
 1

行政院國家科學委員會補助專題研究計畫
□期中進度報告
■期末報告

新製程導入情境下連線式步進機之排程

計畫類別：■個別型計畫 □整合型計畫

計畫編號：NSC99-2221-E-009-110-MY3
執行期間：2010年 08月 01 日至 2013年 07月 31日

執行機構及系所：國立交通大學工業工程與管理系

計畫主持人：巫木誠

共同主持人：無

計畫參與人員：邱志文、呂佳玟、謝佩芸、陳振富、施昌甫

處理方式：立即公開查詢

中 華 民 國 102 年 9月 5 日

中文摘要
本專題計畫是針對半導體廠在低良率情境下，研究步進機的投料排序問題，

期能提高步進機的產出。步進機是半導體廠的瓶頸機台，其內部是由一系列的加

工單元（稱為反應室）所組成，每一個反應室一次可加工一片晶圓。步進機的外

部一般設有 4 個暫存區，每一區可暫存一批晶圓盒，每晶圓盒最多可存放 25 片

晶圓。在低良率的情境下，許多晶圓盒會出現「不滿批」的現象（亦即晶圓片數

低於 25 片）。本研究發現：在低良率情境下，即使步進機的某些反應室有產能閒

置，因為暫存區的空間限制，使得暫存區以外的晶圓片無法即時放入步進機加

工，因而造成步進機的產能損失。這種產能損失可以藉由晶圓批的投料排序來改

善。本研究發展各種進化式演算法(meta-heuristic methods)來求解此問題。研究情

境由簡而繁，首先研究在單機的情境下，如何決定工件投料的序。進而研究多機

情境下，工件如何指派給各機台，以及各機內工件的排序問題。本研究設計一個

新的染色體表達法，可同時表達「工件指派」和「工件排序」的兩個決策。並測

試各種進化式演算法的績效。本研究提出 7 種演算法(GA, Tabu, GA-Tabu, SA,
M-MMAX, PACO, PSO)，經實驗測試，GA-Tabu 演算法優於其他演算法。

關鍵詞：排程、步進機、流程式生產、進化式演算法、基因演算法、禁忌搜尋法

Abstract
This research project addresses a job scheduling problem for steppers, which are

bottleneck machines in a semiconductor fab, in order to increase the fab throughput. A
stepper externally is equipped with four ports; each port is used to accommodate a job
(i.e, a wafer container that contains up to 25 wafers). A stepper internally is composed
of a sequence of chambers; each of which undergoes an operation on a wafer. Each
wafer, originally located in job container, must individually pass through the sequence
of chambers and go back to its original container. In a low-yield environment, some
chambers in a stepper may unexpectedly become idle due to the limited capacity of
external ports, which in turn results in the capacity loss of the stepper. We found that
such a capacity loss can be alleviated by scheduling methods. This research project
develops several meta-heuristic algorithms to solve the problem. We first consider
only the single stepper-problem and extend to investigate the multiple-steppers
problems. The multiple-steppers problem is concerned with two decisions: (1) job
assignment decision, (2) job sequence decision. We propose a novel chromosome
representation to model the two decisions and develop seven meta-heuristic
algorithms (GA, Tabu, GA-Tabu, SA, M-MMAX, PACO, PSO) to solve scheduling
problem. Numerical experiments indicate that GA-Tabu outperforms the other
meta-heuristic algorithms.

Keywords: Scheduling, in-line Steppers, Flow Shop Scheduling, Meta-heuristic

Algorithms, Genetic Algorithms, Tabu Algorithm.

1. Introduction

In semiconductor manufacturing, in-line steppers (or simply called steppers) are

the most expensive machines, which may cost up to 40 million dollars per tool and

usually become the bottleneck of a fab (semiconductor factory). Effective scheduling

for steppers is very important because it could significantly affect the fab throughput,

cycle time, and on-time delivery.

Most prior studies on scheduling stepper are developed under a high-yield

assumption (Chern and Liu, 2003; Dabbas and Flowler, 2003; Duwayri et al., 2006;

Sha et al. 2006; Morrison and Martin, 2007; Wu and Chang, 2006; Wu et al.,2007,

2008; Chen, 2009). That is, they implicitly assumed the production yield is 100% and

no wafer will be scrapped. Each wafer lot (a container for transporting wafers) is

always a full-lot (typically carrying 25 wafers). Under this assumption, they took a

stepper as a single machine and a wafer lot as a job for scheduling. This implies that a

stepper will not be idle as long as it has wafer lots waiting to be processed.

Recently, a few studies (Wu and Chiou, 2010; Chiou and Wu, 2009) noticed that

a stepper in a low-yield scenario may become idle even though it has many wafer lots

waiting to be processed. They modeled the interior configuration of an in-line stepper

as a special-featured flow shop, which comprises a series of chambers and each piece

of wafer has to travel through the flow shop. They discovered that some chambers of

the flow shop might become idle due to the inclusion of small-lots (i.e., carrying less

than 25 wafers) and developed some scheduling algorithms to alleviate such chamber

idleness in order to increase the throughput of steppers. These algorithms were

developed in the context of scheduling a single in-line stepper.

However, in practice, there are multiple in-line steppers to be scheduled. This

paper enhances the prior scheduling algorithms to deal with the scheduling for

multiple in-line steppers. Such a scheduling problem involves two decisions: (1) how

to allocate jobs to each stepper, and (2) how to sequence the allocated jobs for each

stepper.

In this research, given N jobs to be allocated and scheduled on multiple steppers,

a sequence of the N jobs is called a chromosome. We developed a novel

chromosome-decoding scheme that can unveil the two decisions suggested by a given

chromosome. Then, various enhanced versions of meta-heuristic algorithms (GA,

Holland (1975), Tabu, GA-Tabu, SA, M-MMAX, PACO, PSO) were proposed and

tested. Of the tested algorithms, numerical experiments indicate that the GA-Tabu

outperforms the others in most cases.

The remainder of this paper is organized as follows. Section 2 explains the

research problem in more detail. Section 3 describes how to compute the performance

of a scheduling solution. Section 4 presents the chromosome-decoding scheme.

Section 5 describes the solution architecture of the GA-Tabu algorithm. Numerical

experiments are reported in Section 6 and concluding remarks are in the last section.

2. Problem Statement

The research problem is introduced by first describing the interior configuration,

the exterior interfacing equipments, and the transportation mechanisms of an in-line

stepper. Then, we use an example to illustrate such an in-line stepper may suffer a

capacity loss in a low-yield scenario. Finally, the problem for scheduling multiple

in-line steppers and its performance metric are presented.

The interior configuration of an in-line stepper comprises a sequence of

manufacturing stages, each of which involves one or more than one functionally

identical chambers (Quirk, 2001). Each chamber processes one piece of wafer at a

time. To undergo the operation at the stepper, a piece of wafer has to travel through all

the manufacturing stages. Of these chambers, a particular type (called the aligner

chamber) may need a setup. The aligner chamber is typically the bottleneck chamber

and involves only one chamber at this manufacturing stage. Such a configuration can

be seen as a flow shop if we consider each stage as a workstation and each chamber as

a machine in a workstation (Yang, 1999; Pinedo, 2008). A simplified illustration of an

in-line stepper is shown in Figure 1, where each manufacturing stage involves only

one chamber.

See Figure 1, the exterior of an in-line stepper is directly interfaced with a dock

area which generally involves four ports. Each port serves as a one-job-buffer for the

in-line stepper, which can accommodate only one job at a time. A job (or a wafer lot)

is a container, which involves at most 25 pieces of wafers. Apart from the dock area, a

large-sized stocker (also called the WIP area) is equipped to store the wafer jobs that

are to be transported to the dock area.

The transportation mechanisms of an in-line stepper are explained below. See

Figure 1, a wafer job has to undergo a round-trip travel. A job first moves from the

WIP area to the dock area, placed on a free port. Then, each piece of wafer will

sequentially exit the job (a container), go through the in-line stepper, and back to the

job. Finally, the job is triggered to move back to the WIP area, while all its wafers

complete operations. In summary, there is a transportation incompatibility in the

round-trip travel. That is, the transportation unit between the WIP area and the dock

area is a job, while that between the dock area and the chamber area is a piece of

wafer.

Notice that the buffer capacity at the dock area is quite limited. Suppose the dock

area involves only four ports. Then, the dock area can simultaneously accommodate at

most four jobs. That is, we cannot move an additional job to the dock area if each of

the four ports is currently occupied or not free.

Due to limited buffer capacity in the dock area, we may face a capacity-loss of

chambers in a low-yield scenario, as explained by the following example. Consider a

simplified case where an in-line stepper comprises 22 stages and each stage involves

only one chamber, four jobs (A, B, C, and D) are on the dock area, and one job (E) is

waiting in the WIP area. Job A contains 25 wafers and jobs B, C, and D in total carry

only 17 wafers. Suppose the processing sequence is ABCD. Following the

sequence, the (25 +17) wafers of the four jobs will successively travel through the

chambers and back to the ports. While the last wafer of job A just finishes its

operations, job A must still stay on the port in order to get this wafer back. At this

instant, the 17 unfinished wafers of jobs B, C, and D will occupy the last 17 chambers

of the stepper. The remaining five chambers then become idle because jobs A, B, C,

and D now occupy the dock area, and no more port is available for job E to access.

Yet, such a capacity-loss in chambers may be alleviated if a different job

sequence (BCD A) is applied. Suppose job B now contains 8 wafers. While the

last wafer (8th one) of job B finishes its travel, we still have 34 unfinished wafers. Of

these unfinished wafers, 22 ones reside in the chamber area and 12 ones stay in the

ports. This implies that no chamber will be idle while the port originally for job B

becomes free to accommodate job E. Thus, the capacity-loss of an in-line stepper may

be alleviated by applying an appropriate job sequence.

The research problem is concerned with the scheduling of multiple in-line

steppers in a low-yield scenario. Such a scheduling problem involves two decisions:

(1) how to allocate jobs to each stepper, and (2) how to sequence the allocated jobs for

each stepper. That is, given N jobs to be scheduled for m in-line steppers. The N jobs

have to be categorized into m groups, and the jobs of each group have to be sequenced.

The performance metric of the scheduling problem is defined as },...,max{ 1
*

mCCC = ,

where iC is the makespan of i-th stepper. That is, *C is the makespan required to

complete the N jobs, and */CN could be used to denote the total throughput rate of

the m steppers. In the scheduling, we aim to maximize total throughput rate (*/CN),

which also implies the minimization of *C .

3. Makespan Evaluation for Job Sequences

Given a job sequence to be processed by the i-th stepper, this section describes

how to compute iC (the makespan), adapted from Ruiz and Maroto (2006). The

makespan evaluation procedure adopts an emulation-based approach. We virtually

sent each wafer in order (following the job sequence) into the in-line stepper and look

for an available chamber that can finish the job at the earliest time. The completion

time of each wafer at each stage is progressively recorded, which ultimately yield the

makespan.

To undergo an operation at an aligner chamber, a mask (an auxiliary device) is

needed. A particular mask denotes a particular operational recipe. Different jobs may

require different operational recipes. If so, we need a setup time to change masks at

the aligner chamber; otherwise no setup is needed. .

Notation

j: index of job

k: index of wafer

i: index of stage

l: index of chamber

a: index of the aligner chamber which requires setup

ρ : total number of ports in the dock

n: total number of jobs to be processed by the in-line stepper

M: total numbers of stages in the in-line stepper

im : total number of chambers at stage i

iljkp : processing time required by chamber l at stage i to process wafer k in job j

π : a job sequence for the n jobs, [(1),... ()]nπ π π=

))((jw π : the job in the jth position of sequence π

)(jπ : total number of wafers in job j

ut : transportation time for uploading a job to the dock area

dt : transportation time for downloading a job from the dock area

kjliS),(,, π : setup time required by chamber l in stage i to process wafer k in job)(jπ

, , (),

, , (), (), (1)

if or 1, then = 0,

otherwise,
i l j k

i l j k j j

i a k S
S

π

π π πδ −

≠ ≠

=

)1(),(−jj ππδ : setup time required for the aligner chamber to switch production from job

)1(−jπ to job)(jπ ; (), (1) 0j j sπ πδ − = if)1(−jπ and)(jπ use different

masks, and (), (1) 0j jπ πδ − = , otherwise

tliA ,, : the time epoch when chamber l in stage i just turns to be available; that is, while

the chamber (,)i l is free at t, tliA ,, is the last wafer-completion-epoch

before t; while the chamber (,)i l is in operation at t, tliA ,, is the first

wafer-completion-time after t.

kjiC),(,π : the completion time of wafer k in job)(jπ at stage i

()C π : the makespan of job sequence π

The makespan evaluation procedure is governed by the following equations.

, (), , , , , (), 1, (), , , (),1
min{max{ , } }

i
i j k i l t i l j k i j k i l j kl m

C A S C pπ π π π−≤ ≤
= + +

where kjiCt),(,1 π−= for 1 i M≤ ≤ (1)

1, (), (())M j w jC π π+ = , (), (())M j w j dC tπ π + (2)

1, (), (()) 0, (),1M j w j u jC t Cπ π π ρ+ ++ = for 1 j n ρ≤ ≤ − (3)

1, (), (())() M n w nC C π ππ += (4)

Eq. (1) expresses the completion time of a particular wafer at each stage i. The

term , , , , (),i l t i l j kA S π+ denotes the time epoch when chamber l at stage i is ready for

processing wafer k in job ()jπ , and the term 1, (),i j kC π− denotes the time epoch when

the wafer is available to be processed at the chamber.

Eq. (2) describes the completion time of job ()jπ at stage M+1 (i.e., the dock

area). Eq. (3) expresses the job arrival/departure relationships for the dock. The

equation indicates that only when job ()jπ in the dock has been moved away, can

job ()jπ ρ+ in the WIP buffer be transported to the dock (i.e., stage 0). Eq. (4)

computes the makespan ()C π , the completion time of the last wafer in the last job.

4. Chromosome Representation and Decoding

As stated in Section 1, the scheduling problem involves two decisions: (1)

allocation decision—how to allocate jobs to each stepper, and (2) sequencing

decision—how to sequence the allocated jobs for each stepper. That is, given N jobs

to be scheduled on m steppers, we first need to categorize the N jobs into m groups,

each of which is processed by a particular stepper. Then, we need to determine the job

sequence for each stepper.

Let a particular sequence of the N jobs be called a chromosome. In this research,

we develop a chromosome-decoding scheme. By the decoding scheme, a chromosome

can be interpreted as a particular scheduling solution, which involves two

decisions—one is the allocation decision and the other is the sequencing decision.

To introduce the chromosome-decoding scheme, some notation is described

below. Denote a chromosome by [(1),... ()]Nπ π π= , where)(jπ , called a gene,

represents the job in the jth position of sequence π . For job)(jπ , represent the

number of wafers in the job by)(jwπ and its processing time for a piece of wafer at

the aligner chamber (the bottleneck chamber) by)(jpπ . Then, denote the total

processing time at the aligner chamber for job)(jπ by)()()(jjj pwt πππ ⋅= . The

procedure for interpreting the job allocation decision from a given chromosome is

described below.

Procedure Job_Allocation

Step 1: Compute the threshold for forming a job group

∑
=

=
N

j
jtT

1
)(π ; /*total processing time of the N jobs*/

mTh /= ; /* processing time threshold for forming a job group*/

Step 2: Form the job groups

1=k , /*index of job group or stepper*/

For i = 1 to N

∑
=

=
i

j
ji tT

1
)(π ; /* compute total load of the first i jobs*/

If)(hkTi ⋅> then /*criterion for forming job groups*/

ikC =)(; /*form a new job group*/

1+= kk ; /* update the indexing of job group*/

 Endif

If)(mk = then

go to Step 3 /*check if job group formation finished*/

 Endif

 Endfor

Step 3: Output job allocation results

 Output)(kC , 11 −≤≤ mk

Given the job allocation decision)(kC , the procedure for determining the job

sequence decision for each stepper is relatively easy. The job sequence for stepper k

(mk ≤≤1) is [(),... ()]k s eπ π π= , where (1)s C k= − + 1 and ()e C k= , in which we

denote (0) 0C = and () ()C m Nπ= .

The chromosome-decoding scheme is illustrated by a three-stepper example as

shown in Figure 2. See the figure, there are 9 jobs to be scheduled on 3 steppers. The

total processing time is T = 1.6 hours and the threshold is h = 0.53 hour. The set of

jobs allocated to stepper 1 and their job sequence are },,{ 7521 JJJ=π , and those for

the other two steppers are },{ 142 JJ=π and },,,{ 89363 JJJJ=π .

5. GA-Tabu Algorithm

To solve the scheduling problem, we developed seven meta-heuristic algorithms

(GA, Tabu, GA-Tabu, SA, MMAX, PACO, and PSO) These algorithms adopt the

algorithmic architectures published in prior studies as referenced below, but are

distinguished in embedding the novel chromosome decoding scheme we proposed. Of

these seven enhanced algorithms, the GA-Tabu performs the best and is presented

here.

5.1 Chromosome Fitness

 As stated in Section 4, given a chromosome [(1),... ()]Nπ π π= , we can use the

chromosome decoding scheme to extract its two decisions— jobs allocation among

steppers and job sequencing for each stepper. Then, given a job sequence

[(),... ()]k s eπ π π= for each stepper k, mk ≤≤1 , we can compute its makespan kC

by the procedure in Section 3. In turn, the scheduling performance (also called fitness)

of the chromosome [(1),... ()]Nπ π π= is },...,max{ 1
*

mCCC = , which is also

denoted by)(* πC hereafter.

5.2 Algorithmic Procedures

The GA-Tabu algorithm is composed of three procedures. The main one is called

procedure GA-Tabu which calls two sub-procedures GA(t) and Tabu(outin ππ ,). There

are two sets of chromosomes. One is called the GA-pool P(t), which include N

chromosomes and iteratively evolve by procedure GA(t). The other set is called

Seed_Set, which involves only one chromosome (called seed) and iteratively evolve

by procedure GA-Tabu. The procedure GA(t) is designed to evolve from P(t) to

P(t+1) to possibly include better chromosomes and identify its best four ones. The

procedure Tabu(outin ππ ,) is intended to search the neighborhood of a given

chromosome inπ to find the best chromosome (outπ) in the searched neighborhood.

Notice that inπ is selected either from the GA-pool or from the Seed_Set.

In procedure GA(t), we use four types of crossover operators and three types of

mutation operators to create new chromosomes. A crossover operator is designed to

create a new pair from an existing pair, while a mutation operator is to create a new

one from an existing one. The four types of crossover operators are C1 (one point

crossover) by Reeves (1995), LOX (linear order crossover) by Croce et al. (1995),

PMX (partially mapped crossover) by Goldberg (1989), and NABEL operator by Bac

and Perov (1993). The three types of mutation operators are Swap, Inverse, and

Insert (Wang and Zheng, 2003; Nearchou, 2004).

In procedure Tabu(outin ππ ,), a pairwise interchange of two genes (jobs) is called

a tabu_move. For example, given a n-gene chromosome 1 2 5 1 4 3[, , , ,]J J J J Jπ = . By

interchanging the two genes 3J and 5J , we can create a new chromosome

2 2 3 1 4 5[, , , , ,...]J J J J Jπ = . The tabu_move for causing such an interchange can be

denoted by move 5 3(,)J J or move 3 5(,)J J . To facilitate the following presentation of

procedure Tabu(outin ππ ,), we represent a tabu_move by move ()inπ π→ , which

denotes an interchange of two particular jobs that transform inπ into π .

Accordingly, the total number of tabu_moves for a chromosome

[(1),... ()]nπ π π= is 2/)1(−nn . Let the set of all these tabu_moves be represented

by Move_Set. By applying each tabu_move in the Move_Set to the chromosome π ,

we can create 2/)1(−nn new chromosomes. The set of these newly created

chromosomes are called the neighborhood of π , which is denoted by ()Neighbor π .

Notation

GA-Tabu: the main procedure

bestπ : the current best solution ever found by procedure GA-Tabu

GA(t): a sub-procedure designed to evolve P(t)

P(t): a set of N chromosomes, called the GA-pool. .

best
tGA,π : the best chromosome in P(t)

best
tGA

−2
,π : the 2nd best chromosome in P(t)

best
tGA

−3
,π : the 3rd best chromosome in P(t)

best
tGA

−4
,π : the 4th best chromosome in P(t)

Tabu (outin ππ ,): a procedure designed to search the neighborhood of inπ , where outπ

is the best chromosome found in the searched region.

Tabu_list: a limited set of tabu_moves, where a tabu_move represents an interchange

of two particular jobs.

Seed_Set: a set of one chromosome, which iteratively evolve by procedure GA-Tabu

seedπ : the present chromosome (called seed) in the Seed_Set

Procedure GA-Tabu

Initialization: Randomly select a chromosome as bestπ

For each iteration t)0(fTt ≤≤

Step 1: Call GA(t) to find best
tGA 1, +π , best

tGA
−

+
2

1,π , best
tGA

−
+

3
1,π , best

tGA
−

+
4

1,π in P(t+1)

Step 2: If best
tGA 1, +π is better than bestπ

 Update bestπ by best
tGA 1, +π (i.e., ←bestπ best

tGA 1, +π)

 Call Tabu (out
best ππ ,) to search the neighborhood of bestπ for

possibly improving bestπ (i.e., update bestπ by outπ if outπ is better)

Step 3: If best
tGA 1, +π keeps worse than bestπ for exact k (k < 45) iterations

 While k = 20 /* the age of bestπ is 20 iterations*/

Call Tabu (out
best
tGA ππ ,2

1,
−

+) for possibly improving bestπ

 While k = 30 /*the age of bestπ is 30 iterations*/

Call Tabu (out
best
tGA ππ ,3

1,
−

+) for possibly improving bestπ

 While k = 40 /* the age of bestπ is 40 iterations*/

Call Tabu (out
best
tGA ππ ,4

1,
−

+) for possibly improving

Step 4: If best
tGA 1, +π keeps worse than bestπ for k = 40 + 5n (n = 1, 2…) iterations

/* If bestπ cannot be improved by P(t+1) for over 40 iterations*/

/* Try to improve bestπ by using seedπ , the chromosome in Seed_Set*/

 Call Tabu (out
seed ππ ,) for possibly improving bestπ

 Update the chromosome in Seed_Set (i.e.,)out
seed ππ ←

 Step 5: Put bestπ in P(t+1);

Next iteration until t > Tf

Procedure GA(t)

Step 1: If t = 0, randomly create N chromosomes to form the initial GA-pool)0(P .

If 0≠t , input the GA-pool P(t).

Step 2: Use crossover and mutation operators to create N(Pcr+Pmu) new chromosomes,

where 1,0 ≤≤ mucr PP . Place the new chromosomes in a set S.

Step 3: Use the resolute wheel screen method (Michalewicz, 1996) to select N

chromosomes out of the set)(tPS ∪ . Place the selected N chromosomes in

the GA-pool P(t+1)

Step 4: Output the best four chromosomes in P(t+1): best
tGA 1, +π , best

tGA
−

+
2

1,π , best
tGA

−
+

3
1,π ,

best
tGA

−
+

4
1,π .

Procedure Tabu),(outin ππ

Step 0: Initialization bestout ππ =

Step 1: Create a set of new chromosomes, Neighbor)(inπ

Step 2: Try to improve outπ

 Identify the best q chromosome qππ ,....1 from Neighbor)(inπ

 If 1π is better than bestπ , then 1ππ =out ;

Step 3: Update tabu_list /*Try to add a new tabu_move to the tabu_list*/

For i = 1, q

If listtabumove i
in _)(∈→ππ , then go to Next i

If listtabumove i
in _)(∉→ππ ,

Then

 Update the tenure of each tabu_move in the tabu_list

/* Each tabu_move’s tenure starts at 1 and is added by 1 while a new

tabu_move is found*/

 Remove the tabu_move with longest tenure from the tabu_list;

 Put)(i
inmove ππ → in the tabu_list;

 If)(seed
in ππ = , set iseed ππ =

 Go to Step 4

 Next i

Step 4: Return

6. Experiments and Discussion

Numerical experiments and the uniqueness of this research are to be discussed in

this section. In numerical experiments, we compare seven meta-heuristic algorithms

in solving the multiple-steppers scheduling problem. These algorithms are chosen

because their algorithmic flows have been widely applied to solving scheduling

problem. Referring to some prior studies, we adapted these algorithmic flows by

embedding the novel chromosome interpretation scheme.

These prior related studies include GA-Tabu by Chiou and Wu (2009), simulated

annealing (SA) by Osman and Potts (1989), genetic algorithm (GA) by Wu and Chiou

(2009), Tabu search (TS) by Widmer and Hertz (1989), particle swarm optimization

(PSO) by Liao et al. (2007), and two ant colony algorithms (ACO) by Rajendran and

Ziegler (2004)—respectively called MMAX and PACO.

Personal computers equipped with PENTIUM Dual-Core 2.8 GHz CPU and 1

Gb memory are used to run the programs, coded in Visual C++. The parameters of the

six meta-heuristic algorithms are designed by referring to prior studies accordingly.

In the three algorithms (GA-Tabu, GA, and Tabu), we set N = 100, Pcr = 0.8, Pmu =

0.2, q = 7, K = 3,000, T=100,000 (Chiou and Wu 2009, Widmer and Hertz 1989). In

the SA, we set Temperature = 500 (Osman and Potts 1989); and we set ρ = 0.75

(Rajendran and Ziegler 2004) in the ACO where (1- ρ) is called the evaporation rate.

In the PSO, we set Vmax = 4, Vmin = -4, ϖ = 0.8, c1 = 2, c2 = 2, T = 100 (Liao et al.

(2007), where Vmax denotes the upper limit of the velocity, Vmin denotes the lowest

limit of the velocity, c1 is the cognition learning factor, c2 is the social learning factor,

and ϖ is the inertia weight.

6.1 Experiment Design

In the experiments, the configuration and operation of the in-line steppers are so

defined. Each in-line stepper has 4 ports, 14 stages and 21 chambers. See Table 1, of

the 14 stages, two stages model the interfaces among the WIP buffer, the dock area,

and the stepper; and the other 12 stages model the interior chambers of the stepper.

Note that one stage may include one or more chambers. The operation time at each

stage i of each in-line stepper is a uniform distribution [ai, bi]. At each stepper, a mask

setup is always needed for the aligner chamber while it turns to process a new job’s

wafer, and the mask change time is a constant (1.0 min.). The process yields are

modeled by truncated binomial distributions, which denote that the job size is first

generated by a binomial distribution, and then those jobs that carry no wafer are

“truncated” (removing them from the fab).

We use (M, N, Y) to represent a test case, where M represents the number of

in-line steppers, N represents the number of jobs, and Y represents the average yield.

We design 100 test cases, in which M has two options (with 2 or 3 steppers) and N has

5 options ranging from 20 to 100 jobs and Y includes 10 options ranging from 15% to

90%. In practice, the complexity of a typical multiple-stepper scheduling problem is

M = 2 and N = 60.

In each test case, we run 15 replicates and the average makespan of the 15

replicates is taken as the performance measure of the tested algorithm. The average

makespan of each algorithm x is designated as Cx. For example, tabuGAC − represents

the average makespan of the GA-Tabu. Likewise, the average CPU time used in each

algorithm x is defined as xt ; for example, that used in the GA-Tabu is represented by

tabuGAt − .

Pilot experiments indicate that the GA-Tabu essentially outperforms the other six

algorithm. To compare the solution quality of the seven algorithms, we define a

performance gap as follows: TabuGATabuGAxx CCC __ /)(−=γ . A positive xγ indicates

that the GA-Tabu outperforms the x algorithm, while a negative xγ denotes that the

GA-Tabu is inferior to the x algorithm.

6.2 Experiment Results

Tables 2-11 show the experiment results of xγ and xt .The GA-Tabu

outperforms the other six algorithms in terms of xγ . Of the 100 test cases, xγ

ranges from 0% to 22% but the average of xγ is only 1.19%. See Figure 3, the lower

is Y (average process yield), the higher is the average of xγ . While Y decreases to

15%, the average of xγ even reaches up to 8.06%. This is due that the number of

small lots in a high-yield scenario is fewer which in turn results in less capacity-loss.

Therefore, the GA-Tabu outperforms the other algorithms substantially in low-yield

scenarios and slightly in high-yield scenarios.

Of the 100 test cases, the average of xγ for each algorithm is shown in Figure 4,

which indicates that the Tabu algorithm is the second best—the average of Tabuγ is

only 0.16%. However, the value of Tabuγ may reach up to 5.31% in a low-yield

scenario (Table 3). The average of xt for each algorithm is shown in Figure 5, which

indicates that the Tabu algorithm is computationally faster than the GA-Tabu. The

maximum value of TabuGAt − is 4,379 sec. (about 1.2 hour). In practice, the scheduling

decision is made on every working shift (12 hours); solving such a scheduling

problem 1.5 hours before the shift is acceptable to practitioners.

6.3 Research Uniqueness

 The uniqueness of this research, in comparison to the prior studies on the

single-stepper scheduling problem, is explained from the following three perspectives:

(1) the scheduling context, (2) the chromosome-decoding, and (3) the chromosome

solution quality of meta-heuristic algorithms.

The scheduling context of multiple steppers is more complicated than that of

single stepper. Namely, the scheduling context of multiple steppers involves two types

of decisions: (1) stepper allocation: how to allocate jobs to each stepper, and (2) job

sequencing: how to sequence the allocated jobs for each stepper. In contrast, the

scheduling context of single stepper involves only one type of decision—how to

sequence all the jobs for the stepper.

Such an increased complexity in the scheduling contexts leads to a

chromosome-decoding issue. As stated, a chromosome originally represents a

sequence of all the jobs. Such a chromosome can be directly interpreted as a

scheduling solution for the single-stepper context. However, to interpret such a

chromosome as a scheduling solution for the multiple-steppers context, we need to

develop a decoding scheme—for decoding a chromosome into two types of decisions

(stepper allocation and job sequencing). In summary, for a given chromosome, even

though its appearance is exactly the same in the two scheduling contexts, its two

implied scheduling decisions are far different.

In this research, several meta-heuristic algorithms are examined in the

multiple-steppers context. These algorithms, in terms of algorithmic flow, are

essentially the same as those prior ones addressed in the single-stepper

context—except the inclusion of the chromosome-decoding mechanism. Noticeably,

such an inclusion leads to far different semantics in interpreting a chromosome. This

lead to that the best-solution chromosome in the single-stepper context is most likely

not the best one while it is in the multiple-steppers context. We therefore have to

examine the effectiveness of these meta-heuristic algorithms in the multiple-stepper

context.

7. Concluding Remarks

In-line steppers are the bottleneck of a semiconductor wafer fab. This study

examines a problem for the scheduling of N jobs on M in-line steppers in a low-yield

scenario. Such a scheduling problem involves two decisions: how to allocate jobs to

each stepper, and how to sequence jobs for each stepper. The longest makespan of the

M in-line steppers is taken as the performance measure.

A scheduling solution (called a chromosome) is represented by a sequence of N

jobs. We develop a novel chromosome-decoding scheme to interpret a chromosome

into its two associated scheduling decisions—job allocation and job sequencing. Such

a decoding result can be used to compute the performance (also called fitness) of the

chromosome.

Based on the chromosome representation and decoding schemes, seven

meta-heuristic algorithms adapted from prior studies are developed. These seven

algorithms include GA, Tabu, GA-Tabu, SA, M-MMAX, PACO, PSO. Numerical

experiments indicate that the GA-Tabu outperforms the other six algorithms in terms

of solution quality; and this merit is particularly impressive in low-yield scenarios. In

practice, such a scheduling decision is made on every working shift (12 hours). The

computation time of the GA-Tabu, ranging from a few minutes to less than 1.5 hours,

is acceptable to practitioners.

One extension of this research is examining the optimal design of port number.

The larger is the port number, the higher is the tool expenditure and the tool operation

costs; yet the less is the capacity loss of steppers. Therefore, stepper vendors may

need to customize the port design based on the process yields of their customers.

Acknowledgements

This research is financially sponsored by National Science Council, Taiwan,

under a research contract NSC 99-2221-E-009-110-MY3.

References

Bac F.Q. and Perov V.L. (1993), ‘New evolutionary genetic algorithms for

NP-complete combinatorial optimization problems’, Biological Cybernetics, 69,

229–234.

Chen T. (2009), ’A fuzzy-neural knowledge-based system for job completion time

prediction and internal due date assignment in a wafer fabrication plant,

International Journal of Systems Science, 40:8, 889-902.

Chern C.C. and Liu Y.L. (2003), ‘Family-based scheduling rules of a

sequence-dependant wafer fabrication system’, IEEE Transactions on

semiconductor manufacturing, 16(1), 15-25.

Croce F.D., Tadei R. and Volta G. (1995), ‘A genetic algorithm for the job shop

problem’, Computation Operation Research, 22(1), 15–24.

Chiou C.W. and Wu M.C. (2009), ‘GA-Tabu Algorithm for Scheduling In-line

Steppers in Low-Yield Scenarios’, Expert Systems with Applications,

36,11925-11933.

Dabbas R.M. and Fowler J.W. (2003), ‘A New Scheduling Approach Using

Combined Dispatching Criteria in Wafer Fabs’, IEEE Transactions on

Semiconductor Manufacturing, 16, 3.

Duwayri Z., Mollaghasemi M., Nazzal D. and Rabadi G. (2006), ‘Scheduling setup

changes at bottleneck workstations in semiconductor manufacturing’, Production

Planning & Control, 17(7), 717–727.

Goldberg D.E. (1989), Genetic algorithms in search, optimization and machine

learning. Addison-Wesley, Boston.

Holland J.H. (1975), Adaptation in neural and artificial systems, Ann Arbor, MI: Univ.

Michigan Press.

Liao C.J., Tseng C.T. and Luarn P. (2007), ‘A discrete version of particle swarm

optimization for flowshop scheduling problems’, Computers & Operations

Research, 34, 3099 – 3111.

Michalewicz Z. (1996), Genetic algorithms + data structures = evolution programs,

3rd ed. Springer, Berlin Heidelberg New York.

Morrison J.R. and Martin D.P. (2007), ‘Performance evaluation of photolithography

cluster tools’, OR Spectrum, 33, 375–389.

Nearchou A.C. (2004), ‘The effect of various operators on the genetic search for large

scheduling problems’, International Journal of Production Economics, 88,

191–203.

Osman I.H. and Potts C.N. (1989), ‘Simulated annealing for permutation flow-shop

scheduling’, OMEGA, The International Journal of Management Science, 17(6),

551–557.

Pinedo M. (2008), Scheduling:theory, algorithms, and systems. 3rd ed., Springer New

York.

Quirk M. (2001), Semiconductor manufacturing technology, Prentice Hall.

Rajendran C. and Ziegler H. (2004), ‘Ant-colony algorithms for permutation

flowshop scheduling to minimize makespan/ total flowtime of jobs’, European

Journal of Operational Research, 155, 426–438.

Reeves C.R. (1995), ‘A genetic algorithm for flowshop sequencing’, Computation

Opereration Research, 22(1), 5–13.

Ruiz R. and Maroto C.(2006), ‘A genetic algorithm for hybrid flowshops with

sequence dependent setup times and machine eligibility’, European Journal of

Operational Research, 169, 781–800.

Sha D.Y., Hsu S.Y., Che Z.H. and Chen C.H. (2006), ‘A dispatching rule for

photolithography scheduling with an on-line rework strategy’, Computers &

Industrial Engineering, 50, 233–247.

Wang L. and Zheng D.Z. (2003), ‘An effective hybrid heuristic for flowshop

scheduling’, International Journal of Advanced Manufacturing Technology, 21(1),

38–44.

Widmer M. and Hertz A. (1989), ‘A new heuristic method for the flow shop

sequencing problem’, European Journal of Operational Research, 41, 186–193.

Wu M.C. and Chang W.J. (2007), ‘A short-term capacity trading method for

semiconductor fabs with partnership’, Expert Systems with Applications, 33,

476–483.

Wu M.C. and Chang W.J. (2008), ‘A multiple criteria decision for trading capacity

between two semiconductor fabs’, Expert Systems with Applications, 35,938–945.

Wu M.C. and Chiou C.W. (2010). ‘Scheduling semiconductor in-line steppers in new

product/process introduction scenarios’, International Journal of Production

Research, 48(6), 1835-1852.

Wu M.C., Chiou S.J. and Chen C.F. (2008), ‘Dispatching for make-to-order wafer

fabs with machine-dedication and mask set-up characteristics’, International

Journal of Production Research, 46(14), 3993 - 4009.

Wu M.C., Huang Y.L., Chang Y.C. and Yang K.F. (2006), ‘Dispatching in

semiconductor fabs with machine-dedication features’, International Journal of

Advanced Manufacturing Technology, 28, 978–984.

Wu M.C., Jiang J.H. and Chang W.J. (2008). ‘Scheduling a hybrid MTO/MTS

semiconductor fab with machine-dedication features’, International Journal

Production Economics, 112, 416–426.

Yang W.H. (1999). ‘ Survey of scheduling research involving setup times’,

International Journal of Systems Science, 30:2, 143-155.

Figure 1. Configuration of a simplified in-line stepper.

(a). Chromosome representation

J2 J5 J7 J4 J1 J6 J3 J9 J8

Processing time in aligner chamber
(min.)

J2 J5 J7 J4 J1 J6 J3 J9 J8

0.1 0.2 0.15 0.3 0.15 0.2 0.1 0.2 0.2

(b). Calculating the accumulated processing time

Accumulated processing time in aligner
chamber (min.)

0.1 0.3 0.45 0.75 0.9 1.1 1.2 1.4 1.6

0.53 min.
Cutting point

J2 J5 J7 J6 J3 J9 J8

(c). Decoding result

Job sequence
In machine 1

Job sequence
In machine 3

1.06 min.
Cutting point

Job sequence
In machine 2

J4 J1

Job-based Wafer-based

11 10 9 8 7 6 5 4 3 2 1

12 13 14 15 16 17 18 19 20 21 22

Port 4
Port 3
Port 2
Port 1

Job-based Wafer-based

WIP
area

Dock area

Figure 2. GA-Tabu chromosome for three in-line steppers.

8.06%

4.46%

2.01%

0.45% 0.55% 0.56% 0.68%
0.73%

1.03%
1.28%

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

9.0%

90% 80% 70% 60% 50% 40% 30% 25% 20% 15%

Yield

rx

Figure 3. Average of xγ at various yields.

2.80%

2.33%

0.65%0.60%0.60%

0.16%

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

Tabu GA PACO MMAX SA PSO

Algorithms

rx

Figure 4. Average of xγ at various algorithms.

22
17

811

628

1831

460

863

0

200

400

600

800

1000

1200

1400

1600

1800

2000

GA-Tabu Tabu GA PACO MMAX SA PSO

Algorithm

C
om

pu
ta

tio
n

tim
es

(s
ec

.)

Figure 5. Computation times comparison for the type of algorithms.

Table 1. Process times of in-line stepper chambers

Process

sequence

WIP buffers to dock

area

Dock area to

track
HMDS Cooling Coater

Soft-

bake
Cooling Aligner

wafer edge

exposure
PEB Cooling Develop

Hard

bake

High

cooling

Chamber

number
1 1 2 2 2 2 2 1 1 2 2 2 2 1

Process time

(min)
2.5 0.1 1.2 1.2 1.2 [1.2,2.8] 1 [0.75,1.65] 1 [1.2,2.8] 1 [1.2,2.8] [1.2,2.8] 0.5

Table 2. Performance comparisons of algorithms in scenarios with (M, N) = (2, 20)

Jobs

Yield
(min) (sec) (sec)

(min)
(sec) (sec) (sec) (sec)

90% 269.7 119 0.00% 79.0 0.09% 244 0.59% 21 0.36% 29 1.12% 6 1.94% 2

80% 254.8 109 0.11% 79.0 0.14% 296 0.28% 19 0.18% 28 1.04% 7 1.91% 1

70% 216.0 104 0.05% 78.0 0.09% 253 0.41% 16 0.23% 23 1.43% 5 2.01% 1

60% 186.3 103 0.08% 77.9 0.23% 217 0.37% 14 0.30% 20 1.34% 5 2.15% 1

50% 168.9 96 0.17% 77.1 0.26% 196 0.39% 13 0.36% 18 1.61% 4 2.66% 1

40% 130.5 63 0.14% 77.0 0.36% 157 0.50% 10 0.49% 13 1.94% 4 3.21% 1

30% 106.5 65 0.08% 76.0 0.29% 160 0.81% 8 0.39% 10 1.98% 3 3.35% 1

25% 81.1 46 0.15% 75.1 0.71% 156 0.86% 6 0.79% 8 3.16% 2 5.61% 1

20% 70.2 42 0.59% 75.0 0.89% 129 2.26% 5 1.72% 6 5.24% 2 7.85% 1

15% 62.5 37 0.25% 75.0 1.50% 118 2.47% 4 2.31% 5 7.03% 2 10.63% 1

PSOGA_Tabu GA SATabu MMAXPACO

20

TabuGAC −TabuGAC − SAtSAtTabuGAt −TabuGAt − tabuttabut MMAXtMMAXtPACOtPACOt PSOtPSOt
SArSArGArGArTaburTabur MMAXrMMAXrPACOrPACOr PSOrPSOrGArGArGArGArGArGArGArGAr GAtGAt

Table 3. Performance comparisons of algorithms in scenarios with (M, N) = (2, 40)

Jobs

Yield
(min) (sec) (sec)

(min)
(sec) (sec) (sec) (sec)

90% 564.6 381 0.05% 160 0.02% 722 0.10% 185 0.10% 261 0.97% 30 1.37% 7

80% 488.1 333 0.07% 155 0.04% 635 0.20% 160 0.20% 226 1.06% 31 1.59% 7

70% 438.5 294 0.08% 151 0.18% 674 0.29% 143 0.29% 203 1.26% 30 1.79% 6

60% 378.3 276 0.03% 146 0.00% 553 0.16% 122 0.16% 173 1.33% 28 2.00% 6

50% 331.9 261 0.08% 143 0.00% 488 0.16% 106 0.16% 150 1.42% 26 2.11% 6

40% 254.4 182 0.00% 138 0.11% 359 0.20% 81 0.20% 116 1.89% 24 2.87% 6

30% 200.0 150 0.07% 133 0.10% 334 0.45% 63 0.45% 89 2.29% 22 3.62% 5

25% 172.2 150 0.04% 130 0.29% 419 0.52% 54 0.52% 76 3.39% 21 4.93% 5

20% 129.9 128 5.31% 129 2.20% 386 1.90% 48 1.90% 69 15.55% 20 15.77% 5

15% 118.8 104 2.71% 124 2.80% 649 3.66% 34 3.66% 48 22.91% 19 15.34% 5

GA_Tabu GA SATabu MMAXPACO PSO

40

TabuGAC −TabuGAC − SAtSAtTabuGAt −TabuGAt − tabuttabut MMAXtMMAXtPACOtPACOt PSOtPSOt
SArSArGArGArTaburTabur MMAXrMMAXrPACOrPACOr PSOrPSOrGArGArGArGArGArGAr GAtGAt

Table 4. Performance comparisons of algorithms in scenarios with (M, N) = (2, 60)
Jobs

Yield
(min) (sec) (sec)

(min)
(sec) (sec) (sec) (sec)

90% 840.4 961 0.02% 527 0.04% 1670 0.05% 618 0.14% 876 0.80% 25 1.17% 17

80% 738.7 838 0.01% 511 0.02% 1245 0.06% 542 0.28% 773 1.01% 23 1.51% 17

70% 649.8 792 0.09% 495 0.03% 1549 0.13% 475 0.16% 679 1.01% 22 1.45% 16

60% 585.9 694 0.01% 483 0.07% 1091 0.15% 427 0.29% 612 1.22% 19 1.74% 16

50% 473.4 517 0.01% 466 0.13% 980 0.18% 339 0.28% 487 1.01% 18 1.88% 15

40% 391.3 433 0.00% 452 0.19% 771 0.30% 278 0.35% 401 1.80% 16 2.40% 15

30% 278.4 324 0.13% 431 0.45% 726 0.28% 197 0.43% 282 1.98% 14 3.58% 15

25% 234.5 284 0.07% 421 1.11% 858 0.76% 166 0.77% 240 3.81% 13 5.98% 15

20% 207.1 281 0.32% 417 3.26% 1384 2.18% 149 2.06% 216 7.78% 11 9.50% 14

15% 170.3 212 1.66% 411 9.02% 1595 5.00% 112 6.26% 162 21.00% 10 16.78% 14

PSOGA_Tabu GA SATabu MMAXPACO

60 jobs

TabuGAC −TabuGAC − SAtSAtTabuGAt −TabuGAt − tabuttabut MMAXtMMAXtPACOtPACOt PSOtPSOt
SArSArGArGArTaburTabur MMAXrMMAXrPACOrPACOr PSOrPSOrGArGArGArGAr GAtGAt

Table 5. Performance comparisons of algorithms in scenarios with (M, N) = (2, 80)

Jobs

Yield
(min) (sec) (sec)

(min)
(sec) (sec) (sec) (sec)

90% 1123.3 1851 0.01% 1210 0.03% 2502 0.12% 1474 0.13% 2084 0.79% 49 1.05% 34

80% 1004.2 1731 0.06% 1174 0.09% 2722 0.27% 1309 0.37% 1857 0.80% 47 1.18% 33

70% 891.7 1659 0.00% 1139 0.06% 2053 0.16% 1158 0.19% 1648 0.86% 43 1.30% 33

60% 760.3 1352 0.00% 1098 0.06% 1767 0.21% 978 0.30% 1393 1.58% 39 1.47% 32

50% 654.7 1130 0.02% 1074 0.05% 1726 0.20% 844 0.21% 1205 1.26% 36 1.75% 32

40% 515.0 864 0.05% 1034 0.25% 1109 0.35% 660 0.43% 954 2.66% 32 2.16% 31

30% 412.5 708 0.00% 998 0.22% 1262 0.59% 521 0.20% 744 1.77% 28 2.62% 31

25% 334.7 601 0.01% 967 0.89% 1315 1.12% 426 0.55% 610 4.69% 26 4.11% 30

20% 292.4 529 0.07% 954 2.69% 1997 2.39% 374 1.87% 543 5.85% 24 7.39% 30

15% 228.9 392 2.68% 931 6.91% 2126 7.80% 253 4.02% 366 8.77% 21 16.64% 30

PSOGA_Tabu GA SATabu PACO MMAX

80

TabuGAC −TabuGAC − SAtSAtTabuGAt −TabuGAt − tabuttabut MMAXtMMAXtPACOtPACOt PSOtPSOt
SArSArGArGArTaburTabur MMAXrMMAXrPACOrPACOr PSOrPSOrGArGAr GAtGAt

Table 6. Performance comparisons of algorithms in scenarios with (M, N) = (2, 100)

Jobs

Yield
(min) (sec) (sec)

(min)
(sec) (sec) (sec) (sec)

90% 1398.8 3402 0.02% 2328 0.06% 4002 0.15% 2851 0.16% 4053 0.76% 31 1.03% 58

80% 1256.4 3348 0.06% 2261 0.09% 3250 0.37% 2546 0.37% 3636 0.78% 28 1.09% 58

70% 1120.1 2734 0.03% 2193 0.03% 3459 0.15% 2253 0.18% 3229 0.78% 25 0.97% 57

60% 959.0 2294 0.04% 2117 0.10% 2389 0.25% 1920 0.30% 2769 1.04% 22 1.38% 57

50% 785.2 1868 0.06% 2041 0.08% 2454 0.23% 1568 0.26% 2257 1.11% 18 1.63% 56

40% 658.1 1711 0.03% 1988 0.19% 2183 0.28% 1308 0.37% 1886 1.44% 16 2.14% 55

30% 501.4 1231 0.00% 1900 0.45% 1780 0.83% 984 0.43% 1405 2.76% 12 2.69% 55

25% 451.2 1153 0.51% 1870 0.66% 1760 0.91% 882 0.29% 1258 2.60% 11 2.20% 55

20% 364.2 961 0.47% 1825 3.30% 2952 3.03% 728 2.96% 1055 7.52% 9 7.73% 54

15% 303.1 681 0.09% 1783 5.75% 3151 6.69% 511 3.49% 740 11.40% 6 11.95% 54

GA_Tabu PACO PSOGA SATabu MMAX

100

TabuGAC −TabuGAC − SAtSAtTabuGAt −TabuGAt − tabuttabut MMAXtMMAXtPACOtPACOt PSOtPSOt
SArSArGArGArTaburTabur MMAXrMMAXrPACOrPACOr PSOrPSOrGAtGAt

Table 7. Performance comparisons of algorithms in scenarios with (M, N) = (3, 20)

Jobs

Yield
(min) (sec) (sec)

(min)
(sec) (sec) (sec) (sec)

90% 197.9 4379 0.11% 6.0 0.09% 5876 0.41% 21 0.29% 31 1.27% 30 1.37% 2

80% 186.7 3970 0.19% 5.0 0.13% 4726 0.59% 19 0.31% 29 1.47% 27 1.61% 2

70% 159.7 3484 0.14% 4.0 0.22% 4348 0.50% 16 0.25% 25 1.53% 24 1.77% 1

60% 140.9 3375 0.12% 4.0 0.39% 4978 0.69% 14 0.58% 21 1.60% 21 1.87% 1

50% 126.7 2450 0.11% 3.0 0.57% 3996 0.76% 13 0.61% 19 1.69% 17 2.07% 1

40% 99.8 2046 0.10% 2.0 0.44% 4059 0.55% 10 0.52% 14 1.81% 14 2.29% 1

30% 82.2 1540 0.06% 2.0 0.55% 2632 0.60% 7 0.51% 11 1.83% 11 2.68% 1

25% 63.7 1377 0.13% 1.0 0.81% 3063 1.08% 6 0.85% 8 2.56% 10 3.88% 1

20% 55.9 1135 0.39% 1.0 0.89% 2209 1.18% 5 1.11% 7 3.43% 9 4.99% 1

15% 49.2 896 0.57% 1.0 1.53% 2238 1.99% 4 1.53% 6 5.10% 7 8.51% 1

PSOGA_Tabu GA SATabu MMAXPACO

20

TabuGAC −TabuGAC − SAtSAtTabuGAt −TabuGAt − tabuttabut MMAXtMMAXtPACOtPACOt PSOtPSOt
SArSArGArGArTaburTabur MMAXrMMAXrPACOrPACOr PSOrPSOrGArGArGArGArGArGArGArGAr GAtGAt

Table 8. Performance comparisons of algorithms in scenarios with (M, N) = (3, 40)

Jobs

Yield
(min) (sec) (sec)

(min)
(sec) (sec) (sec) (sec)

90% 394.0 416 0.10% 54.0 0.15% 271 0.07% 1176 0.13% 178 1.38% 12 1.59% 7

80% 342.1 369 0.07% 47.0 0.11% 234 0.13% 1042 0.11% 155 1.60% 11 1.83% 7

70% 308.7 330 0.07% 42.0 0.19% 210 0.25% 1021 0.31% 139 1.78% 10 1.99% 6

60% 266.0 287 0.14% 36.0 0.35% 180 0.19% 843 0.28% 119 1.80% 9 2.31% 6

50% 234.2 266 0.08% 31.0 0.28% 156 0.24% 879 0.18% 104 1.77% 8 2.53% 6

40% 181.1 208 0.07% 24.1 0.45% 121 0.47% 624 0.37% 81 2.45% 6 3.14% 6

30% 143.2 175 0.23% 19.0 0.53% 94 0.52% 728 0.38% 63 2.92% 5 3.92% 5

25% 124.0 150 0.27% 16.0 0.52% 80 0.67% 670 0.70% 54 3.98% 4 5.27% 5

20% 94.5 170 3.43% 12.0 2.82% 61 0.66% 720 2.67% 41 12.11% 4 15.36% 5

15% 85.4 118 0.75% 10.0 2.47% 50 2.02% 567 3.27% 34 10.90% 3 15.91% 5

PSOSATabu MMAXPACOGA_Tabu GA

40

TabuGAC −TabuGAC − SAtSAtTabuGAt −TabuGAt − tabuttabut MMAXtMMAXtPACOtPACOt PSOtPSOt
SArSArGArGArTaburTabur MMAXrMMAXrPACOrPACOr PSOrPSOrGArGArGArGArGArGAr GAtGAt

Table 9. Performance comparisons of algorithms in scenarios with (M, N) = (3, 60)

Jobs

Yield
(min) (sec) (sec)

(min)
(sec) (sec) (sec) (sec)

90% 577.5 1092 0.00% 179.4 0.05% 2724 0.07% 597 0.00% 915 1.23% 20 1.38% 17

80% 509.6 975 0.02% 158.9 0.09% 2093 0.02% 526 0.02% 804 1.19% 18 1.52% 17

70% 449.1 866 0.04% 140.1 0.17% 1587 0.15% 463 0.11% 705 1.46% 16 1.68% 16

60% 405.6 774 0.00% 126.9 0.13% 1859 0.13% 418 0.17% 635 1.65% 15 1.81% 16

50% 328.2 645 0.00% 101.0 0.31% 1278 0.14% 333 0.08% 504 1.78% 12 2.25% 16

40% 272.4 522 0.04% 83.7 0.48% 1428 0.24% 276 0.22% 416 2.84% 11 2.70% 15

30% 196.6 384 0.13% 59.0 0.91% 986 0.38% 197 0.16% 295 2.94% 9 3.80% 15

25% 165.1 330 0.18% 50.0 1.91% 1366 0.64% 166 0.47% 249 5.08% 8 5.94% 15

20% 146.8 315 0.63% 45.0 4.20% 1511 2.08% 148 1.78% 222 7.75% 7 9.63% 14

15% 116.9 326 4.68% 33.0 4.00% 1081 4.35% 107 4.20% 161 17.53% 6 19.41% 14

PSOGA_Tabu GA SATabu MMAXPACO

60

TabuGAC −TabuGAC − SAtSAtTabuGAt −TabuGAt − tabuttabut MMAXtMMAXtPACOtPACOt PSOtPSOt
SArSArGArGArTaburTabur MMAXrMMAXrPACOrPACOr PSOrPSOrGArGArGArGAr GAtGAt

Table 10. Performance comparisons of algorithms in scenarios with (M, N) = (3, 80)

Jobs

Yield
(min) (sec) (sec)

(min)
(sec) (sec) (sec) (sec)

90% 766.2 2404 0.07% 430.7 0.31% 3721 0.21% 1429 0.39% 2179 1.08% 25 1.23% 34

80% 686.3 2174 0.00% 386.7 0.46% 2935 0.15% 1278 0.45% 1939 1.22% 22 1.33% 33

70% 609.7 1884 0.02% 343.9 0.46% 2823 0.17% 1133 0.40% 1714 1.78% 20 1.50% 33

60% 520.8 1587 0.03% 291.5 0.34% 2682 0.17% 959 0.70% 1449 1.52% 17 1.71% 32

50% 450.7 1377 0.12% 252.5 0.41% 3010 0.22% 831 0.44% 1250 1.65% 15 2.01% 32

40% 354.5 1153 0.05% 199.0 0.76% 2283 0.16% 654 1.02% 983 2.09% 12 2.47% 31

30% 285.8 878 0.08% 158.1 1.30% 2269 0.44% 521 1.34% 779 2.39% 10 3.04% 31

25% 232.6 722 0.04% 129.7 3.16% 1692 0.85% 427 3.14% 639 3.47% 9 4.39% 30

20% 203.8 638 0.16% 114.9 5.36% 1485 1.77% 376 7.13% 562 5.94% 8 7.43% 30

15% 159.3 462 0.07% 78.3 10.29% 1609 1.48% 253 11.40% 378 22.57% 6 16.44% 30

MMAXPACO PSOGA_Tabu GA SATabu

80

TabuGAC −TabuGAC − SAtSAtTabuGAt −TabuGAt − tabuttabut MMAXtMMAXtPACOtPACOt PSOtPSOt
SArSArGArGArTaburTabur MMAXrMMAXrPACOrPACOr PSOrPSOrGArGAr GAtGAt

Table 11. Performance comparisons of algorithms in scenarios with (M, N) = (3, 100)

Jobs

Yield
(min) (sec) (sec)

(min)
(sec) (sec) (sec) (sec)

90% 950.5 4379 0.04% 839.1 0.06% 5876 0.39% 2780 0.28% 4236 0.96% 30 1.14% 59

80% 853.9 3970 0.05% 756.9 0.16% 4726 0.63% 2493 0.34% 3788 1.48% 27 1.24% 58

70% 760.4 3484 0.00% 674.0 0.21% 4348 0.47% 2214 0.23% 3349 1.35% 24 1.36% 57

60% 653.2 3375 0.04% 579.6 0.38% 4978 0.69% 1896 0.57% 2865 1.78% 21 1.56% 57

50% 535.1 2450 0.00% 474.8 0.63% 3996 0.82% 1549 0.67% 2336 1.56% 17 1.89% 56

40% 451.1 2046 0.10% 397.1 1.12% 4059 1.23% 1296 1.21% 1953 2.42% 14 2.35% 56

30% 345.0 1540 0.07% 300.5 1.57% 2632 1.62% 981 1.54% 1478 2.11% 11 2.93% 55

25% 306.8 1377 0.33% 269.8 2.32% 3063 2.60% 882 2.35% 1329 4.46% 10 3.68% 55

20% 252.8 1135 0.08% 224.3 5.30% 2209 5.61% 730 5.54% 1097 5.96% 9 7.24% 54

15% 205.7 896 0.16% 167.7 7.81% 2238 8.29% 533 8.24% 803 16.05% 7 14.02% 54

PACO PSOGA SATabu MMAXGA_Tabu

100

TabuGAC −TabuGAC − SAtSAtTabuGAt −TabuGAt − tabuttabut MMAXtMMAXtPACOtPACOt PSOtPSOt
SArSArGArGArTaburTabur MMAXrMMAXrPACOrPACOr PSOrPSOrGAtGAt

國科會補助專題研究計畫成果報告自評表

請就研究內容與原計畫相符程度、達成預期目標情況、研究成果之學術或應用價

值（簡要敘述成果所代表之意義、價值、影響或進一步發展之可能性）、是否適

合在學術期刊發表或申請專利、主要發現或其他有關價值等，作一綜合評估。

1. 請就研究內容與原計畫相符程度、達成預期目標情況作一綜合評估
 達成目標
□ 未達成目標（請說明，以 100 字為限）

□ 實驗失敗
□ 因故實驗中斷
□ 其他原因

說明：

2. 研究成果在學術期刊發表或申請專利等情形：
論文：■已發表 □未發表之文稿 □撰寫中 □無

專利：□已獲得 □申請中 □無

技轉：□已技轉 □洽談中 □無

其他：（以 100 字為限）

 發表 3 篇 SCI 的學術期刊論文

3. 請依學術成就、技術創新、社會影響等方面，評估研究成果之學術或應用價

值（簡要敘述成果所代表之意義、價值、影響或進一步發展之可能性）（以

500 字為限）

 本專題研究主要是針對晶圓廠的關鍵機台步進機(Stepper）研究其派工方

法，以提高步進機的產出。重要成果如下
(1) 發現：在新製程導入時，良率偏低，步進機可能因派工方法不當，

造成現場有在製品，但產能利用率卻不足的現象。
(2) 方法：本研究利用多種進化式演算法(meta-heuristic algorithms)來求解

步進機投料的排序，以最大化步進機的產出。
(3) 貢獻：本研究可幫助晶圓廠，在新製程導入的情境下，有效提高步進機

的產出。

 44

國科會補助計畫衍生研發成果推廣資料表
日期：101 年 5月12日

國科會補助計畫

計畫名稱：新製程導入情境下連線式步進機之排程

計畫主持人：巫木誠

計畫編號：99-2221-E-009-110-MY3 領域：工業工程

研發成果名稱

（中文）連線式步進機之排程方法

（英文）An Effective Scheduling Method For In-Line Steppers

成果歸屬機構
國立交通大學 發明人

(創作人)

巫木誠、邱志文、呂佳

玟、謝佩芸

技術說明

（中文）半導體廠最貴的機台是步進機(Stepper)，因此成為影響

產出最關鍵的瓶頸機台。在新製程導入時，製程良率通常很低。

本研究發現在低良率情境下，晶圓批的加工順序安排若不適當，

很可能造成步進機台意外性閒置，進而降低產出量。本研究提出

一套有效的排程方法，可使步進機台產出最佳化。

（200-500字）

（英文）In semiconductor fabs, in-line steppers are the most

expensive tools, which are the bottleneck in determining

wafer outputs. While introducing new processes or products,

the process yields tend to be low. This low-yield feature

may unexpectedly result in capacity idleness in an in-line

stepper. This research develops a scheduling method for

in-line steppers to reduce the risk of their unexpected

capacity idleness in low yield scenarios.

產業別

半導體產業

技術/產品應用範圍

步進機排程

 45

技術移轉可行性及預期

效益

(1) 技術移轉：具高可行性

(2) 預期效益：在低良率情境下，可提高步進機的產出

 註：本項研發成果若尚未申請專利，請勿揭露可申請專利之主要內容。

	4. Chromosome Representation and Decoding

