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Rotation and Gray-Scale Transform-Invariant 
Texture Classification Using Spiral Resampling, 

Subband Decomposition, and Hidden Markov Model 
Wen-Rong Wu, Member, IEEE, and Shieh-Chung Wei 

Abstract-This paper proposes a new texture classification algo- 
rithm that is invariant to rotation and gray-scale transformation. 
First, we convert two-dimensional (2-D) texture images to one- 
dimensional (1-D) signals by spiral resampling. Then, we use 
a quadrature mirror filter (QMF) bank to decompose sampled 
signals into subbands. In each band, we take high-order autocor- 
relation functions as features. Features in different bands, which 
form a vector sequence, are then modeled as a hidden Markov 
model (HMM). During classification, the unknown texture is 
matched against all the models and the best match is taken as the 
classification result. Simulations showed that the highest correct 
classification rate for 16 kinds of texture was 95.14%. 

I. INTRODUCTION 

EXTURE analysis plays an important role in computer T vision and pattern recognition, and is widely applied to 
many areas such as industrial automation, biomedical image 
processing, and remote sensing. In this paper, we are con- 
cerned with the texture classification problem. Many methods 
presented in the literature approach the problem by assuming 
that samples of a texture all possess the same orientation and 
the same gray scale. When this assumption is not valid, most 
of these methods performs poorly. 

In earlier approaches, attention was focused on analysis of 
the first-order or second-order statistics of textures [ 11-[8]. 
Later, Gaussian Markov random fields or Gibbs random fields 
[9]-[15] were proposed to model textures. The advantage of 
this approach is that few parameters often describe a texture 
well. Laws [16] used local linear transformations, which can 
detect certain types of pattern commonly found in texture 
images, to compute features. His work introduced the concept 
of multichannel processing. Laws' work was extended by a 
number of researchers [ 171-[20]. Recently, multiresolution and 
multichannel methods have been widely studied [21]-[261. In 
particular, the wavelet transform and the Gabor filter play 
important roles. The wavelet transform is a multiresolution 
technique, which can be implemented as a pyramid or tree 
structure, and is similar to subband decomposition. The Gabor 
filter can extract the information in an ellipse-shaped frequency 
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band and can be designed to detect some quasiperiodic texture 
patterns. 

Kashyap and Khotanzad [ 141 first recognized the importance 
of rotation-invariant texture classification and developed a 
circular autoregressive (AR) model. However, their model 
could only be used for textures with no strong directionality. 
They then incorporated two AR models to overcome this 
problem. Strictly speaking, this approach is not truly invariant 
to rotation since the feature derived from AR coefficients 
is only invariant to rotation in multiples of 45 '. Cohen, 
Fan, and Pate1 [15] modeled textures as Gaussian Markov 
random fields and used the maximum likelihood (ML) method 
to estimate coefficients and rotation angles, later applying a 
generalized likelihood test for classification. This scheme is 
theoretically appealing. The problem is that the likelihood 
function is highly nonlinear and local minima may exist. In 
addition, the algorithm must be realized by using an iterative 
method that is computationally intensive. Chen and Kundu 
[26] used multichannel subband decomposition and a hidden 
Markov model (HMM) to solve the problem. They used a 
two-dimensional (2-D) quadrature mirror filter (QMF) bank to 
decompose a 2-D image into subband images and modeled 
the features of these subband images as an HMM. Texture 
samples with different orientations are treated as being in the 
same class. Although this approach did show promising results 
in experiments, it has some drawbacks. It is obvious that for 
an image, signal components in each subband will be different 
for different orientations. If we force texture samples with 
different orientations into the same class, variations in feature 
vectors will increase. When the number of texture classes is 
large, the classification result can be seriously affected. 

Scenes imaged by different equipment or at different times 
may have different gray-scale values. This result is due to a 
complex process and is not easily modeled. In [26], Chen and 
Kundu used a simple model, essentially a linear function with 
an offset, to describe the phenomenon. They called this a gray- 
scale transform. Using this model, a transformed gray scale 
may be corrected by histogram equalization; however, this will 
increase the complexity of the classifier. Since it is desirable 
to have features invariant to gray-scale transformation, Chen 
and Kundu used the coefficients of skewness and kurtosis as 
features to achieve invariance. We will develop a more general 
method to cope with this problem. 

In this paper, we propose a new scheme to attack the 
problem of rotation and gray-scale transform-invariant texture 

1057-7149/96$05.00 0 1996 IEEE 



1424 IEE 

classification. The distinct feature of our approach is that we 
process the (1-D) signal obtained by spiral resampling. Given a 
digitized image, we resample the image along a spiral contour. 
The sampled 1-D signal is then considered as an observation 
of some random process. Because of the inherent characteris- 
tics, the statistical properties of the resampled signal is little 
affected by plane rotation. This is a significant advantage for 
HMM modeling. After resampling, the 1-D signal is passed 
through a QMF bank and features are extracted from each 
band. A normalization operation is performed at this stage to 
achieve invariance to gray-scale transformation. The sequence 
of subband features is then modeled as an HMM. The HMM 
is important here, since it explores dependencies among these 
subband features. During recognition, model parameters of an 
unknown texture are calculated and matched with those of 
known models and the one with the highest probability is 
selected as the output. Simulations show that our approach 
outperforms that in [26]. 

This paper is organized as follows. Section I1 describes what 
spiral sampling is and how to take spiral sampling evenly in 
texture images. Section I11 briefly describes subband decompo- 
sition, QMF banks, and the HMM. Section IV introduces the 
whole structure of our texture classification scheme. Then we 
performed simulations and report results in Section V. Finally, 
conclusions axe drawn in Section VI. 

11. SPIRAL SAMPLING 

A. Spiral Sampling Theorem 

A continuous spiral can be described as 

0 = C p  (1) 

where p is the radius, 0 is the corresponding angle, and C is 
a constant describing the radial distance. The radial distance 
is defined as the smallest distance between two points with 
the same angle (modulus of 27r). In real applications, we use 
discrete spirals. This can be done by sampling p. Generally, 
we want a uniform sampled spiral. To get that, we first 
have to consider the problem of coordinate transformation, 
Assume that the mapping of a point on a Cartesian plane 
w = ( p ,  0) onto a point on another Cartesian plane z = (z, y) 
is performed according to the transformation z = f (w) .  Let 
a sequence of points Wk, for k = 1,2, . . . , N on plane w 
be mapped to plane x, and define the length between two 
consecutive points Wk, W k + l  in w plane and zk, Zk+1 in z 
plane as 

IAzkl  = b k + l  - 4. (2) I A W k I  = IWk+l - W k l ,  

If f ( - )  is analytic and IAwkI is small, then we have 1281 the 
following: 

where 

(4) 

:E TRANSACTIONS ON IMAGE PROCESSING, VOL. 5, NO. 10, OCTOBER 1996 

and J (  3) is the Jacobian. Consider the transformation from 
w = ( p !  0) to x = (2 ,  y) and the transformation function is 

z = pcos0,  y = psin0. (5) 

Then, (I) is a straight line in w plane and a spiral in z plane. 
The Jacobian is 

Then, If'(w)l = fi. If we sample p uniformly, we have 

p k  = k A ,  81, = C p k  (7) 

where F = 0 , 1 , 2 , . . . ,  and A is a constant describing the 
density of spiral samples. In this case, it is easy to see that 
IAwkI is a constant. 

IAw~I = J [ ( k  + 1)A - kAI2 + C2[(k  + l ) A  - kA12 

This indicates that the sampling density is uniform along the 
straight line on the w-plane. However, from (3), we find that 

I A Z k I  = m. IAw,I. (9) 

IAzkl is not a constant. The sampling density is not uniform 
along the spiral on the z-plane. The bigger the k ,  the lower 
the density is; therefore, we have to consider another hnd  of 
transformation. 

Let r = p2 and consider the transformation from plane 
'U = (T ,  e )  to plane z = ( 5 ,  9) .  Using (5 )  and the chain rule, 
we have the Jacobian 

and if'(w)I = 1. Define IAvkI = Iwk+l- 'ukl .  If we sample T as 
that in (7), i.e., r = kA, we have IAwk I = 1 Azk I. Note that the 
relationship of r to 0 becomes 0 = Cfi, which is no longer 
a straight line and, thus, IAwkI  is not a constant. Consider 
two consecutive points ' ~ k + ~  = ( ( k  + l ) A ,  C d m )  and 
'uk = ( k ~ ,  c&). l ~ v k  I is calculated as 

which is dependent on k .  However, when k is large, we can 
make an approximation that Ji$ZiJ N k .  n u s  

In 'ukI  JTa+2;;z)n (12) 

and IAvkI E iAwk+,l. This means that the sampling density 
on the z plane as well as on the 'u plane are approximately 
uniform. It can be seen that Jm converges to k quickly. 

The sampling technique described above gives a uniformly 
sampled spiral, but this doesn't mean that the sampling po- 
sitions are evenly spaced. Define the radial distance, d,, as 
the smallest distance between two points with same angle 
(modulus of an), and the lateral distance, d l ,  as the distance 
between two consecutive spiral points. To have evenly spaced 
spiral sample, d l ,  d, must be constant and identical. Since we 
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have made dl constant above and d, is inherently constant, 
the only thing left is to choose A and C such that d, and dl 
are equal to a desired value. This is done as follows. 

First, we choose a desired value d. Consider the two points 
( p ,  8) and (p’ ,  8 + 27~). Let them satisfy 8 = Cp and 8 + 27r = 
Cp’. Subtracting the first equation from the second and noting 
that p‘ - p = d, we have 

18 . 
16 .. 

14 . 

12 - 

10 - 
8 -\ 

27r c=-- 
d ’  

Now we need to find the value of A. The k + 1th sam- 
ple of the spiral is (m, C m )  and IC + 2th sample is 
( d m l  C d m )  on the w plane. Fig. 1 plots the 
two points mapped to the z plane. From the trigonometric 
property, we know that 

BC2 = AB2 + AC2 - 2 A B .  ACcosqfJ 
d2 = ( k +  l ) A +  k A  - 2 d - m  

x c o s { c [ J o a  - &I}. (14) 

Assume that AI, is the solution of A when k is substituted. We 
can solve A, by some numerical method. For different k’s, 
Ak’s are not completely the same (though they are very close). 
We plot AI, for k = 0 ,1 ,2 , .  . . , N - 1 with d = 5 in Fig. 2 
( N  is the number of samples). Except for the first few values, 
&’s are almost the same, especially for large k.  So we take 
AI, with large IC as our A. We have performed simulations to 
find the relationship between d and A. For ease of future use, 
we apply the least-squares curve-fitting technique to obtain the 
following mathematical formula (for k = 100): 

A = 0.31791436711 . d 2 .  (15) 

(14) and (15) are plotted in Fig. 3. From this figure, we find 
that the fitting is so good that we cannot distinguish the 
approximation from the actual one. In summary, we obtain 
evenly spaced spiral data by the following procedure: 

1) Determine the value of d. 
2)  Calculate the value of C by (13). 
3) Calculate the value of A by (15). 
4) For k = 0 , 1 , 2 , - . . , N  - 1 

pk = a, o k  = cpk.  (16) 

xk = ~ ~ C O S ~ I , ,  yk = pksin8k. (17) 

5 )  Transform to the zy-plane. 

The data set {(zk,yk)lk = 0 ,1 , . . . ,N  - 1) is the evenly- 
spaced spiral data. An example of this spiral is shown in 
Fig. 4. 

B. The Rotation-Invariant Property 

Given a continuous image, the next problem we are con- 
cerned with is whether the spiral sampling will give similar 
signals no matter what degree to which the image is rotated. 
We use the word “similar” here, since it is almost impossible to 
obtain the exactly same signals. First, consider the nonuniform 
sampling in (7). Let the spiral center coincide with the center 
of rotation. It is simple to see that, as far as sampling is 

X 

concerned, rotating an image is equivalent to rotating the 
spiral (the image remains unchanged). From (7), we see that 
01, = kCA. Thus, if we let m be an integer and rotate 
the spiral by an angle of mCA, all the sampling points 
will move inwardly/outwardly along the radial direction. If 
the radial distance d, is small, the sampled signal of the 
rotated spiral is simply a shift version of the original. We 
depict this property in the example shown in Fig. 5. In the 
figure, s(1)-s(N) denote the sampling positions of the original 
spiral, and r ( l ) - r (N)  denote those of the rotated spiral. 
Let the polar coordinates of s ( k )  and r ( k )  be ( p i ,  0;) and 
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Fig. 3 .  Relationship of d and A 
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Fig. 4. Evenly spaced spiral sample with d = 2. 

(p: ,  QL), respectively. For this particular example, we see that 
t?; and are identical for k = 2 , . . . , N .  Although p i  
and pi-l are different, I &  - p;-l l 5 d,/2. The equality 
holds when the rotation angle is 180’. Thus, if d ,  is made 
small enough, f [s( k ) ]  M f [r( k - l ) ]  for k = 2, . . . , N where 
f [ z ]  denotes the sampled signal at 5 position. In general, we 
can have f [ s ( k ) ]  M f [ r ( k  - P + l ) ] ,  k = P , - . . , N  for a 
counterclockwise rotation and f [ s ( k  - P + l ) ]  M f [ r ( k ) ]  for 
a clockwise rotation where P is an integer and its value is 
determined by the sampling density and the rotation angle. For 
the uniform sampling scheme in (16), a similar formation does 
not exist. Therefore, the sampled signal of the rotated image 
will have some distortion compared to that of the unrotated 
one. However, as we will show later, the distortion is small 
and can be ignored in real applications. 

To better understand the concept described above, we show 
a simple example of spiral sampling here. Let the intensity 
of an image be f ( 2 ,  y) and f ( 2 ,  y) = 32 - 2y, where 2 

and y are coordinates inside the image. The center of the 
spiral is set at the origin and the image size is 30 x 30. 
Fig. 7 shows two spiral-sampling results corresponding to the 
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Fig. 5. Sampled spiral and its rotated version. 

Fig. 6. Sampled spiral and its rotated version 

original (solid line) and the 90”-rotated (dashed line) images 
for the nonuniform sampling scheme. As we can see, apart 
from a shift, these two signals are almost identical. Fig. 8 
shows the magnitude plots of their spectra. Fig. 9 shows the 
spirally sampled signals for the uniform sampling scheme and 
Fig. 10 is the magnitude plot of their spectra. From Fig. 9, 
we see that the amount of shift in the sampled signal of the 
rotated image is time varying (pretend that the horizontal axis 
represents time); the bigger the time index, the larger the shift 
is. Even with this distortion, the main characteristic of the 
signal is preserved. This can be seen from the waveforms and 
the peaks of their spectra. 
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Fig. 8. Amplitude spectra of signals in Fig. 7. 
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Fig. 9. Resulting signals for uniform spiral sampling. 

Now we analyze signal distortion due to rotation in the 
uniform sampling scheme. In Fig. 6, we show two spirals: 
s(1)-s(N) is the original one and r(1)-r(N) is the rotated 
one. From the figure, it is apparent that the sampled signal 
at s ( N )  does not correspond to that of r ( N ) ;  instead, it 
corresponds to r (N  - M )  where M is some integer. Then, 
the sampled signal at r ( N  - M )  is shifted by the arc length 
from r (N  - M )  to r ( N ) .  Note that there is no shift at the 
starting point. Thus, the original spiral from s(1) to s ( N )  is 
compressed into the rotated spiral from r( 1) to r ( N - M ) .  This 
makes the amount of shift time variant and distorts the sampled 
signal. The arc length from r ( N - M )  to r ( N )  is the maximum 
amount of shift. If this amount is small compared with the 

140001 I 

Fig. 10. Amplitude spectra of signals in Fig. 9. 

signal length, the compression effect is not significant. Let R 
be equal to the ratio of the number of sampling points on the 
arc r (N-M)-r (N)  and the total sampling points on the spiral. 
Consider a square image with side-length W .  For simplicity, 
let the d value in (15) be 1 and the end point of the spiral 
reach the boundary of the image. The number of the sampling 
points on the arc r (N  - M )  to r ( N )  can be approximated by 
7rW(6'/27r) where 6' is the rotation angle and the number of 
sampling points on the whole spiral can be approximated by 
W2(7r(W/2)2/W2) = W27r/4. Thus, R equals 46'/2W7r. In 
the worst case, where 19 = 7r, R = 2/W. For a 128 x 128 
image, this ratio is less than 2%. The distortion is then small 
and can be ignored. 

The above results were derived for an image rotated to 
different angles. Given another texture image of the same 
class, if we apply the spiral sampling scheme, the resulting 
signal may be totally different from previous ones. However, 
we can assume that the signal has statistical properties similar 
to those of previous ones. Note that this is an extension of 
the common assumption that sampled signals along straight 
lines with the same slopes have similar statistical properties 
for texture images of the same class. Based on this assumption 
and our previous results, we conclude that the spirally sampled 
signals have similar statistical properties for texture images of 
the same class, and these properties are present regardless of 
the rotation center and the rotation angle. This is the foundation 
of our approach. 

In most applications, we deal with digitized images, which 
means we have to resample the images. Interpolation tech- 
niques may be useful here. Since the spiral sampling is not 
typical, some form of aliasing may occur. However, if the 
resampling density is comparable to the original digitized 
image, this effect is small. Note that even the resampled signal 
is aliased, we can still carry out classification as long as we 
can extract useful information from the sampled signal. This 
is different from reconstruction, where aliasing may not be 
acceptable. 

111. SUBBAND DECOMPOSITION AND HMM 

A. Subband Decomposition 
We treat the I-D resampled signals from texture images in 

the same class as observations from a random process. Since 
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the 1-D signal carries 2-D information, the power spectrum 
may have a complicated shape and is not easily characterized 
using conventional methods. Even if we apply a high-order AR 
model, for example, we may still not be able to describe local 
properties of the power spectrum. However, if we consider 
the power spectrum just inside a small bandwidth, a low- 
order AR model may be sufficient. In other words, we can 
divide the power spectrum into consecutive segments and use 
a low-order AR model for each segment. This is similar to 
the spline-function approach in the curve-fitting problem. The 
subband decomposition is a perfect way to realize the idea 
mentioned above. Note that the decomposed signals are also 
random. In what follows, we briefly describe the basic concept 
of subband decomposition. 

Subband decomposition can be realized by the QMF bank 
[30]. The QMF bank is composed of analysis filters (deci- 
mators) that are used to partition the signal into consecutive 
frequency bands, and synthesis filters (interpolators) that are 
used to combine the partitioned signals back into the original 
signal. The principle of QMF bank design can be illustrated by 
considering the two-band analysis/synthesis structure shown 
in Fig. 11. In this figure, the filters ho(n) and hl (n)  represent 
the lowpass and highpass analysis filters. Similarly, the filters 
fo(n) and f l (n )  represent the lowpass and highpass synthesis 
filters. ~ ( n ) ,  ~ ( m ) ,  zl(m),  &(m), and 2:l(m) denote the 
original signal, the output signal of ho(n), the output signal of 
hl (n) ,  the input signal of f o  (n) ,  and the input signal of f l  (n).  

Let the Fourier transform of ~ ( n ) ,  zo(m), zl(m), ho(n), 
and hl(n) be X(e j " ) ,  Xo(e jw) ,  X,(ej"),  Ho(ej"), and 
H I  (ej"). We then have 

' 1  
X ,  ( e J W )  = [ ~ ( e j ~ / ~ ) ~ o  ( e j w / 2 )  

+ q e ( j w + 2 . r r ) / 2  )Ho  ( e ( j w + 2 4 / 2  11 (18) 
' 1  

X I  (eJ  = [ X  ( e j w / 2  ) H I  ( e j W / ' )  

+ X(e(j"+2")/2 )Hl(e(j"+2")/2)]. (19) 

Similarly, let X o ( e j w ) ,  X 1 ( e j w ) ,  Fo(ej"), Fl(ejw) and 
X ( e j " )  be the Fourier transforms of 20(m), 21(m), fo(n),  
f l  (n),  and L;(n), respectively. Then the synthesis relationship 
is 

X ( e j U )  = Xo(e j " )Fo (e j " )  + X l ( e + ) F I ( P ) .  (20) 

Combining (18) and (19) and using the relationships in which 
X o ( e j " )  = Xo(eJw) ,  X1(dW) = X l ( e j w ) ,  we obtain the 
output frequency response in the form 

X(eTw> = -JHo(ejW)Fo(ejw> + ~ l ( e j ~ ) ~ l ( e j ~ ) l ~ ( e j ~ )  
' 1  

1 
2 

+ - [HI)( ,++"')FO( 2") + HI (e++qFl ( e 9 1  

x X(ej("+q.  (21) 

zo(m) BAND 0 
Ho( e'") 

X,(m) BAND 1 

xfnl 

I U- 

xe(m) BAND 6 

x,(m) BAND 7 

Fig. 12. Example of three-stage tree structure for an eight-band filter 

The first term in (21) represents the original signal, and the 
second term represents the undesired aliasing components. It 
has been shown that through proper design, aliasing due to 
decimation in the analysis structure can be exactly canceled 
by imaging due to interpolation in the synthesis structure 1301. 
The two-band design described above can be conveniently 
cascaded into a tree structure. Other kinds of implementation 
are possible. However, due to its simple structure, we consider 
only the tree structure here. An example of this structure is 
shown in Fig. 12. 

I 

B. Hidden Markov Model (HMM) 

After subband decomposition, we obtain a set of subband 
signals. A feature vector is then extracted for each band. 
Since the decomposed signals are random, the vectors are 
also random. Here, we have two choices to continue the 
processing. The first is to combine all feature vectors into 
one big vector such that the conventional Bayesian classifier 
can be applied. However, note that there may be correlation 
between components of the big vector. Thus, we have to 
estimate its correlation matrix. Since the vector is usually 
large, this approach is difficult. We can ignore the correlation 
and estimate only the variance of each component, but this will 
degrade the performance of the classifier. The second choice 
is to put these vectors in order (from the lowest frequency 
band to the highest frequency band) to form a sequence of 
vectors. This sequence of vectors is seen as an observation of 
some vector process, which allows a model to be built for the 
process. The HMM has proven to be powerful in modeling 
a vector process. Thus, we adopted the HMM to implement 
our classification scheme. The theoretical background of the 
HMM and related problems are stated as follows. 

A Markov process is a stochastic process whose past has no 
influence on the future if its present is specified. Let xt denote 
a stochastic process and f ( . )  the density function. Then 

In an HMM [29], the observation, which is also called the 
symbol, does not have the Markov property. The symbol 
distribution is dependent on the so-called "state." It is the state 
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that possesses the Markov behavior. Let the state at time t be 
denoted as i t .  Then 

f ( i t l i t -1 ,  i t -1 , .  . . ,211 = f(itlit-1). (23)  

Usually, the number of states is finite, say L. Thus, L symbol 
distributions are associated with the L states. We now define 
the elements of the HMM as follows. 

T = length of the observation sequence 
L = number of states in the model 
Q = {qI,q2,...,qN} = HMM states 
0 = {o t}  = observation sequence, t = 1 , 2 ,  . . . , T 
II = {T ; }  = initial state probabilities 

n-; = P(q; at t = 1). 
A = {a; j}  = state transition probability 

a;j = P(qj at t + 1 I q; at t ) .  
B = { b j ( o t ) }  = observation symbol density 

For convenience, we use the compact notion X = ( A ,  B ,  II) 
to represent an HMM. Using the HMM with specified A, an 
observation sequence 0 = { 01,02, . . , O T }  can be generated 
as follows: 

1) Choose an initial state, i l ,  according to the initial state 
distribution. 

2) Set t = 1. 
3 )  Choose ot according to bi,(ot), the symbol probability 

density in state i t . 
4) Choose &+I according to a;,i,+,, the state transition 

probability. 
5) Set t = t + 1; return to step 3 if t 5 T ;  otherwise, 

terminate the procedure. 
Similarly, sequences of observations can be modeled as 
HMM’s. For the pattern recognition problem, X can been 
taken as the feature vector. To realize pattern recognition with 
HMM’s, we have to consider the following three problems. 

P1-Given the model X = (A,B,II)  and observation 
sequence 0 = 01~02,. . . , OT, what is the probability 
of the observation sequence P(OIX)? 

P2-Given the observation sequence 0 = O I , O Z ,  . . . , O T ,  

how can we select an optimal state sequence I = 

P3-Given the observation sequence 0 = 01,02 ,  . . . , O T ,  

how do we find the model parameters X = (A,B,II)  
to maximize P(OIX)? 

P1 and P2 are mainly concerned with the matching phase of 
the recognition process, and P3 is concerned with the training 
phase. The solutions of these three problems have been found. 
For details, see [29]. 

b j ( 0 t )  = f ( O t 1 4 j ) .  

il, iz,. . . , iT? 

IV. TEXTURE CLASSIFICATION 
In order to solve the rotation and gray-scale transfom- 

invariant problem for texture classification, we combine spiral 
sampling, subband decomposition, and the HMM techniques. 
The block diagram of the texture-classification algorithm is 
shown in Fig. 13. First, we obtain 1-D signals by spiral resam- 
pling, remove the signals’ means, split them into consecutive 
frequency bands, and extract the normalized features from 

I I 

HMM Ai. 

Fig. 13. Block diagram of texture recognition; training and testing. 

each band with second-order or higher order autocorrelation 
functions. This is what we call the preprocessing stage. The 
purpose of spiral sampling is to solve the rotation-invariant 
problem, while mean removal and feature normalization solve 
the gray-scale transform-invariant problem. Features in each 
band then form a sequence of vectors that are modeled as 
an HMM. It is the HMM that describes the random nature 
of the texture signal. Note that even structured textures may 
be described using our method. This is the power of subband 
decomposition. For a structured texture, widely spaced sam- 
ples can be correlated. Thus, it is difficult to use correlation 
functions to characterize the texture. However, in the subband 
domain, due to the filtering and decimation, signals become 
less correlated and correlation functions may be useful. After 
the features of the training samples have all been derived, we 
train the HMM parameter. Once the models are all built, an 
unknown object’s features can be matched against each model 
and the best match is considered as the classification result. In 
the following, we describe each stage in detail. 

A. Preprocessing/Spiral Resampling 

In simulations, we need many rotated images for training 
and testing. Theoretically, we have to rotate actual texture 
pictures and scan them. Since this is time consuming, we 
instead rotated digitized images and spirally resampled them. 
As we mentioned in Section 11, this is equivalent to rotating 
spiral contours and letting texture images remain unchanged. 
The rotated spiral can easily be accomplished as follows: 

Pk &, 0 k  = c p k  f 0, (24) 

where 0, denotes the rotation angle. Let the image size 
be W x W .  The following constraint must be satisfied for 
sampling: 
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Fig. 14. Textures used in experiments (from top to bottom, left to right: 
D11l3D12,D14,D15,Dl7,D18,D24, D28,D2,D34,D37,D55 , , ,  D92 D94 
D9, D10). 

where N is the number of samples. We let the equality hold 
and obtain the maximum A as follows: 

T X P  
"I a= 

4(N - 1). 

B. Preprocessing/Mean Removal 

described as follows: 
The gray-scale transform mentioned in Section I can be 

where I ( z , y )  is the gray level at (x ,y) ,  a is a positive 
scale factor, and P is a shift factor. Here, we assume that 
0 5 Jt(z, y) 5 255. In classification, images transformed with 
different a's and P ' s  are considered identical. Thus, we need 
an algorithm that is invariant to gray-scale transformation. This 
is accomplished in two steps. First, we remove the mean of 
the sampled signal to null the effect of P. The effect of scale 
constant a can be removed in feature formulation as described 
below. 

C. Preprocessing/Subband Decomposition 

The mean removed signal is then passed to the QMF 
bank. Let the original sampled signal be g(lc) ,  the gray-scale 
transformed signal be g t ( k ) ,  the mean removal signal of g ( k )  
be G( k ) ,  and the mean removal signal of gt ( k )  be Gt ( k ) .  We 
now show that the subband signals of j ( k )  and & ( k )  also 
differ in a scalar factor a. Consider a two-band case. Let 
the subband signals of g ( k )  and & ( k )  be z 0 ( k ) , z 1 ( k )  and 
ztO(k),xtl(k), respectively. From (IS) and (19), we can obtain 

. I - .  
Xi("") = Z[G(eJw~2)H; (e . i "~2)  

+ q e ( P + 2 W ) H i  ( e ( 3 " + 2 w  ) I  (28) 

x t ; (e j" )  = :[Gt(e'"/2)Hi(ej"/2) 

+ Gt(,(j"+2,)/2)H,(e(jw+2.rr)/2 11 (29) 

where G( ej") , Gt (ej") , X i  (ej"), and Xt;  (ej") are the Fourier 
transforms of j(lc), j t ( k ) ,  x;(lc) and x t ; (k )  and i=O or 1. 
Since the mean is removed, we have et(@) = a . G(ej"). 
Combining this with (28) and (29), we have the following 
result: 

Xti(ej") = a .  X i (e jw)  (30) 

or z t i ( k )  = a .  z i ( k ) .  

D. Preprocessing/Feature Extraction 

As mentioned previously, the subband decomposed signals 
are random. Here, we model each subband decomposed signal 
as an observation of a non-Gaussian random process, which 
is the output of a linear system with a non-Gaussian white- 
noise input. Conventional approaches to characterizing random 
processes use second-order statistics. However, as we know, 
second-order statistics do not provide phase information about 
the linear system. Phase information is important in some 
applications. Thus, we propose to use high-order statistics, 
specifically the high-order autocorrelation functions, as fea- 
tures. Let the number of subbands be B and the number of 
samples in each band be D ( N  = BD).  For the ith band, the 
autocorrelation function is defined as 

%(n, 7 2 ,  ' . . , 7 M )  

= E{z,(k)x,(k~T~).~~s,(k-rM)} (31) 
D-TM 

E - >: { x , ( k ) 5 , ( k + 7 1 ) . . . 2 , ( k + 7 ~ ) }  (32) 

for i = 0 , 1 , 2 , . . .  , B  - 1, where 71  5 7 2  5 . . .  5 7~ 

are positive integer values. From experiments, we found that 
the unsigned autocorrelation functions are more useful for 
classification. Thus, we redefine 

k = l  
D 

R2(Ti, 7 2 ,  ' . ' , T M )  

- D-TM 

The unsigned autocorrelation functions will produce large 
values when their order is high. This is equivalent to putting 
more weights on those features. To avoid this problem, we 
use the following treatment: 

ri(71,72,. . . , 7 M )  = M J R ~ ( ~ ~ , ~ ~ ,  . . . , 7 M ) .  

rti (T1, T 2 ,  . . . , T M )  = a . r,(Tl, T 2 ,  . . . , T M )  

(34) 

(35) 

It is simple to show that 

where T t  denotes the correlation function of the transformed 
signal. Finally, to obtain scale invariance, we normalize r;. 
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features, and they are invariant to gray-scale transformation. 
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3 55.86(113) 73.44( 68) 86.33( 35) 20.31(204) 10.16(230) 
4 67.58( 83) 82.42( 45) 86.72( 34) 19.14(207) 12.50(224) 
5 72.27f 71) 83.981 41) 88.671 29) 19.531206) 10.55(2291 

for i = 0,1 ,2 , .  . . , B - 1, and it is easy to see that TABLE I 
CLASSIFICATION RESULTS FOR EIGHTBAND DECOMPOSITION: 
16 IMAGES WERE USED FOR TRAINING AND 16 IMAGES FOR 
TESTING OF EACH TEXTURE; EACH ENTRY SHOWS CORRECT 

CLASSIFICATION RATE AND ASSOCIATED MISCLASSIFIED SAMPLES 
Yti(Tl,TZ, . . . , T M )  = Yi(T17 7 2 ,  ‘ ‘ ’ , 7 M ) .  (37) 

E. Training the HMM 
The HMM training algorithm associated with the state- 

6 ’ 75.78i mj 85.16{ 38j 91.soi z l j  ’ 20.31i204j ’ 11.72i226j 
7 74.61( 65) 87.89( 31) 91.02( 23) 20.31(204) 9.38(232) 
8 75.78( 62) 89.84( 26) 89.45( 27) 
9 76.56( 60) 87.50( 32) 89.06( 28) 

78.91( 54) 

called the segmental K-means algorithm [31]; it is described 
below. 6) 

Clustering: The training feature vectors are clustered. If 
a feature vector is in the ith cluster, it is assigned to state 
i .  Thus, the number of clusters is the number of states. 
Calculation of the Initial Probability: 7) 

(38) 
Number of occurrences of { 01 E state i }  

Number of training samples 
+. - 

2 -  

where 1 5 i 5 L and L is the number of states. 
Calculation of the Transition Probability: 

Number of transitions from state i to state j 
Number of transitions from state i a . .  - - 

(39) 

where 1 5 i , j  5 L. 
Calculation of the Symbol Probability Density Function 
for  Each State: We assume that the symbol density of 
each state is Gaussian. 

Optimization: If any state assignment of a feature in step 
5 is different from the previous one, update the state 
assignment. Steps 5 and 6 are conducted for all feature 
vectors. 
Iteration: Go back to step 2 and use the new state 
assignment to estimate model parameters. Repeat this 
procedure until the state assignment does not change. 

where 1 5 j 5 L, ot is the feature vector and K is 
its dimension. The mean and covariance matrix of each 

3) 

state can be calculated by 4) 
5 )  

1 
Pi = NI O t ,  1 < i  5 L (41) 

The clustering scheme used in step 1 belongs to the well- 
known “split-and-merge’’ algorithm, the “split” phase of which 
operates as follows: 

1) calculate the center (mean) of the all training features, 
then split it in two; 

2) use the two new centers and a Euclidean minimum- 
distance classifier to divide training features into two 
clusters; 

3) recalculate the centers of the two new clusters, then split 
each in two and divide the features into four clusters; 

4) repeat the procedure until 2z (2l> L )  clusters are divided, 
which concludes “split.” 

“Merge” operates as follows: 

‘ o t E i  
_ .  

where N; is the number of features assigned to state i .  
After the three parameter sets are obtained, the model 

is built; that is, fi = { j i i } ,  A = {iLij}, l? = (6 j (o t )}  
and 1 = {l?,L,&}. 
Search for  the Optimal State Sequence for  Each Training 
Sample: For a sequence of feature vectors, find the 
optimal state sequence Q* = (qT, q; ,  . . . , q;} for the 
given model parameters i using the Viterbi algorithm, 
and assign feature vectors to corresponding states, ot E 
state i if q: = a, for 1 5 t I T and 1 5 i 5 L. 

count the number of sample in each cluster; 
if the number of sample in the smallest cluster is 
less than a preset number Fmin, calculate its Euclidean 
distance from the others and merge it with the closest 
one; 
repeat 1 and 2 until the number of samples in every 
cluster is greater than &,in; 

find the closest pair of clusters and merge them; 
repeat 4 until the number of clusters is L (the number 
of state in the HMM). 

F. HMM Testing 

Assume there are J kinds of models denoted by 
XI, Xz, - , X J .  Given an unknown feature-vector sequence 
0 = (01, 02, , oT},  we first calculate the maximum 
state-optimized likelihood function Pt against all the models 
using the Viterbi algorithm; that is, calculate P ( 0 ,  I* [A,) for 
k = 1,2 ,  . . . , J ,  where I* denotes the optimal state sequence, 
then classify by finding the maximum value of P ( 0 ,  I* I & )  

i* = arg max P(O,I*IXk). (43) 
k=1,2, ..., J 

The unknown feature-vector sequence 0 is then classified as 
class i*. 
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V. SIMULATIONS 

We used a simple eight-tap lowpass filter h(n) to form the 
QMF bank: the coefficients are shown below [30]. 

h(0) = h(7) = 0.009387159 
h(1) = h(6) = -0.070 651 83 
h(2) = h(5) = 0.069428270 
h(3) = h(4) = 0.489 980 800. 

We selected normalized autocorrelation functions up to the 
fourth order as features. To test the effectiveness of high-order 
statistics, we formed the five feature sets listed below. 

A: $0). 
B: Y(O), Y(1) .  
c: Y(0)I  ?(I), Y ( 0 , 1 > , Y ( l ,  1). 
D: Y ( O ) , Y ( l ) , Y ( O , O ,  ~ ~ l Y ( O 1 1 ,  l ) , Y ( l ,  1,1). 
E: Y ( O ) , Y ( l ) , Y ( O ,  11, Y ( 1 , 1 ) 1  Y(O,O,  11, 

Y ( O , I ,  11, $1, 1,1). 
Feature set A is just the signal power that corresponds to a 
first-order statistic. Feature set B includes a first-order and a 
second-order statistic, and is commonly used in conventional 
stochastic signal analysis. Feature set C includes a first-order, a 
second-order, and a third-order statistic. Feature set D replaces 
the third-order statistic in feature set C with a fourth-order 
statistic. Finally, feature set E includes all the features in 
feature sets A, B ,  C,  and D. The simplest feature set has only 
one feature, while the most complicated one has seven. 

For our experiments, we selected 16 textures from Brodatz’s 
texture album [32] shown in Fig. 14. Texture images were 
scanned to have size 512 x 512. The image size used in 
classification was 128 x 128. For training, images were 
extracted from the 512 x 512 originals with centers evenly 
covering the entire image area.-In the first experiment, we 
took 16 training images and 16 test images for each class of 
texture. Centers of test images were randomly chosen from 
the 512 x 512 images and rotated to random angles. The 
number of sampling data is 12000. For a 128 x 128 image, 
there are 16384 pixels; thus, the density of sampling was 
smaller than (but close to) the original. We used an eight-band 
decomposition, giving us 1500 data points in each subband. 
The minimum number of samples in a cluster was set at 

Table I shows experiment results. The “-” signs in the 
table mean that the number of samples in a cluster was too 
small and the clustering algorithm failed. From the table, we 
find that feature set C performed best, yielding the highest 
correct classification rate, 9 1.80%. The performance of feature 
sets D and E was extremely poor, probably because they 
contained fourth-order statistics and needed more training data 
than feature sets A, B, and C. This problem can be remedied 
by increasing the number of bands or by increasing the number 
of training samples. More bands will allow more symbol 
observations and state transitions, which may, in turn, facilitate 
estimates of symbol distributions and state-transition matrices. 
It will also decrease each band’s bandwidth and make correla- 
tion functions easier to be estimated. Table I1 lists the results of 

F,,, = 10. 

TABLE 11 

16 IMAGES ARE USED FOR TRAIN~VG AND 16 IMAGES FOR 

CLASSETCATION RATE AND ASSOCIATED MISCLASSFLED SAMPLES 

CLASSIFICATION RESULTS FOR 16-B~m DECOMPOSITION 

TESTING OF EACH TEXTURE, EACH ENTRY SHOWS COFCXECT 

I State No. I Feature Set A I Feature Set B I Feature Set C I Feature Set D I Feature Set E 

16-band decomposition. Here, the performance of feature sets 
D and E showed great improvement, becoming comparable 
to feature sets B and C. However, note that the performance 
of feature sets A, B, and C remained approximately the same 
(except for cases with small state numbers). This indicates that 
feature sets A, B ,  and C achieved performance saturation. For 
these feature sets, the training sample size was sufficiently 
large. Worth noting is that increasing the number of bands 
decreases the number of samples in each band; this may 
increase estimate variances, and classification results may be 
adversely affected. This explains the performance degradation 
of feature sets A, B ,  and C for small-state numbers. The 
correct classification rates for feature sets D and E were still 
not high enough, meaning that more training samples were 
necessary. 

We then increased the training (test) samples up to 36 for 
each texture, leaving the band number at 8. Table I11 shows 
the classification results. The highest correct classification rate 
was then 95.14%. Comparing Tables I and 111, we see that 
feature sets A , B ,  and C have the same performance for 
16 and 36 training samples; thus, increasing the number of 
training samples did not help. This agrees with the argument 
we made above; performance of feature sets A, B ,  and C had 
reached saturation. However, feature sets D and E improved 
significantly. Another interesting discovery is that for any 
state number, the performance ranking, from the best to 
the worst, is E ,  D ,  C, B ,  A. The best classification rate for 
features with conventional second-order statistics (feature set 
B )  was 88.39%. From this, we realize that the high-order 
statistics do have the capability to distinguish between similar 
textures. Sixteen-band decomposition was also tried. Results 
were similar to those from the eight-band case. Thus, we can 
say that 36 training samples with eight-band decomposition is 
adequate for feature sets D and E. Feature set E with nine 
states had the best Performance. Note that the performance 
does not vary much from five states to ten states. We also 
performed some experiments to verify invariance to gray-scale 
transformation. Two cases were tried: Q = 0.5, /? = 20 and 
U: = 1.2, /? = 0. We found that the classification results were 
hardly affected. The last experiment we did was to compare the 
performance of our approach with the conventional minimum- 
distance classifier. We let the experimental settings be identical 
with the previous one and tested only the performance of 
feature set E. The classification accuracy was about 76%, far 
less than the results from the HMM. We thus confirmed that the 
HMM does exploit more information from feature sequences. 
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TABLE 111 
CLASSIFICATION RESULTS FOR EIGHT-BAND DECOMPOSITION: 
36 IMAGES ARE USED FOR TRAINING AND 36 IMAGES FOR 

TESTING OF EACH TEXTURE, EACH ENTRY SHOWS CORRECT 
CLASSIFICATION RATE AND ASSOCIATED MISCLASSIFIED SAMPLES 

I State No. I Feature Set A I Feature Set B 1 Feature Set C I Feature Set D I Feature Set E I 

VI. CONCLUSION 
We have presented an algorithm for texture classification 

that is rotation and gray-scale transform-invariant. While the 
rotation invariance is achieved through spiral sampling and 
an HMM, gray-scale transform invariance is achieved by 
mean removal and a normalization technique. The subband 
decomposition in this scheme plays an important role by 
providing an effective means to explore dependencies among 
subband features through the use of the HMM. The features 
we used are high-order autocorrelation functions. It was shown 
that the features do capture the texture characteristics. The 
highest classification accuracy for sixteen kinds of texture was 
95.14%. 

Our research was preliminary, and classification results can 
be further improved. We summarize some possible approaches 
in the following: 

The observation density function used in the HMM is the 
simplest one, the Gaussian density. This assumption may 
not be true. A more realistic one may be the Gaussian- 
mixture model. 
The 1-D sampled signal can be nonstationary. Thus, a 
nonstationary HMM may model the signal more faith- 

In subband decomposition, each band was set to have 
equal bandwidth. However, as we know, most signal 
power is usually concentrated in low-frequency bands. 
Therefore, subbands with unequal bandwidths may pro- 
duce better results. 
In our experiments, coordinates of spiral resampling 
points were quantized to the closest lattice points. We 
may use some interpolation technique that can determine 
sampled values more precisely. This may improve the 
result when the sampling density is high. 

fully. 
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