行政院國家科學委員會補助專題研究計畫

期中進度報告期末報告

新製程導入情境下連線式步進機之排程

計畫類別：■個別型計畫 \square 整合型計畫
計畫编號：NSC99－2221－E－009－110－MY3
執行期間：2010年08月01日至2013年07月31日
執行機構及系所：國立交通大學工業工程與管理系

計畫主持人：巫木誠
共同主持人：無
計畫参與人員：邱志文，呂佳斑，謝佩芸，陳振富，施昌甫

處理方式：立即公開查詢

中 華 民 國 102年9月5日

中文摘要

本專題計畫是針對半導體廠在低良率情境下，研究步進機的投料排序問題，期能提高步進機的產出。步進機是半導體廠的瓶頸機台，其内部是由一系列的加工單元（稱為反應室）所組成，每一個反應室一次可加工一片晶圓。步進機的外部一般設有 4 個暫存區，每一區可暫存一批晶圓盒，每晶圆盒最多可存放 25 片晶圆。在低良率的情境下，許多晶圆盒會出現「不滿批」的現象（亦即晶圆片數低於 25 片）。本研究發現：在低良率情境下，即使步進機的某些反應室有產能閒置，因為暫存區的空間限制，使得暫存區以外的晶圓片無法即時放入步進機加工，因而造成步進機的產能損失。這種產能損失可以藉由晶圓批的投料排序來改善。本研究發展各種進化式演算法（meta－heuristic methods）來求解此問題。研究情境由簡而繁，首先研究在單機的情境下，如何決定工件投料的序。進而研究多機情境下，工件如何指派給各機台，以及各機内工件的排序問題。本研究設計一個新的染色體表達法，可同時表達「工件指派」和「工件排序」的兩個決策。並測試各種進化式演算法的績效。本研究提出 7 種演算法（GA，Tabu，GA－Tabu，SA， M－MMAX，PACO，PSO），經實驗測試，GA－Tabu 演算法優於其他演算法。

關鍵詞：排程，步進機，流程式生產，進化式演算法，基因演算法，禁忌搜尋法

Abstract

This research project addresses a job scheduling problem for steppers, which are bottleneck machines in a semiconductor fab, in order to increase the fab throughput. A stepper externally is equipped with four ports; each port is used to accommodate a job (i.e, a wafer container that contains up to 25 wafers). A stepper internally is composed of a sequence of chambers; each of which undergoes an operation on a wafer. Each wafer, originally located in job container, must individually pass through the sequence of chambers and go back to its original container. In a low-yield environment, some chambers in a stepper may unexpectedly become idle due to the limited capacity of external ports, which in turn results in the capacity loss of the stepper. We found that such a capacity loss can be alleviated by scheduling methods. This research project develops several meta-heuristic algorithms to solve the problem. We first consider only the single stepper-problem and extend to investigate the multiple-steppers problems. The multiple-steppers problem is concerned with two decisions: (1) job assignment decision, (2) job sequence decision. We propose a novel chromosome representation to model the two decisions and develop seven meta-heuristic algorithms (GA, Tabu, GA-Tabu, SA, M-MMAX, PACO, PSO) to solve scheduling problem. Numerical experiments indicate that GA-Tabu outperforms the other meta-heuristic algorithms.

Keywords: Scheduling, in-line Steppers, Flow Shop Scheduling, Meta-heuristic Algorithms, Genetic Algorithms, Tabu Algorithm.

1. Introduction

In semiconductor manufacturing, in-line steppers (or simply called steppers) are the most expensive machines, which may cost up to 40 million dollars per tool and usually become the bottleneck of a fab (semiconductor factory). Effective scheduling for steppers is very important because it could significantly affect the fab throughput, cycle time, and on-time delivery.

Most prior studies on scheduling stepper are developed under a high-yield assumption (Chern and Liu, 2003; Dabbas and Flowler, 2003; Duwayri et al., 2006; Sha et al. 2006; Morrison and Martin, 2007; Wu and Chang, 2006; Wu et al.,2007, 2008; Chen, 2009). That is, they implicitly assumed the production yield is 100% and no wafer will be scrapped. Each wafer lot (a container for transporting wafers) is always a full-lot (typically carrying 25 wafers). Under this assumption, they took a stepper as a single machine and a wafer lot as a job for scheduling. This implies that a stepper will not be idle as long as it has wafer lots waiting to be processed.

Recently, a few studies (Wu and Chiou, 2010; Chiou and Wu, 2009) noticed that a stepper in a low-yield scenario may become idle even though it has many wafer lots waiting to be processed. They modeled the interior configuration of an in-line stepper as a special-featured flow shop, which comprises a series of chambers and each piece of wafer has to travel through the flow shop. They discovered that some chambers of the flow shop might become idle due to the inclusion of small-lots (i.e., carrying less than 25 wafers) and developed some scheduling algorithms to alleviate such chamber idleness in order to increase the throughput of steppers. These algorithms were developed in the context of scheduling a single in-line stepper.

However, in practice, there are multiple in-line steppers to be scheduled. This paper enhances the prior scheduling algorithms to deal with the scheduling for multiple in-line steppers. Such a scheduling problem involves two decisions: (1) how
to allocate jobs to each stepper, and (2) how to sequence the allocated jobs for each stepper.

In this research, given N jobs to be allocated and scheduled on multiple steppers, a sequence of the N jobs is called a chromosome. We developed a novel chromosome-decoding scheme that can unveil the two decisions suggested by a given chromosome. Then, various enhanced versions of meta-heuristic algorithms (GA, Holland (1975), Tabu, GA-Tabu, SA, M-MMAX, PACO, PSO) were proposed and tested. Of the tested algorithms, numerical experiments indicate that the GA-Tabu outperforms the others in most cases.

The remainder of this paper is organized as follows. Section 2 explains the research problem in more detail. Section 3 describes how to compute the performance of a scheduling solution. Section 4 presents the chromosome-decoding scheme. Section 5 describes the solution architecture of the GA-Tabu algorithm. Numerical experiments are reported in Section 6 and concluding remarks are in the last section.

2. Problem Statement

The research problem is introduced by first describing the interior configuration, the exterior interfacing equipments, and the transportation mechanisms of an in-line stepper. Then, we use an example to illustrate such an in-line stepper may suffer a capacity loss in a low-yield scenario. Finally, the problem for scheduling multiple in-line steppers and its performance metric are presented.

The interior configuration of an in-line stepper comprises a sequence of manufacturing stages, each of which involves one or more than one functionally identical chambers (Quirk, 2001). Each chamber processes one piece of wafer at a time. To undergo the operation at the stepper, a piece of wafer has to travel through all the manufacturing stages. Of these chambers, a particular type (called the aligner chamber) may need a setup. The aligner chamber is typically the bottleneck chamber and involves only one chamber at this manufacturing stage. Such a configuration can be seen as a flow shop if we consider each stage as a workstation and each chamber as a machine in a workstation (Yang, 1999; Pinedo, 2008). A simplified illustration of an in-line stepper is shown in Figure 1, where each manufacturing stage involves only one chamber.

See Figure 1, the exterior of an in-line stepper is directly interfaced with a dock area which generally involves four ports. Each port serves as a one-job-buffer for the in-line stepper, which can accommodate only one job at a time. A job (or a wafer lot) is a container, which involves at most 25 pieces of wafers. Apart from the dock area, a large-sized stocker (also called the WIP area) is equipped to store the wafer jobs that are to be transported to the dock area.

The transportation mechanisms of an in-line stepper are explained below. See Figure 1, a wafer job has to undergo a round-trip travel. A job first moves from the WIP area to the dock area, placed on a free port. Then, each piece of wafer will
sequentially exit the job (a container), go through the in-line stepper, and back to the job. Finally, the job is triggered to move back to the WIP area, while all its wafers complete operations. In summary, there is a transportation incompatibility in the round-trip travel. That is, the transportation unit between the WIP area and the dock area is a job, while that between the dock area and the chamber area is a piece of wafer.

Notice that the buffer capacity at the dock area is quite limited. Suppose the dock area involves only four ports. Then, the dock area can simultaneously accommodate at most four jobs. That is, we cannot move an additional job to the dock area if each of the four ports is currently occupied or not free.

Due to limited buffer capacity in the dock area, we may face a capacity-loss of chambers in a low-yield scenario, as explained by the following example. Consider a simplified case where an in-line stepper comprises 22 stages and each stage involves only one chamber, four jobs $(A, B, C$, and $D)$ are on the dock area, and one job (E) is waiting in the WIP area. Job A contains 25 wafers and jobs B, C, and D in total carry only 17 wafers. Suppose the processing sequence is $A \rightarrow B \rightarrow C \rightarrow D$. Following the sequence, the ($25+17$) wafers of the four jobs will successively travel through the chambers and back to the ports. While the last wafer of job A just finishes its operations, job A must still stay on the port in order to get this wafer back. At this instant, the 17 unfinished wafers of jobs B, C, and D will occupy the last 17 chambers of the stepper. The remaining five chambers then become idle because jobs A, B, C, and D now occupy the dock area, and no more port is available for job E to access.

Yet, such a capacity-loss in chambers may be alleviated if a different job sequence $(B \rightarrow C \rightarrow D \rightarrow A)$ is applied. Suppose job B now contains 8 wafers. While the last wafer (8th one) of job B finishes its travel, we still have 34 unfinished wafers. Of these unfinished wafers, 22 ones reside in the chamber area and 12 ones stay in the
ports. This implies that no chamber will be idle while the port originally for job B becomes free to accommodate job E. Thus, the capacity-loss of an in-line stepper may be alleviated by applying an appropriate job sequence.

The research problem is concerned with the scheduling of multiple in-line steppers in a low-yield scenario. Such a scheduling problem involves two decisions: (1) how to allocate jobs to each stepper, and (2) how to sequence the allocated jobs for each stepper. That is, given N jobs to be scheduled for m in-line steppers. The N jobs have to be categorized into m groups, and the jobs of each group have to be sequenced. The performance metric of the scheduling problem is defined as $C^{*}=\max \left\{C_{1}, \ldots, C_{m}\right\}$, where C_{i} is the makespan of i-th stepper. That is, C^{*} is the makespan required to complete the N jobs, and N / C^{*} could be used to denote the total throughput rate of the m steppers. In the scheduling, we aim to maximize total throughput rate (N / C^{*}), which also implies the minimization of C^{*}.

3. Makespan Evaluation for Job Sequences

Given a job sequence to be processed by the i-th stepper, this section describes how to compute C_{i} (the makespan), adapted from Ruiz and Maroto (2006). The makespan evaluation procedure adopts an emulation-based approach. We virtually sent each wafer in order (following the job sequence) into the in-line stepper and look for an available chamber that can finish the job at the earliest time. The completion time of each wafer at each stage is progressively recorded, which ultimately yield the makespan.

To undergo an operation at an aligner chamber, a mask (an auxiliary device) is needed. A particular mask denotes a particular operational recipe. Different jobs may require different operational recipes. If so, we need a setup time to change masks at the aligner chamber; otherwise no setup is needed. .

Notation

j : index of job
k : index of wafer
i : index of stage
l: index of chamber
a : index of the aligner chamber which requires setup
ρ : total number of ports in the dock
n : total number of jobs to be processed by the in-line stepper
M : total numbers of stages in the in-line stepper
m_{i} : total number of chambers at stage i
$p_{i j k}$: processing time required by chamber l at stage i to process wafer k in job j
π : a job sequence for the n jobs, $\pi=[\pi(1), \ldots \pi(n)]$
$w(\pi(j))$: the job in the j th position of sequence π
$\pi(j)$: total number of wafers in job j
t_{u} : transportation time for uploading a job to the dock area
t_{d} : transportation time for downloading a job from the dock area
$S_{i, l, \pi(j), k}$: setup time required by chamber l in stage i to process wafer k in job $\pi(j)$
if $i \neq a$ or $k \neq 1$, then $S_{i, l, \pi(j), k}=0$,
otherwise, $S_{i, l, \pi(j), k}=\delta_{\pi(j), \pi(j-1)}$
$\delta_{\pi(j), \pi(j-1)}$: setup time required for the aligner chamber to switch production from job $\pi(j-1)$ to job $\pi(j) ; \quad \delta_{\pi(j), \pi(j-1)}=s_{0}$ if $\pi(j-1)$ and $\pi(j)$ use different masks, and $\delta_{\pi(j), \pi(j-1)}=0$, otherwise
$A_{i, l, t}$: the time epoch when chamber l in stage i just turns to be available; that is, while the chamber (i, l) is free at $t, A_{i, l, t}$ is the last wafer-completion-epoch before t; while the chamber (i, l) is in operation at $t, A_{i, l, t}$ is the first wafer-completion-time after t.
$C_{i, \pi(j), k}$: the completion time of wafer k in job $\pi(j)$ at stage i
$C(\pi)$: the makespan of job sequence π

The makespan evaluation procedure is governed by the following equations.

$$
\begin{array}{ll}
C_{i, \pi(j), k}=\min _{1 \leq 1 \leq m_{i}}\left\{\max \left\{A_{i, l, t}+S_{i, l, \pi(j), k}, C_{i-1, \pi(j), k}\right\}+p_{i, l, \pi(j), k}\right\} \\
\quad \text { where } t=C_{i-1, \pi(j), k} & \text { for } 1 \leq i \leq M \\
C_{M+1, \pi(j), w(\pi(j))}=C_{M, \pi(j), w(\pi(j))}+t_{d} & \\
C_{M+1, \pi(j), w(\pi(j))}+t_{u}=C_{0, \pi(j+\rho), 1} & \text { for } 1 \leq j \leq n-\rho \\
C(\pi)=C_{M+1, \pi(n), w(\pi(n))} & \tag{4}
\end{array}
$$

Eq. (1) expresses the completion time of a particular wafer at each stage i. The term $A_{i, l, t}+S_{i, l, \pi(j), k}$ denotes the time epoch when chamber l at stage i is ready for processing wafer k in job $\pi(j)$, and the term $C_{i-1, \pi(j), k}$ denotes the time epoch when the wafer is available to be processed at the chamber.

Eq. (2) describes the completion time of job $\pi(j)$ at stage $M+1$ (i.e., the dock area). Eq. (3) expresses the job arrival/departure relationships for the dock. The equation indicates that only when job $\pi(j)$ in the dock has been moved away, can job $\pi(j+\rho)$ in the WIP buffer be transported to the dock (i.e., stage 0). Eq. (4) computes the makespan $C(\pi)$, the completion time of the last wafer in the last job.

4. Chromosome Representation and Decoding

As stated in Section 1, the scheduling problem involves two decisions: (1) allocation decision-how to allocate jobs to each stepper, and (2) sequencing decision-how to sequence the allocated jobs for each stepper. That is, given N jobs to be scheduled on m steppers, we first need to categorize the N jobs into m groups, each of which is processed by a particular stepper. Then, we need to determine the job sequence for each stepper.

Let a particular sequence of the N jobs be called a chromosome. In this research, we develop a chromosome-decoding scheme. By the decoding scheme, a chromosome can be interpreted as a particular scheduling solution, which involves two decisions-one is the allocation decision and the other is the sequencing decision.

To introduce the chromosome-decoding scheme, some notation is described below. Denote a chromosome by $\pi=[\pi(1), \ldots \pi(N)]$, where $\pi(j)$, called a gene, represents the job in the j th position of sequence π. For job $\pi(j)$, represent the number of wafers in the job by $w_{\pi(j)}$ and its processing time for a piece of wafer at the aligner chamber (the bottleneck chamber) by $p_{\pi(j)}$. Then, denote the total processing time at the aligner chamber for job $\pi(j)$ by $t_{\pi(j)}=w_{\pi(j)} \cdot p_{\pi(j)}$. The procedure for interpreting the job allocation decision from a given chromosome is described below.

Procedure Job_Allocation

Step 1: Compute the threshold for forming a job group

$$
\begin{aligned}
& T=\sum_{j=1}^{N} t_{\pi(j)} ; / * \text { total processing time of the } N \text { jobs*/ } \\
& h=T / m ; \quad / * \text { processing time threshold for forming a job group*/ }
\end{aligned}
$$

Step 2: Form the job groups

$$
k=1, / * \text { index of job group or stepper*/ }
$$

$$
\text { For } i=1 \text { to } N
$$

$$
T_{i}=\sum_{j=1}^{i} t_{\pi(j)} ; \quad \quad / * \text { compute total load of the first } i \text { jobs*/ }
$$

$$
\text { If }\left(T_{i}>k \cdot h\right) \text { then } \quad / * \text { criterion for forming job groups } * /
$$

$$
C(k)=i ; \quad / * \text { form a new job group*/ }
$$

$$
k=k+1 ; \quad / * \text { update the indexing of job group*/ }
$$

Endif
If $(k=m)$ then go to Step $3 \quad / *$ check if job group formation finished*/

Endif

Endfor

Step 3: Output job allocation results
Output $C(k), 1 \leq k \leq m-1$

Given the job allocation decision $C(k)$, the procedure for determining the job sequence decision for each stepper is relatively easy. The job sequence for stepper k $(1 \leq k \leq m)$ is $\pi_{k}=[\pi(s), \ldots \pi(e)]$, where $s=C(k-1)+1$ and $e=C(k)$, in which we denote $C(0)=0$ and $C(m)=\pi(N)$.

The chromosome-decoding scheme is illustrated by a three-stepper example as shown in Figure 2. See the figure, there are 9 jobs to be scheduled on 3 steppers. The total processing time is $T=1.6$ hours and the threshold is $h=0.53$ hour. The set of jobs allocated to stepper 1 and their job sequence are $\pi_{1}=\left\{J_{2}, J_{5}, J_{7}\right\}$, and those for the other two steppers are $\pi_{2}=\left\{J_{4}, J_{1}\right\}$ and $\pi_{3}=\left\{J_{6}, J_{3}, J_{9}, J_{8}\right\}$.

5. GA-Tabu Algorithm

To solve the scheduling problem, we developed seven meta-heuristic algorithms (GA, Tabu, GA-Tabu, SA, MMAX, PACO, and PSO) These algorithms adopt the algorithmic architectures published in prior studies as referenced below, but are distinguished in embedding the novel chromosome decoding scheme we proposed. Of these seven enhanced algorithms, the GA-Tabu performs the best and is presented here.

5.1 Chromosome Fitness

As stated in Section 4, given a chromosome $\pi=[\pi(1), \ldots \pi(N)]$, we can use the chromosome decoding scheme to extract its two decisions- jobs allocation among steppers and job sequencing for each stepper. Then, given a job sequence $\pi_{k}=[\pi(s), \ldots \pi(e)]$ for each stepper $k, 1 \leq k \leq m$, we can compute its makespan C_{k} by the procedure in Section 3. In turn, the scheduling performance (also called fitness) of the chromosome $\pi=[\pi(1), \ldots \pi(N)]$ is $C^{*}=\max \left\{C_{1}, \ldots, C_{m}\right\}$, which is also denoted by $C^{*}(\pi)$ hereafter.

5.2 Algorithmic Procedures

The GA-Tabu algorithm is composed of three procedures. The main one is called procedure $\boldsymbol{G A} \boldsymbol{- T a b u}$ which calls two sub-procedures $\boldsymbol{G A}(\boldsymbol{t})$ and $\boldsymbol{\operatorname { T a b }} \boldsymbol{(}\left(\pi_{\text {in }}, \pi_{\text {out }}\right)$. There are two sets of chromosomes. One is called the GA-pool $P(t)$, which include N chromosomes and iteratively evolve by procedure $\boldsymbol{G A}(\boldsymbol{t})$. The other set is called Seed_Set, which involves only one chromosome (called seed) and iteratively evolve by procedure $\boldsymbol{G A}$-Tabu. The procedure $\boldsymbol{G A}(\boldsymbol{t})$ is designed to evolve from $P(t)$ to $P(t+1)$ to possibly include better chromosomes and identify its best four ones. The
procedure $\operatorname{Tabu}\left(\pi_{\text {in }}, \pi_{\text {out }}\right)$ is intended to search the neighborhood of a given chromosome $\pi_{\text {in }}$ to find the best chromosome $\left(\pi_{\text {out }}\right)$ in the searched neighborhood. Notice that $\pi_{i n}$ is selected either from the GA-pool or from the Seed_Set.

In procedure $\boldsymbol{G A}(\boldsymbol{t})$, we use four types of crossover operators and three types of mutation operators to create new chromosomes. A crossover operator is designed to create a new pair from an existing pair, while a mutation operator is to create a new one from an existing one. The four types of crossover operators are $\mathbf{C 1}$ (one point crossover) by Reeves (1995), LOX (linear order crossover) by Croce et al. (1995), PMX (partially mapped crossover) by Goldberg (1989), and NABEL operator by Bac and Perov (1993). The three types of mutation operators are Swap, Inverse, and Insert (Wang and Zheng, 2003; Nearchou, 2004).

In procedure $\boldsymbol{T a b u}\left(\pi_{\text {in }}, \pi_{\text {out }}\right)$, a pairwise interchange of two genes (jobs) is called a tabu_move. For example, given a n-gene chromosome $\pi_{1}=\left[J_{2}, J_{5}, J_{1}, J_{4}, J_{3} \ldots\right]$. By interchanging the two genes J_{3} and J_{5}, we can create a new chromosome $\pi_{2}=\left[J_{2}, J_{3}, J_{1}, J_{4}, J_{5}, \ldots\right]$. The tabu_move for causing such an interchange can be denoted by move $\left(J_{5}, J_{3}\right)$ or move $\left(J_{3}, J_{5}\right)$. To facilitate the following presentation of procedure $\operatorname{Tabu}\left(\pi_{\text {in }}, \pi_{\text {out }}\right)$, we represent a tabu_move by move $\left(\pi_{\text {in }} \rightarrow \pi\right)$, which denotes an interchange of two particular jobs that transform $\pi_{\text {in }}$ into π.

Accordingly, the total number of tabu_moves for a chromosome $\pi=[\pi(1), \ldots \pi(n)]$ is $n(n-1) / 2$. Let the set of all these tabu_moves be represented by Move_Set. By applying each tabu_move in the Move_Set to the chromosome π, we can create $n(n-1) / 2$ new chromosomes. The set of these newly created chromosomes are called the neighborhood of π, which is denoted by Neighbor (π).

Notation

GA-Tabu: the main procedure
$\pi^{\text {best }}$: the current best solution ever found by procedure GA-Tabu
$\boldsymbol{G A}(\boldsymbol{t})$: a sub-procedure designed to evolve $P(t)$
$P(t)$: a set of N chromosomes, called the GA-pool. .
$\pi_{G A, t}^{\text {best }}$: the best chromosome in $P(t)$
$\pi_{G A, t}^{2-\text { best }}$: the $2^{\text {nd }}$ best chromosome in $P(t)$
$\pi_{G A, t}^{3-\text { best }}$: the $3^{\text {rd }}$ best chromosome in $P(t)$
$\pi_{G A, t}^{4 \text {-best }}$: the $4^{\text {th }}$ best chromosome in $P(t)$

Tabu ($\pi_{\text {in }}, \pi_{\text {out }}$): a procedure designed to search the neighborhood of $\pi_{\text {in }}$, where $\pi_{\text {out }}$ is the best chromosome found in the searched region.

Tabu_list: a limited set of tabu_moves, where a tabu_move represents an interchange of two particular jobs.

Seed_Set: a set of one chromosome, which iteratively evolve by procedure GA-Tabu $\pi^{\text {seed }}:$ the present chromosome (called seed) in the Seed_Set

Procedure GA-Tabu

Initialization: Randomly select a chromosome as $\pi^{\text {best }}$
For each iteration $t\left(0 \leq t \leq T_{f}\right)$

Step 1: Call $\boldsymbol{G A}(\boldsymbol{t})$ to find $\pi_{G A, t+1}^{\text {best }}, \pi_{G A, t+1}^{2-\text { best }}, \pi_{G A, t+1}^{3 \text {-best }}, \pi_{G A, t+1}^{4-\text { best }}$ in $P(t+1)$

Step 2: If $\pi_{G A, t+1}^{\text {best }}$ is better than $\pi^{\text {best }}$

- Update $\pi^{\text {best }}$ by $\pi_{G A, t+1}^{\text {best }}$ (i.e., $\pi^{\text {best }} \leftarrow \pi_{G A, t+1}^{\text {best }}$)
- Call Tabu ($\pi^{\text {best }}, \pi_{\text {out }}$) to search the neighborhood of $\pi^{\text {best }}$ for
possibly improving $\pi^{\text {best }}$ (i.e., update $\pi^{\text {best }}$ by $\pi_{\text {out }}$ if $\pi_{\text {out }}$ is better)

Step 3: If $\pi_{\text {GA,t+1 }}^{\text {best }}$ keeps worse than $\pi^{\text {best }}$ for exact $\boldsymbol{k}(k<45)$ iterations

- While $\boldsymbol{k}=20 \quad / *$ the age of $\pi^{\text {best }}$ is 20 iterations*/

Call Tabu ($\pi_{G A, t+1}^{2-\text { best }}, \pi_{\text {out }}$) for possibly improving $\pi^{\text {best }}$

- While $\boldsymbol{k}=30 \quad / *$ the age of $\pi^{\text {best }}$ is 30 iterations*/

Call Tabu ($\pi_{G A, t+1}^{3-\text { best }}, \pi_{\text {out }}$) for possibly improving $\pi^{\text {best }}$

- While $\boldsymbol{k}=40 \quad / *$ the age of $\pi^{\text {best }}$ is 40 iterations*/

Call Tabu ($\pi_{G A, t+1}^{4-\text { best }}, \pi_{\text {out }}$) for possibly improving

Step 4: If $\pi_{\text {GA, } t+1}^{\text {best }}$ keeps worse than $\pi^{\text {best }}$ for $\boldsymbol{k}=\mathbf{4 0}+\mathbf{5 n}(n=1,2 \ldots)$ iterations
/* If $\pi^{\text {best }}$ cannot be improved by $P(t+1)$ for over 40 iterations*/
/* Try to improve $\pi^{\text {best }}$ by using $\pi^{\text {seed }}$, the chromosome in Seed_Set*/

- Call Tabu ($\pi^{\text {seed }}, \pi_{\text {out }}$) for possibly improving $\pi^{\text {best }}$
- Update the chromosome in Seed_Set (i.e., $\pi^{\text {seed }} \leftarrow \pi_{\text {out }}$)

Step 5: Put $\pi^{\text {best }}$ in $P(t+1)$;
Next iteration until $t>T_{f}$

Procedure GA(t)

Step 1: If $t=0$, randomly create N chromosomes to form the initial GA-pool $P(0)$. If $t \neq 0$, input the GA-pool $P(t)$.

Step 2: Use crossover and mutation operators to create $N\left(P_{c r}+P_{m u}\right)$ new chromosomes, where $0 \leq P_{c r}, P_{m u} \leq 1$. Place the new chromosomes in a set S.

Step 3: Use the resolute wheel screen method (Michalewicz, 1996) to select N chromosomes out of the set $S \cup P(t)$. Place the selected N chromosomes in the GA-pool $P(t+1)$

Step 4: Output the best four chromosomes in $P(t+1): \pi_{G A, t+1}^{\text {best }}, \pi_{G A, t+1}^{2-\text { best }}, \pi_{G A, t+1}^{3-\text { best }}$,

$$
\pi_{G A, t+1}^{4-\text { best }} .
$$

Procedure Tabu ($\pi_{\text {in }}, \pi_{\text {out }}$)
Step 0: Initialization $\pi_{\text {out }}=\pi_{\text {best }}$
Step 1: Create a set of new chromosomes, Neighbor ($\pi_{\text {in }}$)
Step 2: Try to improve $\pi_{\text {out }}$

- Identify the best q chromosome $\pi^{1}, \ldots . \pi^{q}$ from Neighbor $\left(\pi_{i n}\right)$
- If π^{1} is better than $\pi^{\text {best }}$, then $\pi_{\text {out }}=\pi^{1}$;

Step 3: Update tabu_list /*Try to add a new tabu_move to the tabu_list*/
For $i=1, q$
If move $\left(\pi_{i n} \rightarrow \pi^{i}\right) \in$ tabu_list , then go to Next i

If move $\left(\pi_{i n} \rightarrow \pi^{i}\right) \notin$ tabu_list,
Then

- Update the tenure of each tabu_move in the tabu_list
/* Each tabu_move's tenure starts at 1 and is added by 1 while a new tabu_move is found*/
- Remove the tabu_move with longest tenure from the tabu_list;
- Put move $\left(\pi_{i n} \rightarrow \pi^{i}\right)$ in the tabu_list;
- If $\left(\pi_{\text {in }}=\pi^{\text {seed }}\right)$, set $\pi^{\text {seed }}=\pi^{i}$
- Go to Step 4

Next i
Step 4: Return

6. Experiments and Discussion

Numerical experiments and the uniqueness of this research are to be discussed in this section. In numerical experiments, we compare seven meta-heuristic algorithms in solving the multiple-steppers scheduling problem. These algorithms are chosen because their algorithmic flows have been widely applied to solving scheduling problem. Referring to some prior studies, we adapted these algorithmic flows by embedding the novel chromosome interpretation scheme.

These prior related studies include GA-Tabu by Chiou and Wu (2009), simulated annealing (SA) by Osman and Potts (1989), genetic algorithm (GA) by Wu and Chiou (2009), Tabu search (TS) by Widmer and Hertz (1989), particle swarm optimization (PSO) by Liao et al. (2007), and two ant colony algorithms (ACO) by Rajendran and Ziegler (2004)—respectively called MMAX and PACO.

Personal computers equipped with PENTIUM Dual-Core 2.8 GHz CPU and 1 Gb memory are used to run the programs, coded in Visual C++. The parameters of the six meta-heuristic algorithms are designed by referring to prior studies accordingly. In the three algorithms (GA-Tabu, GA, and Tabu), we set $N=100, P_{c r}=0.8, P_{m u}=$ 0.2, $q=7, K=3,000, T=100,000$ (Chiou and Wu 2009, Widmer and Hertz 1989). In the SA, we set Temperature $=500$ (Osman and Potts 1989); and we set $\rho=0.75$ (Rajendran and Ziegler 2004) in the ACO where (1- ρ) is called the evaporation rate. In the PSO, we set $V_{\max }=4, V_{\min }=-4, \varpi=0.8, c_{1}=2, c_{2}=2, T=100$ (Liao et al. (2007), where $V_{\max }$ denotes the upper limit of the velocity, $V_{\min }$ denotes the lowest limit of the velocity, c_{1} is the cognition learning factor, c_{2} is the social learning factor, and σ is the inertia weight.

6.1 Experiment Design

In the experiments, the configuration and operation of the in-line steppers are so
defined. Each in-line stepper has 4 ports, 14 stages and 21 chambers. See Table 1, of the 14 stages, two stages model the interfaces among the WIP buffer, the dock area, and the stepper; and the other 12 stages model the interior chambers of the stepper. Note that one stage may include one or more chambers. The operation time at each stage i of each in-line stepper is a uniform distribution $\left[a_{i}, b_{i}\right]$. At each stepper, a mask setup is always needed for the aligner chamber while it turns to process a new job’s wafer, and the mask change time is a constant (1.0 min .). The process yields are modeled by truncated binomial distributions, which denote that the job size is first generated by a binomial distribution, and then those jobs that carry no wafer are "truncated" (removing them from the fab).

We use (M, N, Y) to represent a test case, where M represents the number of in-line steppers, N represents the number of jobs, and Y represents the average yield. We design 100 test cases, in which M has two options (with 2 or 3 steppers) and N has 5 options ranging from 20 to 100 jobs and Y includes 10 options ranging from 15% to 90%. In practice, the complexity of a typical multiple-stepper scheduling problem is $M=2$ and $N=60$.

In each test case, we run 15 replicates and the average makespan of the 15 replicates is taken as the performance measure of the tested algorithm. The average makespan of each algorithm x is designated as C_{χ}. For example, $C_{G A-t a b u}$ represents the average makespan of the GA-Tabu. Likewise, the average CPU time used in each algorithm x is defined as t_{x}; for example, that used in the GA-Tabu is represented by $t_{G A-t a b u}$.

Pilot experiments indicate that the GA-Tabu essentially outperforms the other six algorithm. To compare the solution quality of the seven algorithms, we define a performance gap as follows: $\gamma_{x}=\left(C_{x}-C_{G A _ \text {Tabu }}\right) / C_{G A _ \text {Tabu }}$. A positive γ_{x} indicates
that the GA-Tabu outperforms the x algorithm, while a negative γ_{x} denotes that the GA-Tabu is inferior to the x algorithm.

6.2 Experiment Results

Tables 2-11 show the experiment results of γ_{x} and t_{x}. The GA-Tabu outperforms the other six algorithms in terms of γ_{x}. Of the 100 test cases, γ_{x} ranges from 0% to 22% but the average of γ_{x} is only 1.19%. See Figure 3, the lower is Y (average process yield), the higher is the average of γ_{x}. While Y decreases to 15%, the average of γ_{x} even reaches up to 8.06%. This is due that the number of small lots in a high-yield scenario is fewer which in turn results in less capacity-loss. Therefore, the GA-Tabu outperforms the other algorithms substantially in low-yield scenarios and slightly in high-yield scenarios.

Of the 100 test cases, the average of γ_{x} for each algorithm is shown in Figure 4, which indicates that the Tabu algorithm is the second best-the average of $\gamma_{\text {Tabu }}$ is only 0.16%. However, the value of $\gamma_{\text {Tabu }}$ may reach up to 5.31% in a low-yield scenario (Table 3). The average of t_{x} for each algorithm is shown in Figure 5, which indicates that the Tabu algorithm is computationally faster than the GA-Tabu. The maximum value of $t_{G A-\text { Tabu }}$ is $4,379 \mathrm{sec}$. (about 1.2 hour). In practice, the scheduling decision is made on every working shift (12 hours); solving such a scheduling problem 1.5 hours before the shift is acceptable to practitioners.

6.3 Research Uniqueness

The uniqueness of this research, in comparison to the prior studies on the single-stepper scheduling problem, is explained from the following three perspectives: (1) the scheduling context, (2) the chromosome-decoding, and (3) the chromosome solution quality of meta-heuristic algorithms.

The scheduling context of multiple steppers is more complicated than that of single stepper. Namely, the scheduling context of multiple steppers involves two types of decisions: (1) stepper allocation: how to allocate jobs to each stepper, and (2) job
sequencing: how to sequence the allocated jobs for each stepper. In contrast, the scheduling context of single stepper involves only one type of decision-how to sequence all the jobs for the stepper.

Such an increased complexity in the scheduling contexts leads to a chromosome-decoding issue. As stated, a chromosome originally represents a sequence of all the jobs. Such a chromosome can be directly interpreted as a scheduling solution for the single-stepper context. However, to interpret such a chromosome as a scheduling solution for the multiple-steppers context, we need to develop a decoding scheme-for decoding a chromosome into two types of decisions (stepper allocation and job sequencing). In summary, for a given chromosome, even though its appearance is exactly the same in the two scheduling contexts, its two implied scheduling decisions are far different.

In this research, several meta-heuristic algorithms are examined in the multiple-steppers context. These algorithms, in terms of algorithmic flow, are essentially the same as those prior ones addressed in the single-stepper context-except the inclusion of the chromosome-decoding mechanism. Noticeably, such an inclusion leads to far different semantics in interpreting a chromosome. This lead to that the best-solution chromosome in the single-stepper context is most likely not the best one while it is in the multiple-steppers context. We therefore have to examine the effectiveness of these meta-heuristic algorithms in the multiple-stepper context.

7. Concluding Remarks

In-line steppers are the bottleneck of a semiconductor wafer fab. This study examines a problem for the scheduling of N jobs on M in-line steppers in a low-yield scenario. Such a scheduling problem involves two decisions: how to allocate jobs to
each stepper, and how to sequence jobs for each stepper. The longest makespan of the M in-line steppers is taken as the performance measure.

A scheduling solution (called a chromosome) is represented by a sequence of N jobs. We develop a novel chromosome-decoding scheme to interpret a chromosome into its two associated scheduling decisions-job allocation and job sequencing. Such a decoding result can be used to compute the performance (also called fitness) of the chromosome.

Based on the chromosome representation and decoding schemes, seven meta-heuristic algorithms adapted from prior studies are developed. These seven algorithms include GA, Tabu, GA-Tabu, SA, M-MMAX, PACO, PSO. Numerical experiments indicate that the GA-Tabu outperforms the other six algorithms in terms of solution quality; and this merit is particularly impressive in low-yield scenarios. In practice, such a scheduling decision is made on every working shift (12 hours). The computation time of the GA-Tabu, ranging from a few minutes to less than 1.5 hours, is acceptable to practitioners.

One extension of this research is examining the optimal design of port number. The larger is the port number, the higher is the tool expenditure and the tool operation costs; yet the less is the capacity loss of steppers. Therefore, stepper vendors may need to customize the port design based on the process yields of their customers.

Acknowledgements

This research is financially sponsored by National Science Council, Taiwan, under a research contract NSC 99-2221-E-009-110-MY3.

References

Bac F.Q. and Perov V.L. (1993), 'New evolutionary genetic algorithms for NP-complete combinatorial optimization problems’, Biological Cybernetics, 69, 229-234.

Chen T. (2009), 'A fuzzy-neural knowledge-based system for job completion time prediction and internal due date assignment in a wafer fabrication plant, International Journal of Systems Science, 40:8, 889-902.

Chern C.C. and Liu Y.L. (2003), 'Family-based scheduling rules of a sequence-dependant wafer fabrication system', IEEE Transactions on semiconductor manufacturing, 16(1), 15-25.

Croce F.D., Tadei R. and Volta G. (1995), ‘A genetic algorithm for the job shop problem’, Computation Operation Research, 22(1), 15-24.

Chiou C.W. and Wu M.C. (2009), ‘GA-Tabu Algorithm for Scheduling In-line Steppers in Low-Yield Scenarios’, Expert Systems with Applications, 36,11925-11933.

Dabbas R.M. and Fowler J.W. (2003), 'A New Scheduling Approach Using Combined Dispatching Criteria in Wafer Fabs', IEEE Transactions on Semiconductor Manufacturing, 16, 3.

Duwayri Z., Mollaghasemi M., Nazzal D. and Rabadi G. (2006), ‘Scheduling setup changes at bottleneck workstations in semiconductor manufacturing', Production Planning \& Control, 17(7), 717-727.

Goldberg D.E. (1989), Genetic algorithms in search, optimization and machine
learning. Addison-Wesley, Boston.
Holland J.H. (1975), Adaptation in neural and artificial systems, Ann Arbor, MI: Univ. Michigan Press.

Liao C.J., Tseng C.T. and Luarn P. (2007), 'A discrete version of particle swarm optimization for flowshop scheduling problems’, Computers \& Operations Research, 34, 3099 - 3111.

Michalewicz Z. (1996), Genetic algorithms + data structures = evolution programs, 3rd ed. Springer, Berlin Heidelberg New York.

Morrison J.R. and Martin D.P. (2007), 'Performance evaluation of photolithography cluster tools', OR Spectrum, 33, 375-389.

Nearchou A.C. (2004), 'The effect of various operators on the genetic search for large scheduling problems', International Journal of Production Economics, 88, 191-203.

Osman I.H. and Potts C.N. (1989), 'Simulated annealing for permutation flow-shop scheduling', OMEGA, The International Journal of Management Science, 17(6), 551-557.

Pinedo M. (2008), Scheduling:theory, algorithms, and systems. 3rd ed., Springer New York.

Quirk M. (2001), Semiconductor manufacturing technology, Prentice Hall.
Rajendran C. and Ziegler H. (2004), ‘Ant-colony algorithms for permutation flowshop scheduling to minimize makespan/ total flowtime of jobs’, European Journal of Operational Research, 155, 426-438.

Reeves C.R. (1995), 'A genetic algorithm for flowshop sequencing', Computation Opereration Research, 22(1), 5-13.

Ruiz R. and Maroto C.(2006), 'A genetic algorithm for hybrid flowshops with sequence dependent setup times and machine eligibility', European Journal of

Operational Research, 169, 781-800.
Sha D.Y., Hsu S.Y., Che Z.H. and Chen C.H. (2006), 'A dispatching rule for photolithography scheduling with an on-line rework strategy', Computers \& Industrial Engineering, 50, 233-247.

Wang L. and Zheng D.Z. (2003), 'An effective hybrid heuristic for flowshop scheduling', International Journal of Advanced Manufacturing Technology, 21(1), 38-44.

Widmer M. and Hertz A. (1989), 'A new heuristic method for the flow shop sequencing problem', European Journal of Operational Research, 41, 186-193.

Wu M.C. and Chang W.J. (2007), 'A short-term capacity trading method for semiconductor fabs with partnership', Expert Systems with Applications, 33, 476-483.

Wu M.C. and Chang W.J. (2008), 'A multiple criteria decision for trading capacity between two semiconductor fabs’, Expert Systems with Applications, 35,938-945.

Wu M.C. and Chiou C.W. (2010). ‘Scheduling semiconductor in-line steppers in new product/process introduction scenarios’, International Journal of Production Research, 48(6), 1835-1852.

Wu M.C., Chiou S.J. and Chen C.F. (2008), ‘Dispatching for make-to-order wafer fabs with machine-dedication and mask set-up characteristics', International Journal of Production Research, 46(14), 3993-4009.

Wu M.C., Huang Y.L., Chang Y.C. and Yang K.F. (2006), 'Dispatching in semiconductor fabs with machine-dedication features', International Journal of Advanced Manufacturing Technology, 28, 978-984.

Wu M.C., Jiang J.H. and Chang W.J. (2008). 'Scheduling a hybrid MTO/MTS semiconductor fab with machine-dedication features', International Journal

Production Economics, 112, 416-426.
Yang W.H. (1999). ‘ Survey of scheduling research involving setup times',
International Journal of Systems Science, 30:2, 143-155.

Figure 1. Configuration of a simplified in-line stepper.

J 2	J 5	J 7	J 4	J 1	J 6	J 3	J 9	J 8

(a). Chromosome representation

(b). Calculating the accumulated processing time

Job sequence
In machine 1

Job sequence In machine 2

Job sequence
In machine 3
(c). Decoding result

Figure 2. GA-Tabu chromosome for three in-line steppers.

Figure 3. Average of γ_{x} at various yields.

Figure 4. Average of γ_{x} at various algorithms.

Figure 5. Computation times comparison for the type of algorithms.

Table 1. Process times of in-line stepper chambers

Process sequence	WIP buffers to dock area	Dock area to track	HMDS	Cooling	Coater	Soft- bake	Cooling	Aligner	wafer exposure	edge	PEB	Cooling	Develop	Hard bake	High cooling
Chamber number	1	1	2	2	2	2	2	1	1		2	2	2	2	1
Process time (min)	2.5	0.1	1.2	1.2	1.2	[1.2,2.8]	1	[0.75,1.65]	1		[1.2,2.8]	1	[1.2,2.8]	[1.2,2.8]	0.5

Table 2. Performance comparisons of algorithms in scenarios with $(M, N)=(2,20)$

Jobs	20													
	GA_Tabu		Tabu		GA		PACO		MMAX		SA		PSO	
Yield	$\begin{gathered} C_{G A-\text { Tabu }} \\ (\text { min) } \end{gathered}$	$\begin{gathered} t_{\text {GA-Tobu }} \\ (\mathrm{sec}) \end{gathered}$	$r_{\text {Tabu }}$	$\underset{(\mathrm{sec})}{\boldsymbol{t}_{\text {(sec }}}$	$r_{G A}$	$\underset{(\min)}{t_{\text {a }}}$	$r_{\text {PACO }}$	$t_{\text {(RCO }}$	$r_{\text {MAXX }}$	$t_{\text {max }}$	$r_{S A}$	$\underset{\text { (sec) }}{\boldsymbol{t}_{S A}}$	$r_{\text {BSO }}$	$\underset{(\mathrm{sec})}{t_{\text {BO }}}$
90\%	269.7	119	0.00\%	79.0	0.09\%	244	0.59\%	21	0.36\%	29	1.12\%	6	1.94\%	2
80\%	254.8	109	0.11\%	79.0	0.14\%	296	0.28\%	19	0.18\%	28	1.04\%	7	1.91\%	1
70\%	216.0	104	0.05\%	78.0	0.09\%	253	0.41\%	16	0.23\%	23	1.43\%	5	2.01\%	1
60\%	186.3	103	0.08\%	77.9	0.23\%	217	0.37\%	14	0.30\%	20	1.34\%	5	2.15\%	1
50\%	168.9	96	0.17\%	77.1	0.26\%	196	0.39\%	13	0.36\%	18	1.61\%	4	2.66\%	1
40\%	130.5	63	0.14\%	77.0	0.36\%	157	0.50\%	10	0.49\%	13	1.94\%	4	3.21\%	1
30\%	106.5	65	0.08\%	76.0	0.29\%	160	0.81\%	8	0.39\%	10	1.98\%	3	3.35\%	1
25\%	81.1	46	0.15\%	75.1	0.71\%	156	0.86\%	6	0.79\%	8	3.16\%	2	5.61\%	1
20\%	70.2	42	0.59\%	75.0	0.89\%	129	2.26\%	5	1.72\%	6	5.24\%	2	7.85\%	1
15\%	62.5	37	0.25\%	75.0	1.50\%	118	2.47\%	4	2.31\%	5	7.03\%	2	10.63\%	1

Table 3. Performance comparisons of algorithms in scenarios with $(M, N)=(2,40)$

Jobs	40													
	GA_Tabu		Tabu		GA		PACO		MMAX		SA		PSO	
Yield	$\begin{gathered} \mathcal{C}_{G A-\text { Tabu }} \\ (\mathrm{min}) \end{gathered}$	$\begin{gathered} t_{\text {CA-Tobu }} \\ (\mathrm{sec}) \end{gathered}$	$r_{\text {Tabu }}$	$\boldsymbol{t}_{\text {thent }}^{\text {(sec) }}$	$r_{G A}$	$\boldsymbol{t}_{(\text {(min })}$	$r_{\text {PACO }}$	$\begin{aligned} & t_{\mathrm{PRO}} \\ & \text { (sec) } \end{aligned}$	$r_{\text {MIAX }}$	$t_{\text {max }}^{\text {(sec) }}$	$r_{S A}$	$\boldsymbol{t}_{\text {(sec) }}$	$r_{\text {B }}$	$\boldsymbol{t}_{\text {(RO }}$
90\%	564.6	381	0.05\%	160	0.02\%	722	0.10\%	185	0.10\%	261	0.97\%	30	1.37\%	7
80\%	488.1	333	0.07\%	155	0.04\%	635	0.20\%	160	0.20\%	226	1.06\%	31	1.59\%	7
70\%	438.5	294	0.08\%	151	0.18\%	674	0.29\%	143	0.29\%	203	1.26\%	30	1.79\%	6
60\%	378.3	276	0.03\%	146	0.00\%	553	0.16\%	122	0.16\%	173	1.33\%	28	2.00\%	6
50\%	331.9	261	0.08\%	143	0.00\%	488	0.16\%	106	0.16\%	150	1.42\%	26	2.11\%	6
40\%	254.4	182	0.00\%	138	0.11\%	359	0.20\%	81	0.20\%	116	1.89\%	24	2.87\%	6
30\%	200.0	150	0.07\%	133	0.10\%	334	0.45\%	63	0.45\%	89	2.29\%	22	3.62\%	5
25\%	172.2	150	0.04\%	130	0.29\%	419	0.52\%	54	0.52\%	76	3.39\%	21	4.93\%	5
20\%	129.9	128	5.31\%	129	2.20\%	386	1.90\%	48	1.90\%	69	15.55\%	20	15.77\%	5
15\%	118.8	104	2.71\%	124	2.80\%	649	3.66\%	34	3.66\%	48	22.91\%	19	15.34\%	5

Table 4. Performance comparisons of algorithms in scenarios with $(M, N)=(2,60)$

Jobs	60 jobs													
	GA_Tabu		Tabu		GA		PACO		MMAX		SA		PSO	
Yield	$\begin{gathered} C_{G A-T a b u} \\ (\min) \end{gathered}$	$t_{\text {GA-Tobu }}^{(\mathrm{sec})}$	$r_{\text {Tabu }}$	$\boldsymbol{t}_{\text {(thel }}$	$r_{G A}$	$\boldsymbol{t}_{(\text {min })}$	$r_{\text {PACO }}$	$t_{\text {Pro }}$	$r_{\text {MMAX }}$	$\begin{aligned} & t_{\text {MMXX }} \\ & (\mathrm{sec}) \end{aligned}$	$r_{S A}$	$\boldsymbol{t}_{\text {(sec) }}$	$r_{\text {PBO }}$	$\underset{(\mathrm{sec})}{t_{\text {RO }}}$
90\%	840.4	961	0.02\%	527	0.04\%	1670	0.05\%	618	0.14\%	876	0.80\%	25	1.17\%	17
80\%	738.7	838	0.01\%	511	0.02\%	1245	0.06\%	542	0.28\%	773	1.01\%	23	1.51\%	17
70\%	649.8	792	0.09\%	495	0.03\%	1549	0.13\%	475	0.16\%	679	1.01\%	22	1.45\%	16
60\%	585.9	694	0.01\%	483	0.07\%	1091	0.15\%	427	0.29\%	612	1.22\%	19	1.74\%	16
50\%	473.4	517	0.01\%	466	0.13\%	980	0.18\%	339	0.28\%	487	1.01\%	18	1.88\%	15
40\%	391.3	433	0.00\%	452	0.19\%	771	0.30\%	278	0.35\%	401	1.80\%	16	2.40\%	15
30\%	278.4	324	0.13\%	431	0.45\%	726	0.28\%	197	0.43\%	282	1.98\%	14	3.58\%	15
25\%	234.5	284	0.07\%	421	1.11\%	858	0.76\%	166	0.77\%	240	3.81\%	13	5.98\%	15
20\%	207.1	281	0.32\%	417	3.26\%	1384	2.18\%	149	2.06\%	216	7.78\%	11	9.50\%	14
15\%	170.3	212	1.66\%	411	9.02\%	1595	5.00\%	112	6.26\%	162	21.00\%	10	16.78\%	14

Table 5. Performance comparisons of algorithms in scenarios with $(M, N)=(2,80)$

Jobs	80													
	GA_Tabu		Tabu		GA		PACO		MMAX		SA		PSO	
Yield	$\begin{gathered} C_{\text {GA-Tabu }} \\ (\mathrm{min}) \end{gathered}$	$\begin{gathered} t_{G A-T a b u} \\ (\mathrm{sec}) \end{gathered}$	$r_{\text {Tabu }}$	$\boldsymbol{t}_{\text {(then }}$	$r_{G A}$	$\boldsymbol{t}_{(\mathrm{min})}$	$r_{\text {PACO }}$	$\begin{aligned} & t_{\text {PRO }} \\ & \text { (sec) } \end{aligned}$	$r_{\text {MMAX }}$	$\begin{gathered} t_{\text {MAX }} \\ (\mathrm{sec}) \end{gathered}$	$r_{S A}$	$\underset{\text { (sec) }}{\boldsymbol{t}_{S A}}$	$r_{\text {BO }}$	$\begin{aligned} & t_{\text {RO }} \\ & (\mathrm{sec}) \end{aligned}$
90\%	1123.3	1851	0.01\%	1210	0.03\%	2502	0.12\%	1474	0.13\%	2084	0.79\%	49	1.05\%	34
80\%	1004.2	1731	0.06\%	1174	0.09\%	2722	0.27\%	1309	0.37\%	1857	0.80\%	47	1.18\%	33
70\%	891.7	1659	0.00\%	1139	0.06\%	2053	0.16\%	1158	0.19\%	1648	0.86\%	43	1.30\%	33
60\%	760.3	1352	0.00\%	1098	0.06\%	1767	0.21\%	978	0.30\%	1393	1.58\%	39	1.47\%	32
50\%	654.7	1130	0.02\%	1074	0.05\%	1726	0.20\%	844	0.21\%	1205	1.26\%	36	1.75\%	32
40\%	515.0	864	0.05\%	1034	0.25\%	1109	0.35\%	660	0.43\%	954	2.66\%	32	2.16\%	31
30\%	412.5	708	0.00\%	998	0.22\%	1262	0.59\%	521	0.20\%	744	1.77\%	28	2.62\%	31
25\%	334.7	601	0.01\%	967	0.89\%	1315	1.12\%	426	0.55\%	610	4.69\%	26	4.11\%	30
20\%	292.4	529	0.07\%	954	2.69\%	1997	2.39\%	374	1.87\%	543	5.85\%	24	7.39\%	30
15\%	228.9	392	2.68\%	931	6.91\%	2126	7.80\%	253	4.02\%	366	8.77\%	21	16.64\%	30

Table 6. Performance comparisons of algorithms in scenarios with $(M, N)=(2,100)$

Jobs	100													
	GA	abu	Tabu		GA		PACO		MMAX		SA		PSO	
Yield	$\begin{gathered} C_{\text {GA-Tabu }} \\ (\mathrm{min}) \end{gathered}$	$\begin{gathered} t_{G A-T a b u} \\ (\mathrm{sec}) \end{gathered}$	$r_{\text {Tabu }}$	$t_{\text {the }}$ (sec)	$r_{G A}$	$\boldsymbol{t}_{\text {(min) }}$	$r_{\text {PACO }}$	PACO (sec)	$r_{\text {MMAX }}$	$t_{\text {MAX }}$ (sec)	$r_{S A}$	$\boldsymbol{t}_{\text {(sec) }}$	$r_{\text {BSO }}$	$\begin{gathered} \boldsymbol{t}_{\text {BO }} \\ (\mathrm{sec}) \end{gathered}$
90\%	1398.8	3402	0.02\%	2328	0.06\%	4002	0.15\%	2851	0.16\%	4053	0.76\%	31	1.03\%	58
80\%	1256.4	3348	0.06\%	2261	0.09\%	3250	0.37\%	2546	0.37\%	3636	0.78\%	28	1.09\%	58
70\%	1120.1	2734	0.03\%	2193	0.03\%	3459	0.15\%	2253	0.18\%	3229	0.78\%	25	0.97\%	57
60\%	959.0	2294	0.04\%	2117	0.10\%	2389	0.25\%	1920	0.30\%	2769	1.04\%	22	1.38\%	57
50\%	785.2	1868	0.06\%	2041	0.08\%	2454	0.23\%	1568	0.26\%	2257	1.11\%	18	1.63\%	56
40\%	658.1	1711	0.03\%	1988	0.19\%	2183	0.28\%	1308	0.37\%	1886	1.44\%	16	2.14\%	55
30\%	501.4	1231	0.00\%	1900	0.45\%	1780	0.83\%	984	0.43\%	1405	2.76\%	12	2.69\%	55
25\%	451.2	1153	0.51\%	1870	0.66\%	1760	0.91\%	882	0.29\%	1258	2.60\%	11	2.20\%	55
20\%	364.2	961	0.47\%	1825	3.30\%	2952	3.03\%	728	2.96\%	1055	7.52\%	9	7.73\%	54
15\%	303.1	681	0.09\%	1783	5.75\%	3151	6.69\%	511	3.49\%	740	11.40\%	6	11.95\%	54

Table 7. Performance comparisons of algorithms in scenarios with $(M, N)=(3,20)$

Jobs	20													
	GA	abu	Tabu		GA		PACO		MMAX		SA		PSO	
Yield	$\begin{gathered} C_{G A-\text { Tabu }} \\ (\min) \end{gathered}$	$\begin{gathered} t_{\text {GA-Tabu }} \\ (\mathrm{sec}) \end{gathered}$	$r_{\text {Tabu }}$	$\underset{(\mathrm{sec})}{\boldsymbol{t}_{\text {the }}}$	$r_{G A}$	$\boldsymbol{t}_{(\text {min })}$	$r_{\text {PACO }}$	$\begin{aligned} & t_{\text {PRO }} \\ & \text { (sec) } \end{aligned}$	$r_{\text {MMAX }}$	$\begin{gathered} t_{\text {MAX }} \\ (\mathrm{sec}) \end{gathered}$	$r_{S A}$	$\boldsymbol{t}_{\text {(sec) }}$	$r_{\text {BOO }}$	$\underset{(\mathrm{sec})}{t_{\text {ROO }}}$
90\%	197.9	4379	0.11\%	6.0	0.09\%	5876	0.41\%	21	0.29\%	31	1.27\%	30	1.37\%	2
80\%	186.7	3970	0.19\%	5.0	0.13\%	4726	0.59\%	19	0.31\%	29	1.47\%	27	1.61\%	2
70\%	159.7	3484	0.14\%	4.0	0.22\%	4348	0.50\%	16	0.25\%	25	1.53\%	24	1.77\%	1
60\%	140.9	3375	0.12\%	4.0	0.39\%	4978	0.69\%	14	0.58\%	21	1.60\%	21	1.87\%	1
50\%	126.7	2450	0.11\%	3.0	0.57\%	3996	0.76\%	13	0.61\%	19	1.69\%	17	2.07\%	1
40\%	99.8	2046	0.10\%	2.0	0.44\%	4059	0.55\%	10	0.52\%	14	1.81\%	14	2.29\%	1
30\%	82.2	1540	0.06\%	2.0	0.55\%	2632	0.60\%	7	0.51\%	11	1.83\%	11	2.68\%	1
25\%	63.7	1377	0.13\%	1.0	0.81\%	3063	1.08\%	6	0.85\%	8	2.56\%	10	3.88\%	1
20\%	55.9	1135	0.39\%	1.0	0.89\%	2209	1.18\%	5	1.11\%	7	3.43\%	9	4.99\%	1
15\%	49.2	896	0.57\%	1.0	1.53\%	2238	1.99\%	4	1.53\%	6	5.10\%	7	8.51\%	1

Table 8. Performance comparisons of algorithms in scenarios with $(M, N)=(3,40)$

Jobs	40													
	GA_Tabu		Tabu		GA		PACO		MMAX		SA		PSO	
Yield	$\begin{gathered} C_{G A-\text { Tobu }} \\ (\mathrm{min}) \end{gathered}$	$t_{\text {CA-Tobu }}^{(\mathrm{sec})}$	$r_{\text {Tabu }}$	$\boldsymbol{t}_{\text {thel }}^{\text {(sec) }}$	$r_{G A}$	$\boldsymbol{t}_{(\text {min })}$	$r_{\text {PACO }}$	$\begin{aligned} & t_{\mathrm{PRCO}} \\ & \text { (sec) } \end{aligned}$	$r_{\text {MAXX }}$	$\begin{aligned} & t_{\text {MMXX }} \\ & (\mathrm{sec}) \end{aligned}$	$r_{S A}$	$\boldsymbol{t}_{\text {(sec) }}$	$r_{\text {BOO }}$	$\begin{gathered} t_{\text {RO }} \\ (\mathrm{sec}) \end{gathered}$
90\%	394.0	416	0.10\%	54.0	0.15\%	271	0.07\%	1176	0.13\%	178	1.38\%	12	1.59\%	7
80\%	342.1	369	0.07\%	47.0	0.11\%	234	0.13\%	1042	0.11\%	155	1.60\%	11	1.83\%	7
70\%	308.7	330	0.07\%	42.0	0.19\%	210	0.25\%	1021	0.31\%	139	1.78\%	10	1.99\%	6
60\%	266.0	287	0.14\%	36.0	0.35\%	180	0.19\%	843	0.28\%	119	1.80\%	9	2.31\%	6
50\%	234.2	266	0.08\%	31.0	0.28\%	156	0.24\%	879	0.18\%	104	1.77\%	8	2.53\%	6
40\%	181.1	208	0.07\%	24.1	0.45\%	121	0.47\%	624	0.37\%	81	2.45\%	6	3.14\%	6
30\%	143.2	175	0.23\%	19.0	0.53\%	94	0.52\%	728	0.38\%	63	2.92\%	5	3.92\%	5
25\%	124.0	150	0.27\%	16.0	0.52\%	80	0.67\%	670	0.70\%	54	3.98\%	4	5.27\%	5
20\%	94.5	170	3.43\%	12.0	2.82\%	61	0.66\%	720	2.67\%	41	12.11\%	4	15.36\%	5
15\%	85.4	118	0.75\%	10.0	2.47\%	50	2.02\%	567	3.27\%	34	10.90\%	3	15.91\%	5

Table 9. Performance comparisons of algorithms in scenarios with $(M, N)=(3,60)$

Jobs	60													
	GA_Tabu		Tabu		GA		PACO		MMAX		SA		PSO	
Yield	$\begin{gathered} C_{G A-\text { Tabu }} \\ (\text { min } \end{gathered}$	$\begin{gathered} \mathrm{t}_{\mathrm{CA}-\mathrm{Tabu}}(\mathrm{sec}) \end{gathered}$	$r_{\text {Tabu }}$	$\boldsymbol{t}_{\text {thel }}^{\text {(sec) }}$	$r_{G A}$	$\boldsymbol{t}_{(\text {(min })}$	$r_{\text {PACO }}$	$\begin{aligned} & t_{\text {PRO }} \\ & \text { (sec) } \end{aligned}$	$r_{\text {MAXX }}$	$\begin{gathered} t_{\text {MAX }} \\ (\mathrm{sec}) \end{gathered}$	$r_{S A}$	$\boldsymbol{t}_{\text {(sec) }}$	$r_{\text {BO }}$	$\begin{aligned} & t_{\text {FOO }} \\ & (\mathrm{sec}) \end{aligned}$
90\%	577.5	1092	0.00\%	179.4	0.05\%	2724	0.07\%	597	0.00\%	915	1.23\%	20	1.38\%	17
80\%	509.6	975	0.02\%	158.9	0.09\%	2093	0.02\%	526	0.02\%	804	1.19\%	18	1.52\%	17
70\%	449.1	866	0.04\%	140.1	0.17\%	1587	0.15\%	463	0.11\%	705	1.46\%	16	1.68\%	16
60\%	405.6	774	0.00\%	126.9	0.13\%	1859	0.13\%	418	0.17\%	635	1.65\%	15	1.81\%	16
50\%	328.2	645	0.00\%	101.0	0.31\%	1278	0.14\%	333	0.08\%	504	1.78\%	12	2.25\%	16
40\%	272.4	522	0.04\%	83.7	0.48\%	1428	0.24\%	276	0.22\%	416	2.84\%	11	2.70\%	15
30\%	196.6	384	0.13\%	59.0	0.91\%	986	0.38\%	197	0.16\%	295	2.94\%	9	3.80\%	15
25\%	165.1	330	0.18\%	50.0	1.91\%	1366	0.64\%	166	0.47\%	249	5.08\%	8	5.94\%	15
20\%	146.8	315	0.63\%	45.0	4.20\%	1511	2.08\%	148	1.78\%	222	7.75\%	7	9.63\%	14
15\%	116.9	326	4.68\%	33.0	4.00\%	1081	4.35\%	107	4.20\%	161	17.53\%	6	19.41\%	14

Table 10. Performance comparisons of algorithms in scenarios with $(M, N)=(3,80)$

Jobs	80													
	GA_Tabu		Tabu		GA		PACO		MmAX		SA		PSO	
Yield	$\begin{gathered} C_{G A-\text { Tabu }} \\ (\mathrm{min}) \end{gathered}$	$\begin{gathered} t_{\text {CA-Tabu }} \\ (\mathrm{sec}) \end{gathered}$	$r_{\text {Tabu }}$		$r_{G A}$	$\boldsymbol{t}_{(\text {min })}$	$r_{\text {PACO }}$	$\begin{aligned} & t_{\text {PRO }} \\ & (\mathrm{sec}) \end{aligned}$	$r_{\text {MAXX }}$	$\begin{aligned} & t_{\text {MMXX }} \\ & \text { (sec) } \end{aligned}$	$r_{S A}$	$\underset{(\mathrm{sec})}{\boldsymbol{t}_{S A}}$	$r_{\text {BSO }}$	$\begin{aligned} & t_{\text {RO }} \\ & (\mathrm{sec}) \end{aligned}$
90\%	766.2	2404	0.07\%	430.7	0.31\%	3721	0.21\%	1429	0.39\%	2179	1.08\%	25	1.23\%	34
80\%	686.3	2174	0.00\%	386.7	0.46\%	2935	0.15\%	1278	0.45\%	1939	1.22\%	22	1.33\%	33
70\%	609.7	1884	0.02\%	343.9	0.46\%	2823	0.17\%	1133	0.40\%	1714	1.78\%	20	1.50\%	33
60\%	520.8	1587	0.03\%	291.5	0.34\%	2682	0.17\%	959	0.70\%	1449	1.52\%	17	1.71\%	32
50\%	450.7	1377	0.12\%	252.5	0.41\%	3010	0.22\%	831	0.44\%	1250	1.65\%	15	2.01\%	32
40\%	354.5	1153	0.05\%	199.0	0.76\%	2283	0.16\%	654	1.02\%	983	2.09\%	12	2.47\%	31
30\%	285.8	878	0.08\%	158.1	1.30\%	2269	0.44\%	521	1.34\%	779	2.39\%	10	3.04\%	31
25\%	232.6	722	0.04\%	129.7	3.16\%	1692	0.85\%	427	3.14\%	639	3.47\%	9	4.39\%	30
20\%	203.8	638	0.16\%	114.9	5.36\%	1485	1.77\%	376	7.13\%	562	5.94\%	8	7.43\%	30
15\%	159.3	462	0.07\%	78.3	10.29\%	1609	1.48\%	253	11.40\%	378	22.57\%	6	16.44\%	30

Table 11．Performance comparisons of algorithms in scenarios with $(M, N)=(3,100)$

Jobs	100													
	GA＿Tabu		Tabu		GA		PACO		MMAX		SA		PSO	
Yield	$\begin{gathered} C_{G A-T a b u} \\ (\mathrm{~min}) \end{gathered}$	$t_{\substack{G A-T a b u \\(\mathrm{sec})}}$	$r_{\text {Tabu }}$	$\boldsymbol{t}_{(\mathrm{thec},}$	$r_{G A}$	$\boldsymbol{t}_{(\mathrm{Can}}{ }_{\text {（min }}$	$r_{\text {PACO }}$	$t_{\text {PACO }}$ (sec)	$r_{\text {MMAX }}$	$t_{\text {MAX }}$ （sec）	$r_{S A}$	$\boldsymbol{t}_{(\mathrm{sec})}$	$r_{\text {PSO }}$	$\begin{aligned} & \boldsymbol{t}_{\text {BO }} \\ & (\mathrm{sec}) \end{aligned}$
90\％	950.5	4379	0．04\％	839.1	0．06\％	5876	0．39\％	2780	0．28\％	4236	0．96\％	30	1．14\％	59
80\％	853.9	3970	0．05\％	756.9	0．16\％	4726	0．63\％	2493	0．34\％	3788	1．48\％	27	1．24\％	58
70\％	760.4	3484	0．00\％	674.0	0．21\％	4348	0．47\％	2214	0．23\％	3349	1．35\％	24	1．36\％	57
60\％	653.2	3375	0．04\％	579.6	0．38\％	4978	0．69\％	1896	0．57\％	2865	1．78\％	21	1．56\％	57
50\％	535.1	2450	0．00\％	474.8	0．63\％	3996	0．82\％	1549	0．67\％	2336	1．56\％	17	1．89\％	56
40\％	451.1	2046	0．10\％	397.1	1．12\％	4059	1．23\％	1296	1．21\％	1953	2．42\％	14	2．35\％	56
30\％	345.0	1540	0．07\％	300.5	1．57\％	2632	1．62\％	981	1．54\％	1478	2．11\％	11	2．93\％	55
25\％	306.8	1377	0．33\％	269.8	2．32\％	3063	2．60\％	882	2．35\％	1329	4．46\％	10	3．68\％	55
20\％	252.8	1135	0．08\％	224.3	5．30\％	2209	5．61\％	730	5．54\％	1097	5．96\％	9	7．24\％	54
15\％	205.7	896	0．16\％	167.7	7．81\％	2238	8．29\％	533	8．24\％	803	16．05\％	7	14．02\％	54

國科會補助專題研究計畫成果報告自評表

請就研究內容與原計畫相符程度，達成預期目標情況，研究成果之學術或應用價值（簡要敘述成果所代表之意義，價值，影響或進一步發展之可能性），是否適合在學術期刊發表或申請專利，主要發現或其他有關價值等，作一綜合評估。

1．請就研究內容與原計畫相符程度，達成預期目標情況作一綜合評估
－達成目標
\square 未達成目標（請說明，以 100 字為限）
實驗失敗
因故實驗中斷其他原因
說明：

2．研究成果在學術期刊發表或申請專利等情形：
論文：\square 已發表 \square 未發表之文稿 \square 撰寫中 \square 無
專利：\square 已獲得 \square 申請中 \square 無
技轉：\square 已技轉 \square 洽談中 \square 無
其他：（以 100 字為限）
\diamond 發表 3 篇 SCI 的學術期刊論文

3．請依學術成就，技術創新，社會影響等方面，評估研究成果之學術或應用價值（簡要敘述成果所代表之意義，價值，影響或進一步發展之可能性）（以 500 字為限）

४ 本專題研究主要是針對晶圓廠的關鍵機台步進機（Stepper）研究其派工方法，以提高步進機的產出。重要成果如下
（1）發現：在新製程導入時，良率偏低，步進機可能因派工方法不當，造成現場有在製品，但產能利用率卻不足的現象。
（2）方法：本研究利用多種進化式演算法（meta－heuristic algorithms）來求解步進機投料的排序，以最大化步進機的產出。
（3）貢獻：本研究可幫助晶圓廠，在新製程導入的情境下，有效提高步進機的產出。

國科會補助計畫衍生研發成果推廣資料表

日期：101年5月12日

國科會補助計畫	計畫名稱：新製程導入情境下連線式步進機之排程計畫主持人：巫木誠 計畫編號：99－2221－E－009－110－MY3 領域：工業工程		
	（中文）連線式步進機之排程方法		
研發成果名稱	（英文）An Effective Scheduling Method For In－Line Steppers		
成果歸屬機構	國立交通大學	$\begin{gathered} \text { 發明人 } \\ \text { (創作人) } \\ \hline \end{gathered}$	巫木誠，邱志文，呂佳斑，謝佩芸
技術說明	（英文）In semiconductor fabs，in－line steppers are the most expensive tools，which are the bottleneck in determining wafer outputs．While introducing new processes or products， the process yields tend to be low．This low－yield feature may unexpectedly result in capacity idleness in an in－line stepper．This research develops a scheduling method for in－line steppers to reduce the risk of their unexpected capacity idleness in low yield scenarios．		
產業別	半導體產業		
技術／產品應用範園	步進機排程		

	（1）技術移轉：具高可行性
（2）預期效益：在低良率情境下，可提高步進機的產出	
技術移轉可行性及預期	
效益	

註：本項研發成果若尚未申請專利，請勿揭露可申請專利之主要内容。

