t ” L 9 ,%_ o Lo ” i
| I . , _
< - (m\ LN I — o W 0 | ” -
(7] — ! — o N o : | ” _ :
1 ” ﬂ T ol M._ ” 0/0 | _ :
| -- r
....... . 2 ,
” - ¢l ol o o & | . g
& JEILIEIL B) o/
PRI s s s i | E ; |
” M_v ” 00 /Ollr ||||| i ” ||||| ”ll 5 " 5 m
! | © & e | s . - - 5.
\./, | — N~ s | s | | - , N 1
x W S i ;) R N , _ .--
A — % ! o] | — (6] —N B ” : M
oA N~ | L /0 ,] _
= Lo 0 ~ D | s
= ! omn - To I s s | 3
FlE e ai :
I] 2 9 , 1
M I~ ” B o N : i
r|| r , : , : 3 < !) [} | — ° -
..... ' . o 2 ” L6 ~)
....... , : , l : — I I | N o))
| , . : 0 po | | ! — 4
i I : : : -8 ! S
jo} q | / , 4
omtmmm oz.mvo/o e
< < — | — | o o : ° 0 , | _ 4
°r - B o g | ° | <
o o | o - o : , 0 , 3
. 1 2) © R S "
I N 0 3 IIIII , 0
g T EEREREY LS 35
“““ - | 5 -3 e | : : ,----,-”) n_w |
‘‘‘‘ , : . - e © N i B I N N~
w\\w” : ” 5 _.03 S— © W (o0} ! |V|". N
[, : 2 SR Y ” E— ™
@\n/ , 1 . . o P~ m T
) g | beeeeen o — S K , _ 0 :
| : - , . < © i o © |
O] -——=- ” I~ ” < | o o S _nh ” Ow\ﬂ\\w " A_N_ 7
R SV (%) o | o o < |] | - %
0 ” 2 : i 1.° o ! & ” m | —
L , . _ \l
O e el slg 8 & | © 5 : :
” = ” Wn_v ““““ | 9 & s ” . 6 M
- | 1 _ .
1 o | o % ‘oﬁ!ﬁl N ! N — O
g2 | | ©° 3 > e | - ” K z
|9 | / \\\\\ , it
> - 2 W o ” © ™ & o T - | :
) / ! 1
Ne] | < | o o S : | 1 _ ;
& o] |) S D 2 5 | :
= 1 S ° 3 3 | & :
| | I o R | 1
3 S ” < © ° S | i §
T : , - | 4 ,) | N R
r , 0 , ﬁv ° — ! o | 0 S
_ ° o , _
||| , , 7 0 3 i | T 2 N~
....... E i s o 3 o | ' N
| .W |||”||| ” 0 : i ” m_ | O "
| ' , 1 O. : /0 1 ” © | o
| : i : < o | | I
g . | ,
Sk 32 © | g : o Ji ” [|
IIIII | | | O. ,
M_ u 0 e TRES | S | 5 8 | S
8 ! - 8 3K ” s 7 :
| = o : I o , 2 O
< = o , N : g , , _ 3
(o] m, F | E 6 -L . _ /0
(&) = | < | — - N © [| - | ; :
(2] | [e)] | s : , ||||, _ . 5
Ne] | ') | [oN N~ ----t N o | o | 3 _/.
=) L , M ~ el ~ ” g T 0
L] S ” | o o | & | . | _W_ , : _ :
2 S | ™ 8 N - T &3
s S (N N 3 - o
” (o)) ” > o - ” N o " - mlO.
| | o X [e0] |] , u_||| 1
| ®) o - Q 3 s
| N~ W o ” i ” nA/._ " 3 :
> L _
5 oO - | o Ty)
& | 3 | | s
B : |
| | 2 " %
! | W .
| n
=

Table 9. Performance comparisons of algorithms in scenarios with (M, N) = (3, 60)

T I] I]
,, I] I I
| ~
,”mm7 ~ 1 © © | © | To R T R
o B2 A — 1 o - | 4 1 « = = T
, | _ , ,
I O | , _ , ,
]
,S” 00”0 0"0”0 0”00/0
b S S R U S L S 2 w_
[© | N | © < | O | O o | X | ™ F
b ® | w , © ® 5 NN ® 1 a9 | © ;
N — | < — 1 a1 A I T> B B < R]
”T----”. I E— . A R e I I E—
””%OO 0 | © o N | o |
[LU B - 1 = e o | ©) ~ 1 ©
”,t I] I I
I G e E— P SE—— — T f— — e — —
I SIS S S S NS A S SO B SR >
R S I B = B = n | 0 g S] @ | w3
N NS © | N | @ S S T LT
P 11”1 1"1”2 2”5_/1
| +) I +
,, I I I]
]
I x9! v S W w Y 1 © w9 | o oo
,,le o I o =] o 1 ¥ | §N | ©
,X”t(g oo”_/ 6"5”4 2”221
I | | |
,, I] I I
2 £ I 8IS I 88 881888
, & | N I 4 ~ | o N © I KN | © | &
b ° | o ' o < 1 <o ' o D S B S Y
L o | o | o o | o | o o | o | «H€ | <
S R I S . I S L R R
,, I] I I
N o © | ™ o | ™ ! © ~ o | oo o~
,,mﬁ9 N © e o | © | ¥ | o
o | &£ 2| © o | < <] ™ N b = T
S R R Lo e e o B e REEEEE Loooooo
OHA, e I e | @ e | e ! @ e ! e | e | ©
3 & SIE 8|5 8 £158 818 ¢
|
””mo.oﬁi < 0 <4 1 o o 9 | S 1 m
e o | o ! o S | S8 ! © o ! S | o |
[, _ L ,
S - T R ® | © | o o | © | 4 | 4
A - = I AP B S Y m O~ N g | © | 49 | ®
&R B8 8 318 883
b , _ | ,
I i i i i
, | _ | ,
O /881888188 83
A . T - - S ®m | 9 ! © 4 | 494 | O 1 9
I S | © | o 4 | @ | 3 & | @ | § | 9
b o | o | o S | o | o c | 4 | & | <
L | | | |
,, [}] [l [}
N @ | o @ | 2 |~ o ! o | o | o
A - - T = T = S N = =S Y-S
I S A - - - 0= @ ® wowop T o
”u, T T T T
A , ! ! ”
| |
Bl 8181318183194 8.8
P o | o ' © o ! o ' © o ' o | o | ¢«
,, I] I I
(R S O SN S S S S
I B ” " | ”
I R S B w1 © < | oW o S 1 9 | . | ©
' 23] 8 | & 1 © N G ® 1 ® | 49 !
9 32 3 o 1 © ~N O o m 1 m | m] ™
| oS , _ | ,
. S IS R A L B . O RS I
I , _ | ,
< B o oW © | © N % © | @ o
PO T el o | o n | © | © | o | © | ©
e s EBlLoos S o | N I~ o | © < —
S v | O | < S | ® | N e = T
— ” i ” ”
,” 00”0 0"0”0 0”000
a3 R R SR - 2R R R
s | 2|88 IR[8IBI 8 8 & |8 3
.J”,Vl | | | |
,, I _ I W

Table 10. Performance comparisons of algorithms in scenarios with (M, N) = (3, 80)

[, H , , T , T T
| _ | ! | , ! , ! !
” 8 3 < ®m @ ®m & & 4 ' 41 o ' o ! o
B E ™ M M m M m o ;m ® ! ®m @
, | ! | , ! , ! !
o | ! . ! ” " ! L 4
%, o o ! o ” o J o | o ” o ! o ” <] ” XX
” S S U T T T - S A -
| ™ 5 o @ < ;. 4 7 K~ @ 5 2 @ ® @ G
| N ® , v~ o, o @ =
| = - I R B Y N A A R R
S SRR EL PN SR S N A N
| F2 1 w N~ o~ 1w | & | o ! , ,
I N N 4d o H L H s @0 ©
I I | I I | I | |
L S S e] ———— P A ——— oo —
@ S T B T T T - - -
L& 159 8§ 0 ® 1§ m e e & X 5
A © N KN 0 o o 1 ®m Y o o
i - I R B > A oV A Y B R T B R\
1 H ! . 1 | ! | !
, ! ” ! , ” 1 ” ”
| ~ o 2 T 12 2 4 e o | o | o
” w g N~ S A - T T N R - B /= B
X | = I3\ a4 ! a4 @ da4 ! 94 | o9 , M © , 1, O™
g | i ; - . ” + ” —
, /o NSRS S S T S T S SO S B O -
= | S o T = S = S S S R R S R - N B~
£ X T 3 RIS &S a3
|~ o S I o 6 i 38 | d 4 @ o~ g
booo- s ek Rt oo b R R —— R E— —
] I I I I
| ~ o)} [e0] I ™ ! I I | I | |
o o < — ~ © ™
88 g N 9 b ®m !l m NN K D
O | + — o - | — | (o] | [e0] | O ” [Te) | <t ” ™ ” N
PV,ﬁ \\\\\\\\\\\\\\\\ | | — | | I | | B — |
o , H ! T) ! T ! !
S S S N S T T T - S S
| — n .~ @~ N0 Y D~ 1
! N S Sy B N NN T N S A e B A S
Lo o S ' 8. 8 8 I 38 i S ! S i « 1 =
I I I I
” ” ” ” i T ” T T
” = - Lw MmN o !l ®m el N ;o
 8E | o e R S S~ T < N T B o
| E ~ % I © ' © 9o | § ' & | © % ! ©
, ™ N 0N ! N ® NN = =3 A
< | i] T i
(O =) =) ! =) i =) ! =) | =) | =) | =) | =) | Q
, > S > S T - - -~ A O - S -\
| m — [e] | o | < | — | © I o I ©o | (o] | I
e e S . S T A s T A
” o S 8 1 8o ! 38 ! S I 4 @ w8
| | H | | ! | | |
[} [} I [} [}
| S~ T T T - T T B R S SR
I 8% o ¢ 0 4 a5 o | ® o S g
I ® © ' ¥ 1 o ' & 0O @ & < 2
” < m ¢ ® @ N N H L E s d A
2 | | ! | | ” | ” ”
i N T T T T T T T
. B ~ S N &M ' N ! h I @ | ¥ I © 1 K~
, = Q S 5, @ o 4 7 o 9 | 9 I d 1 09
| = o ©c ' o, o' o o ; o ! o ; o ; o
.....
I B 5 < N N > I ! , ,
S | 53 o N 0 0 1o N~ w2 oy 8 o
I s 2 < 4 |, ©® o ;] ® | <9 9 &5 | X e <
R N A - A , ” ”
P F------ I e — — e — R R
<! Fal oo~ @~ w w9 @
o | i g © © 2 o o | & ;w0 O
I s E| © ® ! O N Dy @ m O M
S ~ © © @ o | ¥] ®m § ;] «& @ Q& oA
] I n I I 0 I N 0
| | ! | | ” | ” ”
I
2 I N SR - - - S - - S
) , Q o o @ o , 9 o o , 9 ! o, O ,
3 - & ® '~ ©® b ¥ 0 ® NN o
I I ! I I ! I | |
| | | | |

Table 11. Performance comparisons of algorithms in scenarios with (M, N) = (3, 100)

Jobs 100
GA_Tabu ; Tabu GA PACO i MMAX SA 1% PSO
Yield Coran EIGA_M"'; erlJ tEhl rGA tq Mo i b i rM\MX LT rsq i t i Mo to
o B e B T R B R O | T oo | | @
90% 950.5 ; 4379 ; 0.04% 839.1 0.06% | 5876 0.39% ; 2780 E 0.28% | 4236 0.96% E 30 ; 1.14% 59
80% 853.9 jé 3970 E 0.05% 756.9 0.16% | 4726 0.63% (2493 E 0.34% | 3788 1.48% E 27 E 1.24% 58
| 70 | 760 Terao | 0215 | 4a40 | 0. | 2214 | 02006 | 2040 | 1350 | 24 | 130w | 67
60% 653.2 E 3375 E 0.04% 579.6 0.38% | 4978 0.69% ; 1896 Er 0.57% | 2865 1.78% ; 21 E 1.56% 57
50% 535.1 Er 2450 E 0.00% 474.8 0.63% | 3996 0.82% ji 1549 E 0.67% | 2336 1.56% E 17 E 1.89% 56
d% | a5 ooas | 0i0% |71 Lame | 4059 | Lows 1206 | 1215 | 1953 | 240% | 14 | 20 | 56
30% 345.0 E 1540 E 0.07% 300.5 1.57% | 2632 1.62% i 981 E 1.54% | 1478 2.11% E 11 E 2.93% 55
| 250 | 305 Vase | 200 | a0m | 200 | ose | zasw | 1009 | adem | 10 | ase | 58
20% 252.8 §1135 E 0.08% 224.3 5.30% | 2209 5.61% i 730 Er 5.54% | 1097 5.96%ET 9 TE 7.24% 54
15% 205.7 j; 896 E 0.16% 167.7 7.81% | 2238 8.29% ir 533 E 8.24% | 803 16.05%E 7 514.02% 54
LEHB LML E S RS P =4
%ﬁ?iﬁ?L@Léﬁﬁﬁ.‘é$ﬁ,5%%ﬁ;P"$% Ll |
B (fRAESE TR A2 L8 B E ?%ﬁJ‘m@ﬁ

| =
kg
3
ﬁ

> \‘-F

B *3/
z?ﬂ
(w

G\r b Fl
FAAY LN ARFRATE G M

Al 1r— = L2t
F o IFT—- 5FEFig o

WA SRR E TR P RERIE- F LT

=0

H
3
\

C
At
e
=
»}
\\ T
:%-‘

=
¥
7N\
i\

G 0 12100 F 5 62)

LR RFDIE LAY IR
we W FEA g2 ER? &
B4 e &w® Y 59 e

Pk [e #Eg [Iezt? e

Hw (2100 % %)

< B4 3 E SCl & ey 1)~

SRS R FATRIRT ARG R E S G R A R L F AR
B (HEAE 59T A2 LR E-BFNE-HFR2ZT L) (

500 % % *2)

> ABRATT LR AR TR DM AR o e 48 (Stepper) A7 B ka3
2o BB HEBWNE D o TR X K4

(1) #R AREARAFEF N PF > LFRM o HEPT R FIRI P2 F
BARSEF AW & AR I PR G o

(2) > 2 ¢ A7 A § e N F 5 2 (meta-heuristic algorithms) k -z
HEW PR PR o Mg S T BB nE) o

(@ﬁ%*ipi?ﬁﬁﬁﬁﬁ’&%ﬁﬁ%%ﬁ%ﬁT’ﬁﬁﬁ$ﬁ@%
F o

R g At s A S R R T

P10l # 57 12p

PE LA ATEAE O FRTERNhies P

R B E [hasc xAp
3 F et 99-2221-E-009-110-MY3 4 @ 1 ¥ 1 4%
(¢ %) s e g2

Ak L

(®~) An Effective Scheduling Method For In-Line Steppers

S+ RS

Hzrd g F A T AmE E G
(fliex) [#HR=E

FAEE

(P2) ZERMAEF s 5 2 24 (Stepper) » Flt = 5 B E
A I BB AR eEL T 1‘}&5;«°L_¢‘r?i7f§_%§-?‘ﬂf ?iﬁL\—f‘gﬁ’f % o
AT FR AR AFEFRT > SR 1 EATEESFE
ﬁ?ﬁﬁﬁﬁé%r&*&@g’”‘%@éfﬂ AT RS
- B orenB RS o T RARB LA DB

(200-500 =)

(® <~) Insemiconductor fabs, in-line steppers are the most
expensive tools, which are the bottleneck in determining
wafer outputs. While introducing new processes or products,
the process yields tend to be low. This low-yield feature
may unexpectedly result in capacity idleness in an in-line
stepper. This research develops a scheduling method for
in-line steppers to reduce the risk of their unexpected
capacity i1dleness in low yield scenarios.

A¥H

LEMAE

i/ A SR

e AT

44

(1) $itifh: 537 71k
(2) TP ey ¢+ MR FH
PAHET (712

,)ﬁc;_i

HIAFEFIEET A GFEN BBV R RPN

45

	4. Chromosome Representation and Decoding

