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中文摘要 
本專題計畫是針對半導體廠在低良率情境下，研究步進機的投料排序問題，

期能提高步進機的產出。步進機是半導體廠的瓶頸機台，其內部是由一系列的加

工單元（稱為反應室）所組成，每一個反應室一次可加工一片晶圓。步進機的外

部一般設有 4 個暫存區，每一區可暫存一批晶圓盒，每晶圓盒最多可存放 25 片

晶圓。在低良率的情境下，許多晶圓盒會出現「不滿批」的現象（亦即晶圓片數

低於 25 片）。本研究發現：在低良率情境下，即使步進機的某些反應室有產能閒

置，因為暫存區的空間限制，使得暫存區以外的晶圓片無法即時放入步進機加

工，因而造成步進機的產能損失。這種產能損失可以藉由晶圓批的投料排序來改

善。本研究發展各種進化式演算法(meta-heuristic methods)來求解此問題。研究情

境由簡而繁，首先研究在單機的情境下，如何決定工件投料的序。進而研究多機

情境下，工件如何指派給各機台，以及各機內工件的排序問題。本研究設計一個

新的染色體表達法，可同時表達「工件指派」和「工件排序」的兩個決策。並測

試各種進化式演算法的績效。本研究提出 7 種演算法(GA, Tabu, GA-Tabu, SA, 
M-MMAX, PACO, PSO)，經實驗測試，GA-Tabu 演算法優於其他演算法。 

 

 

關鍵詞：排程、步進機、流程式生產、進化式演算法、基因演算法、禁忌搜尋法 

  



   

  

 

Abstract 
This research project addresses a job scheduling problem for steppers, which are 

bottleneck machines in a semiconductor fab, in order to increase the fab throughput. A 
stepper externally is equipped with four ports; each port is used to accommodate a job 
(i.e, a wafer container that contains up to 25 wafers). A stepper internally is composed 
of a sequence of chambers; each of which undergoes an operation on a wafer. Each 
wafer, originally located in job container, must individually pass through the sequence 
of chambers and go back to its original container. In a low-yield environment, some 
chambers in a stepper may unexpectedly become idle due to the limited capacity of 
external ports, which in turn results in the capacity loss of the stepper. We found that 
such a capacity loss can be alleviated by scheduling methods. This research project 
develops several meta-heuristic algorithms to solve the problem. We first consider 
only the single stepper-problem and extend to investigate the multiple-steppers 
problems. The multiple-steppers problem is concerned with two decisions: (1) job 
assignment decision, (2) job sequence decision. We propose a novel chromosome 
representation to model the two decisions and develop seven meta-heuristic 
algorithms (GA, Tabu, GA-Tabu, SA, M-MMAX, PACO, PSO) to solve scheduling 
problem. Numerical experiments indicate that GA-Tabu outperforms the other 
meta-heuristic algorithms.  
 
Keywords: Scheduling, in-line Steppers, Flow Shop Scheduling, Meta-heuristic 

Algorithms, Genetic Algorithms, Tabu Algorithm.  
 
 



   

  

1. Introduction  

In semiconductor manufacturing, in-line steppers (or simply called steppers) are 

the most expensive machines, which may cost up to 40 million dollars per tool and 

usually become the bottleneck of a fab (semiconductor factory). Effective scheduling 

for steppers is very important because it could significantly affect the fab throughput, 

cycle time, and on-time delivery. 

Most prior studies on scheduling stepper are developed under a high-yield 

assumption (Chern and Liu, 2003; Dabbas and Flowler, 2003; Duwayri et al., 2006; 

Sha et al. 2006; Morrison and Martin, 2007; Wu and Chang, 2006; Wu et al.,2007, 

2008; Chen, 2009). That is, they implicitly assumed the production yield is 100% and 

no wafer will be scrapped. Each wafer lot (a container for transporting wafers) is 

always a full-lot (typically carrying 25 wafers). Under this assumption, they took a 

stepper as a single machine and a wafer lot as a job for scheduling. This implies that a 

stepper will not be idle as long as it has wafer lots waiting to be processed.  

Recently, a few studies (Wu and Chiou, 2010; Chiou and Wu, 2009) noticed that 

a stepper in a low-yield scenario may become idle even though it has many wafer lots 

waiting to be processed. They modeled the interior configuration of an in-line stepper 

as a special-featured flow shop, which comprises a series of chambers and each piece 

of wafer has to travel through the flow shop. They discovered that some chambers of 

the flow shop might become idle due to the inclusion of small-lots (i.e., carrying less 

than 25 wafers) and developed some scheduling algorithms to alleviate such chamber 

idleness in order to increase the throughput of steppers. These algorithms were 

developed in the context of scheduling a single in-line stepper.  

However, in practice, there are multiple in-line steppers to be scheduled. This 

paper enhances the prior scheduling algorithms to deal with the scheduling for 

multiple in-line steppers. Such a scheduling problem involves two decisions: (1) how 



   

  

to allocate jobs to each stepper, and (2) how to sequence the allocated jobs for each 

stepper.  

In this research, given N jobs to be allocated and scheduled on multiple steppers, 

a sequence of the N jobs is called a chromosome. We developed a novel 

chromosome-decoding scheme that can unveil the two decisions suggested by a given 

chromosome. Then, various enhanced versions of meta-heuristic algorithms (GA, 

Holland (1975), Tabu, GA-Tabu, SA, M-MMAX, PACO, PSO) were proposed and 

tested. Of the tested algorithms, numerical experiments indicate that the GA-Tabu 

outperforms the others in most cases.  

The remainder of this paper is organized as follows. Section 2 explains the 

research problem in more detail. Section 3 describes how to compute the performance 

of a scheduling solution. Section 4 presents the chromosome-decoding scheme. 

Section 5 describes the solution architecture of the GA-Tabu algorithm. Numerical 

experiments are reported in Section 6 and concluding remarks are in the last section. 



   

  

2. Problem Statement 

The research problem is introduced by first describing the interior configuration, 

the exterior interfacing equipments, and the transportation mechanisms of an in-line 

stepper. Then, we use an example to illustrate such an in-line stepper may suffer a 

capacity loss in a low-yield scenario. Finally, the problem for scheduling multiple 

in-line steppers and its performance metric are presented.  

The interior configuration of an in-line stepper comprises a sequence of 

manufacturing stages, each of which involves one or more than one functionally 

identical chambers (Quirk, 2001). Each chamber processes one piece of wafer at a 

time. To undergo the operation at the stepper, a piece of wafer has to travel through all 

the manufacturing stages. Of these chambers, a particular type (called the aligner 

chamber) may need a setup. The aligner chamber is typically the bottleneck chamber 

and involves only one chamber at this manufacturing stage. Such a configuration can 

be seen as a flow shop if we consider each stage as a workstation and each chamber as 

a machine in a workstation (Yang, 1999; Pinedo, 2008). A simplified illustration of an 

in-line stepper is shown in Figure 1, where each manufacturing stage involves only 

one chamber.   

See Figure 1, the exterior of an in-line stepper is directly interfaced with a dock 

area which generally involves four ports. Each port serves as a one-job-buffer for the 

in-line stepper, which can accommodate only one job at a time. A job (or a wafer lot) 

is a container, which involves at most 25 pieces of wafers. Apart from the dock area, a 

large-sized stocker (also called the WIP area) is equipped to store the wafer jobs that 

are to be transported to the dock area.  

The transportation mechanisms of an in-line stepper are explained below. See 

Figure 1, a wafer job has to undergo a round-trip travel. A job first moves from the 

WIP area to the dock area, placed on a free port. Then, each piece of wafer will 



   

  

sequentially exit the job (a container), go through the in-line stepper, and back to the 

job. Finally, the job is triggered to move back to the WIP area, while all its wafers 

complete operations. In summary, there is a transportation incompatibility in the 

round-trip travel. That is, the transportation unit between the WIP area and the dock 

area is a job, while that between the dock area and the chamber area is a piece of 

wafer.  

Notice that the buffer capacity at the dock area is quite limited. Suppose the dock 

area involves only four ports. Then, the dock area can simultaneously accommodate at 

most four jobs. That is, we cannot move an additional job to the dock area if each of 

the four ports is currently occupied or not free.  

Due to limited buffer capacity in the dock area, we may face a capacity-loss of 

chambers in a low-yield scenario, as explained by the following example. Consider a 

simplified case where an in-line stepper comprises 22 stages and each stage involves 

only one chamber, four jobs (A, B, C, and D) are on the dock area, and one job (E) is 

waiting in the WIP area. Job A contains 25 wafers and jobs B, C, and D in total carry 

only 17 wafers. Suppose the processing sequence is ABCD. Following the 

sequence, the (25 +17) wafers of the four jobs will successively travel through the 

chambers and back to the ports. While the last wafer of job A just finishes its 

operations, job A must still stay on the port in order to get this wafer back. At this 

instant, the 17 unfinished wafers of jobs B, C, and D will occupy the last 17 chambers 

of the stepper. The remaining five chambers then become idle because jobs A, B, C, 

and D now occupy the dock area, and no more port is available for job E to access.  

Yet, such a capacity-loss in chambers may be alleviated if a different job 

sequence (BCD A) is applied. Suppose job B now contains 8 wafers. While the 

last wafer (8th one) of job B finishes its travel, we still have 34 unfinished wafers. Of 

these unfinished wafers, 22 ones reside in the chamber area and 12 ones stay in the 



   

  

ports. This implies that no chamber will be idle while the port originally for job B 

becomes free to accommodate job E. Thus, the capacity-loss of an in-line stepper may 

be alleviated by applying an appropriate job sequence.  

The research problem is concerned with the scheduling of multiple in-line 

steppers in a low-yield scenario. Such a scheduling problem involves two decisions: 

(1) how to allocate jobs to each stepper, and (2) how to sequence the allocated jobs for 

each stepper. That is, given N jobs to be scheduled for m in-line steppers. The N jobs 

have to be categorized into m groups, and the jobs of each group have to be sequenced. 

The performance metric of the scheduling problem is defined as },...,max{ 1
*

mCCC = , 

where iC  is the makespan of i-th stepper. That is, *C is the makespan required to 

complete the N jobs, and */CN could be used to denote the total throughput rate of 

the m steppers. In the scheduling, we aim to maximize total throughput rate ( */CN ), 

which also implies the minimization of *C . 



   

  

3. Makespan Evaluation for Job Sequences  

Given a job sequence to be processed by the i-th stepper, this section describes 

how to compute iC  (the makespan), adapted from Ruiz and Maroto (2006). The 

makespan evaluation procedure adopts an emulation-based approach. We virtually 

sent each wafer in order (following the job sequence) into the in-line stepper and look 

for an available chamber that can finish the job at the earliest time. The completion 

time of each wafer at each stage is progressively recorded, which ultimately yield the 

makespan.  

To undergo an operation at an aligner chamber, a mask (an auxiliary device) is 

needed. A particular mask denotes a particular operational recipe. Different jobs may 

require different operational recipes. If so, we need a setup time to change masks at 

the aligner chamber; otherwise no setup is needed. .  

 

Notation 

j: index of job 

k: index of wafer 

i: index of stage 

l: index of chamber 

a: index of the aligner chamber which requires setup 



   

  

ρ : total number of ports in the dock 

n: total number of jobs to be processed by the in-line stepper 

M: total numbers of stages in the in-line stepper 

im : total number of chambers at stage i 

iljkp : processing time required by chamber l  at stage i to process wafer k in job j  

π : a job sequence for the n jobs, [ (1),... ( )]nπ π π=  

))(( jw π : the job in the jth position of sequence π  

)( jπ : total number of wafers in job j 

ut : transportation time for uploading a job to the dock area 

dt : transportation time for downloading a job from the dock area 

kjliS ),(,, π : setup time required by chamber l in stage i to process wafer k in job )( jπ  

, , ( ),

, , ( ), ( ), ( 1)

if  or 1, then  = 0,

otherwise, 
i l j k

i l j k j j

i a k S
S

π

π π πδ −

≠ ≠

=
 

)1(),( −jj ππδ : setup time required for the aligner chamber to switch production from job 

)1( −jπ to job )( jπ ; ( ), ( 1) 0j j sπ πδ − =  if )1( −jπ  and )( jπ  use different 

masks, and ( ), ( 1) 0j jπ πδ − = , otherwise 

tliA ,, : the time epoch when chamber l in stage i just turns to be available; that is, while 

the chamber ( , )i l  is free at t, tliA ,,  is the last wafer-completion-epoch 

before t; while the chamber ( , )i l  is in operation at t, tliA ,,  is the first 

wafer-completion-time after t. 



   

  

kjiC ),(,π : the completion time of wafer k in job )( jπ  at stage i 

( )C π : the makespan of job sequence π   

 

The makespan evaluation procedure is governed by the following equations.  

, ( ), , , , , ( ), 1, ( ), , , ( ),1
min{max{ , } }

i
i j k i l t i l j k i j k i l j kl m

C A S C pπ π π π−≤ ≤
= + +  

where kjiCt ),(,1 π−=      for  1 i M≤ ≤        (1) 

1, ( ), ( ( ))M j w jC π π+  = , ( ), ( ( ))M j w j dC tπ π +           (2) 

1, ( ), ( ( )) 0, ( ),1M j w j u jC t Cπ π π ρ+ ++ =      for 1 j n ρ≤ ≤ −    (3) 

1, ( ), ( ( ))( ) M n w nC C π ππ +=             (4) 

 

Eq. (1) expresses the completion time of a particular wafer at each stage i. The 

term , , , , ( ),i l t i l j kA S π+  denotes the time epoch when chamber l at stage i is ready for 

processing wafer k in job ( )jπ , and the term 1, ( ),i j kC π−  denotes the time epoch when 

the wafer is available to be processed at the chamber.  

Eq. (2) describes the completion time of job ( )jπ  at stage M+1 (i.e., the dock 

area). Eq. (3) expresses the job arrival/departure relationships for the dock. The 

equation indicates that only when job ( )jπ  in the dock has been moved away, can 

job ( )jπ ρ+  in the WIP buffer be transported to the dock (i.e., stage 0). Eq. (4) 

computes the makespan ( )C π , the completion time of the last wafer in the last job.  



   

  

4. Chromosome Representation and Decoding 

As stated in Section 1, the scheduling problem involves two decisions: (1) 

allocation decision—how to allocate jobs to each stepper, and (2) sequencing 

decision—how to sequence the allocated jobs for each stepper. That is, given N jobs 

to be scheduled on m steppers, we first need to categorize the N jobs into m groups, 

each of which is processed by a particular stepper. Then, we need to determine the job 

sequence for each stepper.  

Let a particular sequence of the N jobs be called a chromosome. In this research, 

we develop a chromosome-decoding scheme. By the decoding scheme, a chromosome 

can be interpreted as a particular scheduling solution, which involves two 

decisions—one is the allocation decision and the other is the sequencing decision.  

To introduce the chromosome-decoding scheme, some notation is described 

below. Denote a chromosome by [ (1),... ( )]Nπ π π= , where )( jπ , called a gene, 

represents the job in the jth position of sequence π . For job )( jπ , represent the 

number of wafers in the job by )( jwπ  and its processing time for a piece of wafer at 

the aligner chamber (the bottleneck chamber) by )( jpπ . Then, denote the total 

processing time at the aligner chamber for job )( jπ  by )()()( jjj pwt πππ ⋅= . The 

procedure for interpreting the job allocation decision from a given chromosome is 

described below. 

 

Procedure Job_Allocation 

Step 1: Compute the threshold for forming a job group 

∑
=

=
N

j
jtT

1
)(π ; /*total processing time of the N jobs*/ 

mTh /= ;  /* processing time threshold for forming a job group*/ 



   

  

Step 2: Form the job groups 

1=k , /*index of job group or stepper*/ 

For i = 1 to N 

∑
=

=
i

j
ji tT

1
)(π ;    /* compute total load of the first i jobs*/ 

If )( hkTi ⋅>  then  /*criterion for forming job groups*/ 

ikC =)( ;      /*form a new job group*/ 

1+= kk ;    /* update the indexing of job group*/ 

   Endif 

If )( mk =  then  

go to Step 3    /*check if job group formation finished*/ 

            Endif 

 Endfor 

Step 3: Output job allocation results 

  Output )(kC , 11 −≤≤ mk  

 

Given the job allocation decision )(kC , the procedure for determining the job 

sequence decision for each stepper is relatively easy. The job sequence for stepper k 

( mk ≤≤1 ) is [ ( ),... ( )]k s eπ π π= , where ( 1)s C k= − + 1 and ( )e C k= , in which we 

denote (0) 0C =  and ( ) ( )C m Nπ= . 

The chromosome-decoding scheme is illustrated by a three-stepper example as 

shown in Figure 2. See the figure, there are 9 jobs to be scheduled on 3 steppers. The 

total processing time is T = 1.6 hours and the threshold is h = 0.53 hour. The set of 

jobs allocated to stepper 1 and their job sequence are },,{ 7521 JJJ=π , and those for 

the other two steppers are },{ 142 JJ=π  and },,,{ 89363 JJJJ=π .  



   

  

5. GA-Tabu Algorithm  

To solve the scheduling problem, we developed seven meta-heuristic algorithms 

(GA, Tabu, GA-Tabu, SA, MMAX, PACO, and PSO) These algorithms adopt the 

algorithmic architectures published in prior studies as referenced below, but are 

distinguished in embedding the novel chromosome decoding scheme we proposed. Of 

these seven enhanced algorithms, the GA-Tabu performs the best and is presented 

here.  

 

5.1 Chromosome Fitness  

 As stated in Section 4, given a chromosome [ (1),... ( )]Nπ π π= , we can use the 

chromosome decoding scheme to extract its two decisions— jobs allocation among 

steppers and job sequencing for each stepper. Then, given a job sequence 

[ ( ),... ( )]k s eπ π π=  for each stepper k, mk ≤≤1 , we can compute its makespan kC  

by the procedure in Section 3. In turn, the scheduling performance (also called fitness) 

of the chromosome [ (1),... ( )]Nπ π π=  is },...,max{ 1
*

mCCC = , which is also 

denoted by )(* πC  hereafter. 

 

5.2 Algorithmic Procedures 

The GA-Tabu algorithm is composed of three procedures. The main one is called 

procedure GA-Tabu which calls two sub-procedures GA(t) and Tabu( outin ππ , ). There 

are two sets of chromosomes. One is called the GA-pool P(t), which include N 

chromosomes and iteratively evolve by procedure GA(t). The other set is called 

Seed_Set, which involves only one chromosome (called seed) and iteratively evolve 

by procedure GA-Tabu.  The procedure GA(t) is designed to evolve from P(t) to 

P(t+1) to possibly include better chromosomes and identify its best four ones. The 



   

  

procedure Tabu( outin ππ , ) is intended to search the neighborhood of a given 

chromosome inπ  to find the best chromosome ( outπ ) in the searched neighborhood. 

Notice that inπ  is selected either from the GA-pool or from the Seed_Set.  

In procedure GA(t), we use four types of crossover operators and three types of 

mutation operators to create new chromosomes. A crossover operator is designed to 

create a new pair from an existing pair, while a mutation operator is to create a new 

one from an existing one. The four types of crossover operators are C1 (one point 

crossover) by Reeves (1995), LOX (linear order crossover) by Croce et al. (1995), 

PMX (partially mapped crossover) by Goldberg (1989), and NABEL operator by Bac 

and Perov (1993). The three types of mutation operators are Swap, Inverse, and 

Insert (Wang and Zheng, 2003; Nearchou, 2004).  

In procedure Tabu( outin ππ , ), a pairwise interchange of two genes (jobs) is called 

a tabu_move. For example, given a n-gene chromosome 1 2 5 1 4 3[ , , , , ....]J J J J Jπ = . By 

interchanging the two genes 3J  and 5J , we can create a new chromosome 

2 2 3 1 4 5[ , , , , ,...]J J J J Jπ = . The tabu_move for causing such an interchange can be 

denoted by move 5 3( , )J J  or move 3 5( , )J J . To facilitate the following presentation of 

procedure Tabu( outin ππ , ), we represent a tabu_move by move ( )inπ π→ , which 

denotes an interchange of two particular jobs that transform inπ  into π .  

Accordingly, the total number of tabu_moves for a chromosome 

[ (1),... ( )]nπ π π=  is 2/)1( −nn . Let the set of all these tabu_moves be represented 

by Move_Set. By applying each tabu_move in the Move_Set to the chromosome π , 

we can create 2/)1( −nn  new chromosomes. The set of these newly created 

chromosomes are called the neighborhood of π , which is denoted by ( )Neighbor π . 

 

Notation 



   

  

GA-Tabu: the main procedure 

bestπ : the current best solution ever found by procedure GA-Tabu 

GA(t): a sub-procedure designed to evolve P(t) 

P(t): a set of N chromosomes, called the GA-pool. . 

best
tGA,π : the best chromosome in P(t) 

best
tGA

−2
,π : the 2nd best chromosome in P(t) 

best
tGA

−3
,π : the 3rd best chromosome in P(t) 

best
tGA

−4
,π : the 4th best chromosome in P(t)  

Tabu ( outin ππ , ): a procedure designed to search the neighborhood of inπ , where outπ  

is the best chromosome found in the searched region. 

Tabu_list: a limited set of tabu_moves, where a tabu_move represents an interchange 

of two particular jobs.  

Seed_Set: a set of one chromosome, which iteratively evolve by procedure GA-Tabu 

seedπ : the present chromosome (called seed) in the Seed_Set  

 

Procedure GA-Tabu  

Initialization: Randomly select a chromosome as bestπ  

For each iteration t )0( fTt ≤≤  

Step 1: Call GA(t) to find best
tGA 1, +π , best

tGA
−

+
2

1,π , best
tGA

−
+

3
1,π , best

tGA
−

+
4

1,π  in P(t+1) 

Step 2: If best
tGA 1, +π  is better than bestπ  

 Update bestπ by best
tGA 1, +π  (i.e., ←bestπ best

tGA 1, +π ) 

 Call Tabu ( out
best ππ , ) to search the neighborhood of bestπ  for 



   

  

possibly improving bestπ (i.e., update bestπ by outπ  if outπ  is better) 

Step 3: If best
tGA 1, +π  keeps worse than bestπ  for exact k (k < 45) iterations  

 While k = 20  /* the age of bestπ  is 20 iterations*/ 

Call Tabu ( out
best
tGA ππ ,2

1,
−

+ ) for possibly improving bestπ  

 While k = 30  /*the age of bestπ  is 30 iterations*/ 

Call Tabu ( out
best
tGA ππ ,3

1,
−

+ ) for possibly improving bestπ  

 While k = 40  /* the age of bestπ  is 40 iterations*/ 

Call Tabu ( out
best
tGA ππ ,4

1,
−

+ ) for possibly improving  

Step 4: If best
tGA 1, +π  keeps worse than bestπ  for k = 40 + 5n (n = 1, 2…) iterations 

/* If bestπ cannot be improved by P(t+1) for over 40 iterations*/ 

/* Try to improve bestπ by using seedπ , the chromosome in Seed_Set*/ 

 Call Tabu ( out
seed ππ , ) for possibly improving bestπ  

 Update the chromosome in Seed_Set  (i.e., )out
seed ππ ←  

 Step 5: Put bestπ  in P(t+1); 

Next iteration until t > Tf 

 

Procedure GA(t) 

Step 1: If t = 0, randomly create N chromosomes to form the initial GA-pool )0(P . 

If 0≠t , input the GA-pool P(t).  

Step 2: Use crossover and mutation operators to create N(Pcr+Pmu) new chromosomes, 

where 1,0 ≤≤ mucr PP . Place the new chromosomes in a set S.  

Step 3: Use the resolute wheel screen method (Michalewicz, 1996) to select N 

chromosomes out of the set )(tPS ∪ . Place the selected N chromosomes in 

the GA-pool P(t+1) 



   

  

Step 4: Output the best four chromosomes in P(t+1): best
tGA 1, +π , best

tGA
−

+
2

1,π , best
tGA

−
+

3
1,π , 

best
tGA

−
+

4
1,π . 

Procedure Tabu ),( outin ππ  

Step 0: Initialization bestout ππ =  

Step 1: Create a set of new chromosomes, Neighbor )( inπ  

Step 2: Try to improve outπ   

 Identify the best q chromosome qππ ,....1  from Neighbor )( inπ  

 If 1π  is better than bestπ , then 1ππ =out ;  

Step 3: Update tabu_list  /*Try to add a new tabu_move to the tabu_list*/ 

For i = 1, q  

If listtabumove i
in _)( ∈→ππ , then go to Next i 

If listtabumove i
in _)( ∉→ππ ,  

Then 

 Update the tenure of each tabu_move in the tabu_list 

/* Each tabu_move’s tenure starts at 1 and is added by 1 while a new 

tabu_move is found*/ 

 Remove the tabu_move with longest tenure from the tabu_list; 

 Put )( i
inmove ππ → in the tabu_list;  

 If )( seed
in ππ = , set iseed ππ =  

 Go to Step 4 

  Next i 

Step 4: Return 

 



   

  

6. Experiments and Discussion 

Numerical experiments and the uniqueness of this research are to be discussed in 

this section. In numerical experiments, we compare seven meta-heuristic algorithms 

in solving the multiple-steppers scheduling problem. These algorithms are chosen 

because their algorithmic flows have been widely applied to solving scheduling 

problem. Referring to some prior studies, we adapted these algorithmic flows by 

embedding the novel chromosome interpretation scheme.  

These prior related studies include GA-Tabu by Chiou and Wu (2009), simulated 

annealing (SA) by Osman and Potts (1989), genetic algorithm (GA) by Wu and Chiou 

(2009), Tabu search (TS) by Widmer and Hertz (1989), particle swarm optimization 

(PSO) by Liao et al. (2007), and two ant colony algorithms (ACO) by Rajendran and 

Ziegler (2004)—respectively called MMAX and PACO.  

Personal computers equipped with PENTIUM Dual-Core 2.8 GHz CPU and 1 

Gb memory are used to run the programs, coded in Visual C++. The parameters of the 

six meta-heuristic algorithms are designed by referring to prior studies accordingly.  

In the three algorithms (GA-Tabu, GA, and Tabu), we set N = 100, Pcr = 0.8, Pmu = 

0.2, q = 7, K = 3,000, T=100,000 (Chiou and Wu 2009, Widmer and Hertz 1989). In 

the SA, we set Temperature = 500 (Osman and Potts 1989); and we set ρ  = 0.75 

(Rajendran and Ziegler 2004) in the ACO where (1- ρ ) is called the evaporation rate. 

In the PSO, we set Vmax = 4, Vmin = -4, ϖ  = 0.8, c1 = 2, c2 = 2, T = 100 (Liao et al. 

(2007), where Vmax denotes the upper limit of the velocity, Vmin denotes the lowest 

limit of the velocity, c1 is the cognition learning factor, c2 is the social learning factor, 

and ϖ  is the inertia weight. 

 

6.1 Experiment Design 

In the experiments, the configuration and operation of the in-line steppers are so 



   

  

defined. Each in-line stepper has 4 ports, 14 stages and 21 chambers. See Table 1, of 

the 14 stages, two stages model the interfaces among the WIP buffer, the dock area, 

and the stepper; and the other 12 stages model the interior chambers of the stepper. 

Note that one stage may include one or more chambers. The operation time at each 

stage i of each in-line stepper is a uniform distribution [ai, bi]. At each stepper, a mask 

setup is always needed for the aligner chamber while it turns to process a new job’s 

wafer, and the mask change time is a constant (1.0 min.). The process yields are 

modeled by truncated binomial distributions, which denote that the job size is first 

generated by a binomial distribution, and then those jobs that carry no wafer are 

“truncated” (removing them from the fab).   

We use (M, N, Y) to represent a test case, where M represents the number of 

in-line steppers, N represents the number of jobs, and Y represents the average yield. 

We design 100 test cases, in which M has two options (with 2 or 3 steppers) and N has 

5 options ranging from 20 to 100 jobs and Y includes 10 options ranging from 15% to 

90%. In practice, the complexity of a typical multiple-stepper scheduling problem is 

M = 2 and N = 60.  

In each test case, we run 15 replicates and the average makespan of the 15 

replicates is taken as the performance measure of the tested algorithm. The average 

makespan of each algorithm x is designated as Cx. For example, tabuGAC −  represents 

the average makespan of the GA-Tabu. Likewise, the average CPU time used in each 

algorithm x is defined as xt ; for example, that used in the GA-Tabu is represented by 

tabuGAt − .  

Pilot experiments indicate that the GA-Tabu essentially outperforms the other six 

algorithm. To compare the solution quality of the seven algorithms, we define a 

performance gap as follows: TabuGATabuGAxx CCC __ /)( −=γ . A positive xγ  indicates 



   

  

that the GA-Tabu outperforms the x algorithm, while a negative xγ  denotes that the 

GA-Tabu is inferior to the x algorithm.  



   

  

6.2 Experiment Results 

Tables 2-11 show the experiment results of xγ  and xt .The GA-Tabu 

outperforms the other six algorithms in terms of xγ . Of the 100 test cases, xγ  

ranges from 0% to 22% but the average of xγ  is only 1.19%. See Figure 3, the lower 

is Y (average process yield), the higher is the average of xγ .  While Y decreases to 

15%, the average of xγ  even reaches up to 8.06%. This is due that the number of 

small lots in a high-yield scenario is fewer which in turn results in less capacity-loss. 

Therefore, the GA-Tabu outperforms the other algorithms substantially in low-yield 

scenarios and slightly in high-yield scenarios.  

Of the 100 test cases, the average of xγ  for each algorithm is shown in Figure 4, 

which indicates that the Tabu algorithm is the second best—the average of Tabuγ  is 

only 0.16%. However, the value of Tabuγ  may reach up to 5.31% in a low-yield 

scenario (Table 3). The average of xt  for each algorithm is shown in Figure 5, which 

indicates that the Tabu algorithm is computationally faster than the GA-Tabu. The 

maximum value of TabuGAt −  is 4,379 sec. (about 1.2 hour). In practice, the scheduling 

decision is made on every working shift (12 hours); solving such a scheduling 

problem 1.5 hours before the shift is acceptable to practitioners.  

 

6.3 Research Uniqueness 

 The uniqueness of this research, in comparison to the prior studies on the 

single-stepper scheduling problem, is explained from the following three perspectives: 

(1) the scheduling context, (2) the chromosome-decoding, and (3) the chromosome 

solution quality of meta-heuristic algorithms. 

The scheduling context of multiple steppers is more complicated than that of 

single stepper. Namely, the scheduling context of multiple steppers involves two types 

of decisions: (1) stepper allocation: how to allocate jobs to each stepper, and (2) job 



   

  

sequencing: how to sequence the allocated jobs for each stepper. In contrast, the 

scheduling context of single stepper involves only one type of decision—how to 

sequence all the jobs for the stepper.  

Such an increased complexity in the scheduling contexts leads to a 

chromosome-decoding issue. As stated, a chromosome originally represents a 

sequence of all the jobs. Such a chromosome can be directly interpreted as a 

scheduling solution for the single-stepper context. However, to interpret such a 

chromosome as a scheduling solution for the multiple-steppers context, we need to 

develop a decoding scheme—for decoding a chromosome into two types of decisions 

(stepper allocation and job sequencing). In summary, for a given chromosome, even 

though its appearance is exactly the same in the two scheduling contexts, its two 

implied scheduling decisions are far different.   

In this research, several meta-heuristic algorithms are examined in the 

multiple-steppers context. These algorithms, in terms of algorithmic flow, are 

essentially the same as those prior ones addressed in the single-stepper 

context—except the inclusion of the chromosome-decoding mechanism. Noticeably, 

such an inclusion leads to far different semantics in interpreting a chromosome. This 

lead to that the best-solution chromosome in the single-stepper context is most likely 

not the best one while it is in the multiple-steppers context. We therefore have to 

examine the effectiveness of these meta-heuristic algorithms in the multiple-stepper 

context. 

 

7. Concluding Remarks  

In-line steppers are the bottleneck of a semiconductor wafer fab. This study 

examines a problem for the scheduling of N jobs on M in-line steppers in a low-yield 

scenario. Such a scheduling problem involves two decisions: how to allocate jobs to 



   

  

each stepper, and how to sequence jobs for each stepper. The longest makespan of the 

M in-line steppers is taken as the performance measure.    

A scheduling solution (called a chromosome) is represented by a sequence of N 

jobs. We develop a novel chromosome-decoding scheme to interpret a chromosome 

into its two associated scheduling decisions—job allocation and job sequencing. Such 

a decoding result can be used to compute the performance (also called fitness) of the 

chromosome.  

Based on the chromosome representation and decoding schemes, seven 

meta-heuristic algorithms adapted from prior studies are developed. These seven 

algorithms include GA, Tabu, GA-Tabu, SA, M-MMAX, PACO, PSO. Numerical 

experiments indicate that the GA-Tabu outperforms the other six algorithms in terms 

of solution quality; and this merit is particularly impressive in low-yield scenarios. In 

practice, such a scheduling decision is made on every working shift (12 hours). The 

computation time of the GA-Tabu, ranging from a few minutes to less than 1.5 hours, 

is acceptable to practitioners.  

One extension of this research is examining the optimal design of port number. 

The larger is the port number, the higher is the tool expenditure and the tool operation 

costs; yet the less is the capacity loss of steppers. Therefore, stepper vendors may 

need to customize the port design based on the process yields of their customers. 
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Figure 1. Configuration of a simplified in-line stepper. 

(a). Chromosome representation
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Figure 2. GA-Tabu chromosome for three in-line steppers. 
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Figure 3. Average of xγ  at various yields. 
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Figure 4. Average of xγ  at various algorithms. 
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Figure 5. Computation times comparison for the type of algorithms.



   

  

Table 1. Process times of in-line stepper chambers 

Process 

sequence 

WIP buffers to dock 

area 

Dock area to 

track 
HMDS Cooling Coater 

Soft- 

bake 
Cooling Aligner 

wafer edge 

exposure 
PEB Cooling Develop 

Hard 

bake 

High 

cooling 

Chamber 

number 
1 1 2 2 2 2 2 1 1 2 2 2 2 1 

Process time 

(min) 
2.5 0.1 1.2 1.2 1.2 [1.2,2.8] 1 [0.75,1.65] 1 [1.2,2.8] 1 [1.2,2.8] [1.2,2.8] 0.5 

 



   

  

Table 2. Performance comparisons of algorithms in scenarios with (M, N) = (2, 20)  

Jobs

Yield
(min) (sec) (sec)

(min)
(sec) (sec) (sec) (sec)

90% 269.7 119 0.00% 79.0 0.09% 244 0.59% 21 0.36% 29 1.12% 6 1.94% 2

80% 254.8 109 0.11% 79.0 0.14% 296 0.28% 19 0.18% 28 1.04% 7 1.91% 1

70% 216.0 104 0.05% 78.0 0.09% 253 0.41% 16 0.23% 23 1.43% 5 2.01% 1

60% 186.3 103 0.08% 77.9 0.23% 217 0.37% 14 0.30% 20 1.34% 5 2.15% 1

50% 168.9 96 0.17% 77.1 0.26% 196 0.39% 13 0.36% 18 1.61% 4 2.66% 1

40% 130.5 63 0.14% 77.0 0.36% 157 0.50% 10 0.49% 13 1.94% 4 3.21% 1

30% 106.5 65 0.08% 76.0 0.29% 160 0.81% 8 0.39% 10 1.98% 3 3.35% 1

25% 81.1 46 0.15% 75.1 0.71% 156 0.86% 6 0.79% 8 3.16% 2 5.61% 1

20% 70.2 42 0.59% 75.0 0.89% 129 2.26% 5 1.72% 6 5.24% 2 7.85% 1

15% 62.5 37 0.25% 75.0 1.50% 118 2.47% 4 2.31% 5 7.03% 2 10.63% 1

PSOGA_Tabu GA SATabu MMAXPACO

20

TabuGAC −TabuGAC − SAtSAtTabuGAt −TabuGAt − tabuttabut MMAXtMMAXtPACOtPACOt PSOtPSOt
SArSArGArGArTaburTabur MMAXrMMAXrPACOrPACOr PSOrPSOrGArGArGArGArGArGArGArGAr GAtGAt

 

Table 3. Performance comparisons of algorithms in scenarios with (M, N) = (2, 40) 



   

  

Jobs

Yield
(min) (sec) (sec)

(min)
(sec) (sec) (sec) (sec)

90% 564.6 381 0.05% 160 0.02% 722 0.10% 185 0.10% 261 0.97% 30 1.37% 7

80% 488.1 333 0.07% 155 0.04% 635 0.20% 160 0.20% 226 1.06% 31 1.59% 7

70% 438.5 294 0.08% 151 0.18% 674 0.29% 143 0.29% 203 1.26% 30 1.79% 6

60% 378.3 276 0.03% 146 0.00% 553 0.16% 122 0.16% 173 1.33% 28 2.00% 6

50% 331.9 261 0.08% 143 0.00% 488 0.16% 106 0.16% 150 1.42% 26 2.11% 6

40% 254.4 182 0.00% 138 0.11% 359 0.20% 81 0.20% 116 1.89% 24 2.87% 6

30% 200.0 150 0.07% 133 0.10% 334 0.45% 63 0.45% 89 2.29% 22 3.62% 5

25% 172.2 150 0.04% 130 0.29% 419 0.52% 54 0.52% 76 3.39% 21 4.93% 5

20% 129.9 128 5.31% 129 2.20% 386 1.90% 48 1.90% 69 15.55% 20 15.77% 5

15% 118.8 104 2.71% 124 2.80% 649 3.66% 34 3.66% 48 22.91% 19 15.34% 5

GA_Tabu GA SATabu MMAXPACO PSO

40

TabuGAC −TabuGAC − SAtSAtTabuGAt −TabuGAt − tabuttabut MMAXtMMAXtPACOtPACOt PSOtPSOt
SArSArGArGArTaburTabur MMAXrMMAXrPACOrPACOr PSOrPSOrGArGArGArGArGArGAr GAtGAt

 



   

  

Table 4. Performance comparisons of algorithms in scenarios with (M, N) = (2, 60) 
Jobs

Yield
(min) (sec) (sec)

(min)
(sec) (sec) (sec) (sec)

90% 840.4 961 0.02% 527 0.04% 1670 0.05% 618 0.14% 876 0.80% 25 1.17% 17

80% 738.7 838 0.01% 511 0.02% 1245 0.06% 542 0.28% 773 1.01% 23 1.51% 17

70% 649.8 792 0.09% 495 0.03% 1549 0.13% 475 0.16% 679 1.01% 22 1.45% 16

60% 585.9 694 0.01% 483 0.07% 1091 0.15% 427 0.29% 612 1.22% 19 1.74% 16

50% 473.4 517 0.01% 466 0.13% 980 0.18% 339 0.28% 487 1.01% 18 1.88% 15

40% 391.3 433 0.00% 452 0.19% 771 0.30% 278 0.35% 401 1.80% 16 2.40% 15

30% 278.4 324 0.13% 431 0.45% 726 0.28% 197 0.43% 282 1.98% 14 3.58% 15

25% 234.5 284 0.07% 421 1.11% 858 0.76% 166 0.77% 240 3.81% 13 5.98% 15

20% 207.1 281 0.32% 417 3.26% 1384 2.18% 149 2.06% 216 7.78% 11 9.50% 14

15% 170.3 212 1.66% 411 9.02% 1595 5.00% 112 6.26% 162 21.00% 10 16.78% 14

PSOGA_Tabu GA SATabu MMAXPACO

60 jobs

TabuGAC −TabuGAC − SAtSAtTabuGAt −TabuGAt − tabuttabut MMAXtMMAXtPACOtPACOt PSOtPSOt
SArSArGArGArTaburTabur MMAXrMMAXrPACOrPACOr PSOrPSOrGArGArGArGAr GAtGAt

 



   

  

Table 5. Performance comparisons of algorithms in scenarios with (M, N) = (2, 80) 

Jobs

Yield
(min) (sec) (sec)

(min)
(sec) (sec) (sec) (sec)

90% 1123.3 1851 0.01% 1210 0.03% 2502 0.12% 1474 0.13% 2084 0.79% 49 1.05% 34

80% 1004.2 1731 0.06% 1174 0.09% 2722 0.27% 1309 0.37% 1857 0.80% 47 1.18% 33

70% 891.7 1659 0.00% 1139 0.06% 2053 0.16% 1158 0.19% 1648 0.86% 43 1.30% 33

60% 760.3 1352 0.00% 1098 0.06% 1767 0.21% 978 0.30% 1393 1.58% 39 1.47% 32

50% 654.7 1130 0.02% 1074 0.05% 1726 0.20% 844 0.21% 1205 1.26% 36 1.75% 32

40% 515.0 864 0.05% 1034 0.25% 1109 0.35% 660 0.43% 954 2.66% 32 2.16% 31

30% 412.5 708 0.00% 998 0.22% 1262 0.59% 521 0.20% 744 1.77% 28 2.62% 31

25% 334.7 601 0.01% 967 0.89% 1315 1.12% 426 0.55% 610 4.69% 26 4.11% 30

20% 292.4 529 0.07% 954 2.69% 1997 2.39% 374 1.87% 543 5.85% 24 7.39% 30

15% 228.9 392 2.68% 931 6.91% 2126 7.80% 253 4.02% 366 8.77% 21 16.64% 30

PSOGA_Tabu GA SATabu PACO MMAX

80

TabuGAC −TabuGAC − SAtSAtTabuGAt −TabuGAt − tabuttabut MMAXtMMAXtPACOtPACOt PSOtPSOt
SArSArGArGArTaburTabur MMAXrMMAXrPACOrPACOr PSOrPSOrGArGAr GAtGAt

 



   

  

Table 6. Performance comparisons of algorithms in scenarios with (M, N) = (2, 100) 

Jobs

Yield
(min) (sec) (sec)

(min)
(sec) (sec) (sec) (sec)

90% 1398.8 3402 0.02% 2328 0.06% 4002 0.15% 2851 0.16% 4053 0.76% 31 1.03% 58

80% 1256.4 3348 0.06% 2261 0.09% 3250 0.37% 2546 0.37% 3636 0.78% 28 1.09% 58

70% 1120.1 2734 0.03% 2193 0.03% 3459 0.15% 2253 0.18% 3229 0.78% 25 0.97% 57

60% 959.0 2294 0.04% 2117 0.10% 2389 0.25% 1920 0.30% 2769 1.04% 22 1.38% 57

50% 785.2 1868 0.06% 2041 0.08% 2454 0.23% 1568 0.26% 2257 1.11% 18 1.63% 56

40% 658.1 1711 0.03% 1988 0.19% 2183 0.28% 1308 0.37% 1886 1.44% 16 2.14% 55

30% 501.4 1231 0.00% 1900 0.45% 1780 0.83% 984 0.43% 1405 2.76% 12 2.69% 55

25% 451.2 1153 0.51% 1870 0.66% 1760 0.91% 882 0.29% 1258 2.60% 11 2.20% 55

20% 364.2 961 0.47% 1825 3.30% 2952 3.03% 728 2.96% 1055 7.52% 9 7.73% 54

15% 303.1 681 0.09% 1783 5.75% 3151 6.69% 511 3.49% 740 11.40% 6 11.95% 54

GA_Tabu PACO PSOGA SATabu MMAX

100

TabuGAC −TabuGAC − SAtSAtTabuGAt −TabuGAt − tabuttabut MMAXtMMAXtPACOtPACOt PSOtPSOt
SArSArGArGArTaburTabur MMAXrMMAXrPACOrPACOr PSOrPSOrGAtGAt

 

Table 7. Performance comparisons of algorithms in scenarios with (M, N) = (3, 20)   



   

  

Jobs

Yield
(min) (sec) (sec)

(min)
(sec) (sec) (sec) (sec)

90% 197.9 4379 0.11% 6.0 0.09% 5876 0.41% 21 0.29% 31 1.27% 30 1.37% 2

80% 186.7 3970 0.19% 5.0 0.13% 4726 0.59% 19 0.31% 29 1.47% 27 1.61% 2

70% 159.7 3484 0.14% 4.0 0.22% 4348 0.50% 16 0.25% 25 1.53% 24 1.77% 1

60% 140.9 3375 0.12% 4.0 0.39% 4978 0.69% 14 0.58% 21 1.60% 21 1.87% 1

50% 126.7 2450 0.11% 3.0 0.57% 3996 0.76% 13 0.61% 19 1.69% 17 2.07% 1

40% 99.8 2046 0.10% 2.0 0.44% 4059 0.55% 10 0.52% 14 1.81% 14 2.29% 1

30% 82.2 1540 0.06% 2.0 0.55% 2632 0.60% 7 0.51% 11 1.83% 11 2.68% 1

25% 63.7 1377 0.13% 1.0 0.81% 3063 1.08% 6 0.85% 8 2.56% 10 3.88% 1

20% 55.9 1135 0.39% 1.0 0.89% 2209 1.18% 5 1.11% 7 3.43% 9 4.99% 1

15% 49.2 896 0.57% 1.0 1.53% 2238 1.99% 4 1.53% 6 5.10% 7 8.51% 1

PSOGA_Tabu GA SATabu MMAXPACO
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TabuGAC −TabuGAC − SAtSAtTabuGAt −TabuGAt − tabuttabut MMAXtMMAXtPACOtPACOt PSOtPSOt
SArSArGArGArTaburTabur MMAXrMMAXrPACOrPACOr PSOrPSOrGArGArGArGArGArGArGArGAr GAtGAt

 

Table 8. Performance comparisons of algorithms in scenarios with (M, N) = (3, 40) 



   

  

Jobs

Yield
(min) (sec) (sec)

(min)
(sec) (sec) (sec) (sec)

90% 394.0 416 0.10% 54.0 0.15% 271 0.07% 1176 0.13% 178 1.38% 12 1.59% 7

80% 342.1 369 0.07% 47.0 0.11% 234 0.13% 1042 0.11% 155 1.60% 11 1.83% 7

70% 308.7 330 0.07% 42.0 0.19% 210 0.25% 1021 0.31% 139 1.78% 10 1.99% 6

60% 266.0 287 0.14% 36.0 0.35% 180 0.19% 843 0.28% 119 1.80% 9 2.31% 6

50% 234.2 266 0.08% 31.0 0.28% 156 0.24% 879 0.18% 104 1.77% 8 2.53% 6

40% 181.1 208 0.07% 24.1 0.45% 121 0.47% 624 0.37% 81 2.45% 6 3.14% 6

30% 143.2 175 0.23% 19.0 0.53% 94 0.52% 728 0.38% 63 2.92% 5 3.92% 5

25% 124.0 150 0.27% 16.0 0.52% 80 0.67% 670 0.70% 54 3.98% 4 5.27% 5

20% 94.5 170 3.43% 12.0 2.82% 61 0.66% 720 2.67% 41 12.11% 4 15.36% 5

15% 85.4 118 0.75% 10.0 2.47% 50 2.02% 567 3.27% 34 10.90% 3 15.91% 5

PSOSATabu MMAXPACOGA_Tabu GA
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TabuGAC −TabuGAC − SAtSAtTabuGAt −TabuGAt − tabuttabut MMAXtMMAXtPACOtPACOt PSOtPSOt
SArSArGArGArTaburTabur MMAXrMMAXrPACOrPACOr PSOrPSOrGArGArGArGArGArGAr GAtGAt

 



   

  

Table 9. Performance comparisons of algorithms in scenarios with (M, N) = (3, 60) 

Jobs

Yield
(min) (sec) (sec)

(min)
(sec) (sec) (sec) (sec)

90% 577.5 1092 0.00% 179.4 0.05% 2724 0.07% 597 0.00% 915 1.23% 20 1.38% 17

80% 509.6 975 0.02% 158.9 0.09% 2093 0.02% 526 0.02% 804 1.19% 18 1.52% 17

70% 449.1 866 0.04% 140.1 0.17% 1587 0.15% 463 0.11% 705 1.46% 16 1.68% 16

60% 405.6 774 0.00% 126.9 0.13% 1859 0.13% 418 0.17% 635 1.65% 15 1.81% 16

50% 328.2 645 0.00% 101.0 0.31% 1278 0.14% 333 0.08% 504 1.78% 12 2.25% 16

40% 272.4 522 0.04% 83.7 0.48% 1428 0.24% 276 0.22% 416 2.84% 11 2.70% 15

30% 196.6 384 0.13% 59.0 0.91% 986 0.38% 197 0.16% 295 2.94% 9 3.80% 15

25% 165.1 330 0.18% 50.0 1.91% 1366 0.64% 166 0.47% 249 5.08% 8 5.94% 15

20% 146.8 315 0.63% 45.0 4.20% 1511 2.08% 148 1.78% 222 7.75% 7 9.63% 14

15% 116.9 326 4.68% 33.0 4.00% 1081 4.35% 107 4.20% 161 17.53% 6 19.41% 14

PSOGA_Tabu GA SATabu MMAXPACO
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TabuGAC −TabuGAC − SAtSAtTabuGAt −TabuGAt − tabuttabut MMAXtMMAXtPACOtPACOt PSOtPSOt
SArSArGArGArTaburTabur MMAXrMMAXrPACOrPACOr PSOrPSOrGArGArGArGAr GAtGAt

 

Table 10. Performance comparisons of algorithms in scenarios with (M, N) = (3, 80) 



   

  

Jobs

Yield
(min) (sec) (sec)

(min)
(sec) (sec) (sec) (sec)

90% 766.2 2404 0.07% 430.7 0.31% 3721 0.21% 1429 0.39% 2179 1.08% 25 1.23% 34

80% 686.3 2174 0.00% 386.7 0.46% 2935 0.15% 1278 0.45% 1939 1.22% 22 1.33% 33

70% 609.7 1884 0.02% 343.9 0.46% 2823 0.17% 1133 0.40% 1714 1.78% 20 1.50% 33

60% 520.8 1587 0.03% 291.5 0.34% 2682 0.17% 959 0.70% 1449 1.52% 17 1.71% 32

50% 450.7 1377 0.12% 252.5 0.41% 3010 0.22% 831 0.44% 1250 1.65% 15 2.01% 32

40% 354.5 1153 0.05% 199.0 0.76% 2283 0.16% 654 1.02% 983 2.09% 12 2.47% 31

30% 285.8 878 0.08% 158.1 1.30% 2269 0.44% 521 1.34% 779 2.39% 10 3.04% 31

25% 232.6 722 0.04% 129.7 3.16% 1692 0.85% 427 3.14% 639 3.47% 9 4.39% 30

20% 203.8 638 0.16% 114.9 5.36% 1485 1.77% 376 7.13% 562 5.94% 8 7.43% 30

15% 159.3 462 0.07% 78.3 10.29% 1609 1.48% 253 11.40% 378 22.57% 6 16.44% 30

MMAXPACO PSOGA_Tabu GA SATabu
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TabuGAC −TabuGAC − SAtSAtTabuGAt −TabuGAt − tabuttabut MMAXtMMAXtPACOtPACOt PSOtPSOt
SArSArGArGArTaburTabur MMAXrMMAXrPACOrPACOr PSOrPSOrGArGAr GAtGAt

 



   

  

Table 11. Performance comparisons of algorithms in scenarios with (M, N) = (3, 100) 

Jobs

Yield
(min) (sec) (sec)

(min)
(sec) (sec) (sec) (sec)

90% 950.5 4379 0.04% 839.1 0.06% 5876 0.39% 2780 0.28% 4236 0.96% 30 1.14% 59

80% 853.9 3970 0.05% 756.9 0.16% 4726 0.63% 2493 0.34% 3788 1.48% 27 1.24% 58

70% 760.4 3484 0.00% 674.0 0.21% 4348 0.47% 2214 0.23% 3349 1.35% 24 1.36% 57

60% 653.2 3375 0.04% 579.6 0.38% 4978 0.69% 1896 0.57% 2865 1.78% 21 1.56% 57

50% 535.1 2450 0.00% 474.8 0.63% 3996 0.82% 1549 0.67% 2336 1.56% 17 1.89% 56

40% 451.1 2046 0.10% 397.1 1.12% 4059 1.23% 1296 1.21% 1953 2.42% 14 2.35% 56

30% 345.0 1540 0.07% 300.5 1.57% 2632 1.62% 981 1.54% 1478 2.11% 11 2.93% 55

25% 306.8 1377 0.33% 269.8 2.32% 3063 2.60% 882 2.35% 1329 4.46% 10 3.68% 55

20% 252.8 1135 0.08% 224.3 5.30% 2209 5.61% 730 5.54% 1097 5.96% 9 7.24% 54

15% 205.7 896 0.16% 167.7 7.81% 2238 8.29% 533 8.24% 803 16.05% 7 14.02% 54

PACO PSOGA SATabu MMAXGA_Tabu
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TabuGAC −TabuGAC − SAtSAtTabuGAt −TabuGAt − tabuttabut MMAXtMMAXtPACOtPACOt PSOtPSOt
SArSArGArGArTaburTabur MMAXrMMAXrPACOrPACOr PSOrPSOrGAtGAt
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效益 

(1) 技術移轉：具高可行性 
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